
Systems Analysis and Design with
UML Version 2.0

An Object-Oriented Approach

Second Edition

Alan Dennis
Indiana University

Barbara Haley Wixom
University of Virginia

David Tegarden
Virginia Tech

John Wiley & Sons, Inc.
www.wiley.com/college/dennis

C
op

yr
ig

ht
ed

 M
at

er
ia

l

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Acquisitions Editor Beth Lang Golub

Associate Editor Lorraina Raccuia

Editorial Assistant Ame Esterline

Marketing Manager Jillian Rice

Media Editor Allie K. Morris

Production Manager Pam Kennedy

Production Editors Kelly Tavares, Sarah Wolfman-Robichaud

Managing Editor Kevin Dodds

Illlustration Editor Benjamin Reece

Cover Design Benjamin Reece

Cover Image © Digital Vision/Getty Images

This book was set in Minion by Leyh Publishing, LLC and printed and bound by RR Donnelley–Willard. The cover was

printed by Phoenix Color Corp.

This book is printed on acid free paper. ∞

Copyright © 2005 John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any

means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107

or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or autho-

rization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc. 222 Rosewood Drive,

Danvers, MA 01923, (978)750-8400, fax (978)750-4470. Requests to the Publisher for permission should be addressed

to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)748-6011, fax

(201)748-6008, E-Mail: PERMREQ@WILEY.COM.

To order books or for customer service please call 1-800-CALL WILEY (225-5945).

ISBN 0-471-34806-6

WIE ISBN 0-471-65920-7

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

PURPOSE OF THIS BOOK

Systems Analysis and Design (SAD) is an exciting, active field in which analysts continually

learn new techniques and approaches to develop systems more effectively and efficiently.

However there is a core set of skills that all analysts need to know—no matter what

approach or methodology is used. All information systems projects move through the four

phases of planning, analysis, design, and implementation; all projects require analysts to

gather requirements, model the business needs, and create blueprints for how the system

should be built; and all projects require an understanding of organizational behavior con-

cepts like change management and team building. Today, the cost of developing modern

software is composed primarily of the cost associated with the developers themselves and

not the computers. As such, object-oriented approaches to developing information systems

hold much promise in controlling these costs.

Today, the most exciting change to systems analysis and design is the move to object-

oriented techniques, which view a system as a collection of self-contained objects that have

both data and processes. This change has been accelerated through the creation of the Uni-

fied Modeling Language (UML). UML provides a common vocabulary of object-oriented

terms and diagramming techniques that is rich enough to model any systems development

project from analysis through implementation.

This book captures the dynamic aspects of the field by keeping students focused on

doing SAD while presenting the core set of skills that we feel every systems analyst needs to

know today and in the future. This book builds on our professional experience as systems

analysts and on our experience in teaching SAD in the classroom.

This book will be of particular interest to instructors who have students do a major

project as part of their course. Each chapter describes one part of the process, provides clear

explanations on how to do it, gives a detailed example, and then has exercises for the stu-

dents to practice. In this way, students can leave the course with experience that will form

a rich foundation for further work as a systems analyst.

OUTSTANDING FEATURES

A Focus on Doing SAD

The goal of this book is to enable students to do SAD—not just read about it, but under-

stand the issues so they can actually analyze and design systems. The book introduces each

major technique, explains what it is, explains how to do it, presents an example, and pro-

vides opportunities for students to practice before they do it for real in a project. After read-

ing each chapter, the student will be able to perform that step in the system development

life cycle (SDLC) process.

xiii

P R E F A C E

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Rich Examples of Success and Failure

The book includes a running case about a fictitious company called CD Selections. Each

chapter shows how the concepts are applied in situations at CD Selections. Unlike running

cases in other books we have tried to focus these examples on planning, managing, and exe-

cuting the activities described in the chapter, rather than on detailed dialogue between fic-

tious actors. In this way, the running case serves as a template that students can apply to

their own work. Each chapter also includes numerous Concepts in Action boxes that

describe how real companies succeeded—and failed—in performing the activities in the

chapter. Many of these examples are drawn from our own experiences as systems analysts.

Real World Focus

The skills that students learn in a systems analysis and design course should mirror the

work that they ultimately will do in real organizations. We have tried to make this book as

“real” as possible by building extensively on our experience as professional systems analysts

for organizations such as Arthur Andersen, IBM, the U.S. Department of Defense, and the

Australian Army. We have also worked with a diverse industry advisory board of IS profes-

sionals and consultants in developing the book and have incorporated their stories, feed-

back, and advice throughout. Many students who use this book will eventually use the skills

on the job in a business environment, and we believe they will have a competitive edge in

understanding what successful practitioners feel is relevant in the real world.

