Exercise 1: (INFO1105 and INFO1905)

1. Show a tree with \(n \) elements achieving the worst-case running time for the following algorithm:

Algorithm 1 Calculates the depth of a tree

```
1: procedure DEPTH(Tree T, node v)
2:   if v is the root of T then
3:     return 0
4:   else
5:     return 1 + DEPTH(T, w), where w is the parent of v in T
6:   end if
7: end procedure
```

Also, show a tree that achieves the best-case running time.

Answer

(a) Consider a degenerate case, i.e., a binary tree where for every internal node there is only one child.

(b) Consider a complete binary tree.

2. Let \(T \) be a tree with more than one node. Is it possible that the preorder traversal of \(T \) visits the nodes in the same order as the postorder traversal of \(T \)? If so, give an example; otherwise, argue why this cannot occur. Likewise, is it possible that the preorder traversal of \(T \) visits the nodes in the reverse order of the postorder traversal of \(T \)? If so, give an example; otherwise, argue why this cannot occur.

Answer

It is not possible for the postorder and preorder traversal of a tree with more than one node to visit the nodes in the same order. A preorder traversal will always visit the root node first, while a postorder traversal node will always visit an external node first. It is possible for a preorder and a postorder traversal to visit the nodes in the reverse order. Consider the case of a tree with only two nodes.
3. Draw a (single) binary tree T such that
 - Each internal node of T stores a single character
 - A preorder traversal of T yields EXAMFUN
 - An inorder traversal of T yields MAFXUEN.

Answer

![Tree Diagram]

Figure 1: Solution

Exercise 2: (INFO1105)

We can define a binary tree representation T' for an ordered general tree T as follows (see Figure 2):

- For each node u of T, there is an internal node u' of T' associated with u.
- If u is an external node of T and does not have a sibling immediately following it, then the children of u' in T' are external nodes.
- If u is an internal node of T and v is the first child of u in T, then v' is the left child of u' in T.
- If node v has a sibling w immediately following it, then w' is the right child of v' in T'.

Given such a representation T' of a general ordered tree T, answer each of the following questions:

1. Is a preorder traversal of T' equivalent to a preorder traversal of T?
2. Is a postorder traversal of T' equivalent to a postorder traversal of T?
3. Is an inorder traversal of T' equivalent to one of the standard traversals of T? If so, which one?

![Tree Diagrams](image)

(a) T

(b) T'

Figure 2: Representation of a tree with a binary tree: (a) tree T; (b) binary tree T' for T. The dashed edges connect nodes of T' that are siblings in T.

Answer

1. yes
2. no
3. yes, postorder.

Exercise 3: (INFO1105 and INFO1905)

Give an $O(n)$-time algorithm for computing the depth of all the nodes of a tree T, where n is the number of nodes of T.

Answer

This can be done using a preorder traversal. When doing a "visit" in the traversal, simply store the depth of the node’s parent incremented by 1. Now, every node will contain its depth.
Exercise 4: Binary tree coordinates (INFO1105 and INFO1905)

Consider a binary tree T where each node has a pair of (x, y) coordinates in the plane. The x-axis represents the order produced by inorder traversal. The y-axis is the height, i.e., the y coordinate is the height of a node in T.

Write a method in `BinaryTree.java` that computes the node coordinates and outputs a binary tree to a file in the `dot` format. For example, the following dot file (`sample.dot`) defines three nodes a, b, and c positioned at $(2, 0)$, $(0, -2)$ and $(0, 2)$ respectively (the coordinates are in inches by default). There are two edges (a, b) and (a, c):

```plaintext
graph {
    a [pos="2,0!"];
    b [pos="0,-2!"];
    c [pos="0,2!"];
    a -- b;
    a -- c;
}
```

Once you have a dot file, you can visualise your binary tree using the following command to produce a PNG file:

```
dot -Kfdp -Tpng -o sample.png sample.dot
```

![Figure 3: sample.png](sample.png)

Exercise 5: (INFO1105 and INFO1905)

Describe, in pseudocode, a nonrecursive method for performing an inorder traversal of a binary tree in linear time. (Hint: consider using a stack)

Answer

```
Algorithm inorder(Tree T):
```

```javascript
Data Structures Page 4 of 5
```
Stack $S \leftarrow$ new Stack()
Node $v \leftarrow T.\text{root}()$
push v
while S is not empty do
 while v is internal do
 $v \leftarrow v.\text{left}$
push v
while S is not empty do
 pop v
 visit v
 if v is internal then
 $v \leftarrow v.\text{right}$
push v
while v is internal do
 $v \leftarrow v.\text{left}$
push v

Exercise 6: (INFO1905)

Describe a nonrecursive method for performing an inorder traversal of a binary tree in linear time that does *not* use a stack.

Exercise 7: (INFO1905)

Let T be a binary tree with n nodes (T may be realised with an array list or a linked structure). Give a linear-time algorithm that uses the methods of the BinaryTree interface to traverse the nodes of T by increasing values of the level numbering function $p(v)$ defined as follows:

$$p(v) = \begin{cases}
1, & \text{if } v \text{ is the root of } T \\
2p(u), & \text{if } v \text{ is the left child of node } u \\
2p(u) + 1, & \text{if } v \text{ is the right child of node } u
\end{cases} \quad (1)$$

This traversal is known as the *level order traversal*.

Answer

Algorithm levelOrderTraversal(BinaryTree T):
Queue $Q = \text{new Queue}()$
$Q.\text{enqueue}(T.\text{root}())$
while Q is not empty do
 Node $v \leftarrow Q.\text{dequeue}()$
 if $T.\text{isInternal}(v)$ then
 $Q.\text{enqueue}(v.\text{left}_\text{child})$
 $Q.\text{enqueue}(v.\text{right}_\text{child})$