Project Approach

We have presented the topics in this book in the SDLC order in which an analyst encoun-

ters them in a typical project. Although the presentation is necessarily linear (because stu-

dents have to learn concepts in the way in which they build on each other), we emphasize

the iterative, complex nature of SAD as the book unfolds. The presentation of the material

should align well with courses that encourage students to work on projects because it pre-

sents topics as students need to apply them.

WHAT’S NEW IN THIS EDITION

This new edition has four major improvements. First, we converted the entire text from

UML 1.3 to UML 2.0. Due to the size and complexity of UML 2.0, we factored the object-

oriented material out of Chapter 1 and created a new chapter (Chapter 2) that includes an

introduction to object orientation, UML 2.0, the Unified Process, and which overviews a

minimalist approach to Object-Oriented Systems Analysis and Design with UML 2.0.

Some of this material originally was included in Chapter 9. However, for continuity and

flexibility purposes, we moved this material to Chapter 2. This new chapter is organized in

such a way to allow the instructor the maximum amount of flexibility to choose what

material they want to emphasize. For example, if the students have already had an object-

oriented programming course using Java, the basic characteristics of object-oriented sys-

tems section could either be assigned for reading or review only. Or, if the instructor would

prefer to minimize the amount of UML to be introduced to the student at this point in the

course, the UML 2.0 section could be optional. The details of the relevant UML 2.0 are cov-

ered in the book where the diagrams are applicable, e.g., class diagrams are covered in detail

xiv Preface

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

in Chapter 7: Structural Models. In this section of Chapter 2, we only introduce the pur-

pose of the fourteen diagrams that are now included in the UML.

Second, not only have we updated the text to cover UML 2.0, we also have expanded

the coverage of UML. In this edition, we have added activity diagrams to support business

process modeling (see Chapter 6) and deployment diagrams to provide for modeling the

physical architecture of the system (see Chapter 13).

Third, we combined some chapters together to improve the flow of material through

the book. For example, in the first edition we had two chapters devoted to user interface

design. In this edition we have combined the material into a single chapter.

Fourth, we reordered the material dealing with object-oriented systems design con-

tained in Part Two. The new order is class and method design (Chapter 10), object storage

design (Chapter 11), user interface design (Chapter 12), and finally, the design of the phys-

ical architecture of the system (Chapter 13). The new order provides a more logical orga-

nization of this material.

Of course, one feature that we were sure to keep was to keep the footnotes in the chap-

ters. Even though at first glance footnotes do not seem to add a lot to a textbook, they pro-

vide a means for the student and/or instructor to delve deeper into any topic included in this

text. With the expanded material, we have added quite a few footnotes throughout the text.

ORGANIZATION OF THIS BOOK

This book is organized by the phases of the Systems Development Life Cycle (SDLC). Each

chapter has been written to teach students specific tasks that analysts need to accomplish

over the course of a project, and the deliverables that will be produced from the tasks. As

students complete the book, tasks will be “checked off” and deliverables will be completed.

Along the way, students will be reminded of their progress using roadmaps that indicate

where their current task fits into the larger context of SAD.

Chapter 1 introduces the SDLC and describes the roles and skills needed for a project

team. Chapter 2 introduces the basic characteristics of object-oriented systems, UML 2.0,

Object-Oriented Systems Analysis, and the Unified Process. It also overviews a minimalist

approach to Object-Oriented Systems Analysis and Design with UML 2.0.

Part One contains Chapters 3 and 4 which describe the Planning Phase. Chapter 3 pre-

sents Project Initiation, with a focus on the System Request, Feasibility Analysis, and Pro-

ject Selection. In Chapter 4, students learn about Project Management, with emphasis on

the Workplan, Staffing Plan, Project Charter, and Risk Assessment that are used to help

manage and control the project.

Part Two presents techniques needed during the Analysis Phase. In Chapter 5, students

are introduced to a variety of requirements gathering techniques that are used to create an

Analysis Plan after learning an assortment of analysis techniques to help with Business

Automation, Business Improvement, and Business Process Reengineering. Using the iden-

tified requirements, Chapter 6 focuses on constructing Functional Models, Chapter 7

addresses producing Structural Models, and Chapter 8 tackles creating Behavioral Models.

Part Three addresses the Design Phase. In Chapter 9, students learn how to evolve the

analysis models into design models via the use of factoring, partitions, and layers. The stu-

dents also learn to create an Alternative Matrix that can be used to compare custom, pack-

aged, and outsourcing alternatives. Chapter 10 concentrates on designing the individual

Preface xv

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

classes and their respective methods through the use of contracts and method specifica-

tions. Chapter 11 presents the issues involved in designing persistence for objects. These

issues include the different storage formats that can be used for object persistence, how to

map an object-oriented design into the chosen storage format, and how to design a set of

data access and manipulation classes that act as a translator between the classes in the

application and the object persistence. Chapter12 presents the design of the human com-

puter interaction layer where students learn how to design user interfaces using Use Sce-

narios, Windows Navigation Diagrams, Real Use Cases, Interface Standards, and User

Interface Templates. Chapter 13 focuses on the physical architecture design, which includes

Deployment Diagrams and Hardware/Software Specification.

Part Four provides material that is related to the Implementation Phase. Chapter 14

focuses on system construction where students learn how to build, test, and document the

system. Installation and operations are covered in Chapter 15 where students learn about

the Conversion Plan, Change Management Plan, Support Plan, and Project Assessment.

SUPPLEMENTS http://www.wiley.com/college/dennis

Instructor’s Resources Web Site

■ PowerPoint slides, that instructors can tailor to their classroom needs and that

students can use to guide their reading and studying activities

■ Test Bank, that includes a variety of questions ranging from multiple choice to

essay style questions. A computerized version of the Test Bank will also be available.

Online Instructor’s Manual

The Instructor’s Manual provides resources to support the instructor both inside and out

of the classroom:

■ Short experiential exercises that instructors can use to help students experience

and understand key topics in each chapter.

■ Short stories have been provided by people working in both corporate and con-

sulting environments for instructors to insert into lectures to make concepts

more colorful and real

■ Additional mini-cases for every chapter allow students to perform some of the

key concepts that were learned in the chapter.

■ Solutions to end of chapter questions and exercises are provided.

Student Web Site

■ Relevant Web links, including career resources Web site.

■ Web Quizzes help students prepare for class tests.

Cases in Systems Analysis and Design

A separate Case Book on CD-ROM, provides a set of more than a dozen cases that can be

used to supplement the book and provide exercises for students to practice with. The cases

are primarily drawn from the U.S. and Canada, but also include a number of international

cases. We are always looking for new cases, so if you have a case that might be appropriate

please contact us directly (or your local Wiley sales representative).

xvi Preface

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Software Tools

Five Software Tools can be purchased with the text in special packages:

1. Oracle’s 9i Database Suite, which includes Oracle 9i Personal Edition, Oracle 9i

Enterprise Edition, and Oracle 9i Standard Edition.

2. Oracle’s Developer Suite, which includes Oracle Developer and Oracle Designer.

This software is available under a “Development Sublicense” for personal devel-

opment purposes only, and has no time restrictions or limitations.

3. Visible Systems Corporation’s Visible Analyst Student Edition.

4. Microsoft’s Visio

5. Microsoft’s Project

Contact your local Wiley sales representative for details, including pricing and ordering

information.

ACKNOWLEDGEMENTS

Thanks to Roberta Roth, University of Northern Iowa and Suresh Chalasani of University

of Wisconsin Parkside, for their work on the supplements.

We would like to thank the following reviewers for their helpful and insightful com-

ments on the second edition: Murugan Anandarajon, Drexel University; Ron Anson, Boise

State University; Noushin Ashrafi, University of Massachusetts Boston; Dirk Baldwin, Uni-

versity of Wisconsin; Robert Barker, University of Louisville; Terry Fox, Baylor University;

Donald Golden, Cleveland State University; Cleotilde Gonzalez, Carnegie Melon Univer-

sity; Scott James, Saginaw Valley State University; Rajiv Kishore, State University of New

York–Buffalo; Ravindra Krovi, University of Akron; Fernando Maymi, United States Mili-

tary Academy at West Point; Fred Niederman, Saint Louis University; Graham Peace, West

Virginia University; J. Drew Procaccino, Rider University; Marcus Rothenberger, University

of Wisconsin–Milwaukee; June Verner, Drexel University; Heinz Roland Weistroffer, Vir-

ginia Commonwealth University; and Amy Woszczynski, Kennesaw State University.

We also thank the following reviewers from the first edition: Evans Adams, Fort Lewis

College; Noushin Ashrafi, University of Massachusetts, Boston; Dirk Baldwin, University of

Wisconsin-Parkside; Qing Cao, University of Missouri–Kansas City; Ahmad Ghafarian,

North Georgia College & State University; Daniel V. Goulet, University of Wisconsin–

Stevens Point; Harvey Hayashi, Loyalist College of Applied Arts and Technology; Jean-Piere

Kuilboer, University of Massachusetts, Boston; Daniel Mittleman, DePaul University; Fred

Niederman, Saint Louis University; H. Robert Pajkowski, DeVry Institute of Technology,

Scarborough, Ontario; June S. Park, University of Iowa; Tom Pettay, DeVry Institute of

Technology, Columbus, Ohio; Neil Ramiller, Portland State University; Eliot Rich, Univer-

sity at Albany, State University of New York; Carl Scott, University of Houston; Keng Siau,

University of Nebraska–Lincoln; Jonathan Trower, Baylor University; Anna Wachholz,

Sheridan College; Randy S. Weinberg, Carnegie Mellon University; Eli J. Weissman, DeVry

Institute of Technology, Long Island City, NY; Heinz Roland Weistroffer, Virginia Com-

monwealth University; Amy Wilson, DeVry Institute of Technology, Decatur, GA; and Vin-

cent C. Yen, Wright State University.

Preface xvii

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Systems Analysis and Design with
UML Version 2.0

An Object-Oriented Approach

Second Edition

Alan Dennis
Indiana University

Barbara Haley Wixom
University of Virginia

David Tegarden
Virginia Tech

John Wiley & Sons, Inc.
www.wiley.com/college/dennis

C
op

yr
ig

ht
ed

 M
at

er
ia

l

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Acquisitions Editor Beth Lang Golub

Associate Editor Lorraina Raccuia

Editorial Assistant Ame Esterline

Marketing Manager Jillian Rice

Media Editor Allie K. Morris

Production Manager Pam Kennedy

Production Editors Kelly Tavares, Sarah Wolfman-Robichaud

Managing Editor Kevin Dodds

Illlustration Editor Benjamin Reece

Cover Design Benjamin Reece

Cover Image © Digital Vision/Getty Images

This book was set in Minion by Leyh Publishing, LLC and printed and bound by RR Donnelley–Willard. The cover was

printed by Phoenix Color Corp.

This book is printed on acid free paper. ∞

Copyright © 2005 John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any

means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107

or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or autho-

rization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc. 222 Rosewood Drive,

Danvers, MA 01923, (978)750-8400, fax (978)750-4470. Requests to the Publisher for permission should be addressed

to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)748-6011, fax

(201)748-6008, E-Mail: PERMREQ@WILEY.COM.

To order books or for customer service please call 1-800-CALL WILEY (225-5945).

ISBN 0-471-34806-6

WIE ISBN 0-471-65920-7

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

PURPOSE OF THIS BOOK

Systems Analysis and Design (SAD) is an exciting, active field in which analysts continually

learn new techniques and approaches to develop systems more effectively and efficiently.

However there is a core set of skills that all analysts need to know—no matter what

approach or methodology is used. All information systems projects move through the four

phases of planning, analysis, design, and implementation; all projects require analysts to

gather requirements, model the business needs, and create blueprints for how the system

should be built; and all projects require an understanding of organizational behavior con-

cepts like change management and team building. Today, the cost of developing modern

software is composed primarily of the cost associated with the developers themselves and

not the computers. As such, object-oriented approaches to developing information systems

hold much promise in controlling these costs.

Today, the most exciting change to systems analysis and design is the move to object-

oriented techniques, which view a system as a collection of self-contained objects that have

both data and processes. This change has been accelerated through the creation of the Uni-

fied Modeling Language (UML). UML provides a common vocabulary of object-oriented

terms and diagramming techniques that is rich enough to model any systems development

project from analysis through implementation.

This book captures the dynamic aspects of the field by keeping students focused on

doing SAD while presenting the core set of skills that we feel every systems analyst needs to

know today and in the future. This book builds on our professional experience as systems

analysts and on our experience in teaching SAD in the classroom.

This book will be of particular interest to instructors who have students do a major

project as part of their course. Each chapter describes one part of the process, provides clear

explanations on how to do it, gives a detailed example, and then has exercises for the stu-

dents to practice. In this way, students can leave the course with experience that will form

a rich foundation for further work as a systems analyst.

OUTSTANDING FEATURES

A Focus on Doing SAD

The goal of this book is to enable students to do SAD—not just read about it, but under-

stand the issues so they can actually analyze and design systems. The book introduces each

major technique, explains what it is, explains how to do it, presents an example, and pro-

vides opportunities for students to practice before they do it for real in a project. After read-

ing each chapter, the student will be able to perform that step in the system development

life cycle (SDLC) process.

xiii

P R E F A C E

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Rich Examples of Success and Failure

The book includes a running case about a fictitious company called CD Selections. Each

chapter shows how the concepts are applied in situations at CD Selections. Unlike running

cases in other books we have tried to focus these examples on planning, managing, and exe-

cuting the activities described in the chapter, rather than on detailed dialogue between fic-

tious actors. In this way, the running case serves as a template that students can apply to

their own work. Each chapter also includes numerous Concepts in Action boxes that

describe how real companies succeeded—and failed—in performing the activities in the

chapter. Many of these examples are drawn from our own experiences as systems analysts.

Real World Focus

The skills that students learn in a systems analysis and design course should mirror the

work that they ultimately will do in real organizations. We have tried to make this book as

“real” as possible by building extensively on our experience as professional systems analysts

for organizations such as Arthur Andersen, IBM, the U.S. Department of Defense, and the

Australian Army. We have also worked with a diverse industry advisory board of IS profes-

sionals and consultants in developing the book and have incorporated their stories, feed-

back, and advice throughout. Many students who use this book will eventually use the skills

on the job in a business environment, and we believe they will have a competitive edge in

understanding what successful practitioners feel is relevant in the real world.

Project Approach

We have presented the topics in this book in the SDLC order in which an analyst encoun-

ters them in a typical project. Although the presentation is necessarily linear (because stu-

dents have to learn concepts in the way in which they build on each other), we emphasize

the iterative, complex nature of SAD as the book unfolds. The presentation of the material

should align well with courses that encourage students to work on projects because it pre-

sents topics as students need to apply them.

WHAT’S NEW IN THIS EDITION

This new edition has four major improvements. First, we converted the entire text from

UML 1.3 to UML 2.0. Due to the size and complexity of UML 2.0, we factored the object-

oriented material out of Chapter 1 and created a new chapter (Chapter 2) that includes an

introduction to object orientation, UML 2.0, the Unified Process, and which overviews a

minimalist approach to Object-Oriented Systems Analysis and Design with UML 2.0.

Some of this material originally was included in Chapter 9. However, for continuity and

flexibility purposes, we moved this material to Chapter 2. This new chapter is organized in

such a way to allow the instructor the maximum amount of flexibility to choose what

material they want to emphasize. For example, if the students have already had an object-

oriented programming course using Java, the basic characteristics of object-oriented sys-

tems section could either be assigned for reading or review only. Or, if the instructor would

prefer to minimize the amount of UML to be introduced to the student at this point in the

course, the UML 2.0 section could be optional. The details of the relevant UML 2.0 are cov-

ered in the book where the diagrams are applicable, e.g., class diagrams are covered in detail

xiv Preface

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

in Chapter 7: Structural Models. In this section of Chapter 2, we only introduce the pur-

pose of the fourteen diagrams that are now included in the UML.

Second, not only have we updated the text to cover UML 2.0, we also have expanded

the coverage of UML. In this edition, we have added activity diagrams to support business

process modeling (see Chapter 6) and deployment diagrams to provide for modeling the

physical architecture of the system (see Chapter 13).

Third, we combined some chapters together to improve the flow of material through

the book. For example, in the first edition we had two chapters devoted to user interface

design. In this edition we have combined the material into a single chapter.

Fourth, we reordered the material dealing with object-oriented systems design con-

tained in Part Two. The new order is class and method design (Chapter 10), object storage

design (Chapter 11), user interface design (Chapter 12), and finally, the design of the phys-

ical architecture of the system (Chapter 13). The new order provides a more logical orga-

nization of this material.

Of course, one feature that we were sure to keep was to keep the footnotes in the chap-

ters. Even though at first glance footnotes do not seem to add a lot to a textbook, they pro-

vide a means for the student and/or instructor to delve deeper into any topic included in this

text. With the expanded material, we have added quite a few footnotes throughout the text.

ORGANIZATION OF THIS BOOK

This book is organized by the phases of the Systems Development Life Cycle (SDLC). Each

chapter has been written to teach students specific tasks that analysts need to accomplish

over the course of a project, and the deliverables that will be produced from the tasks. As

students complete the book, tasks will be “checked off” and deliverables will be completed.

Along the way, students will be reminded of their progress using roadmaps that indicate

where their current task fits into the larger context of SAD.

Chapter 1 introduces the SDLC and describes the roles and skills needed for a project

team. Chapter 2 introduces the basic characteristics of object-oriented systems, UML 2.0,

Object-Oriented Systems Analysis, and the Unified Process. It also overviews a minimalist

approach to Object-Oriented Systems Analysis and Design with UML 2.0.

Part One contains Chapters 3 and 4 which describe the Planning Phase. Chapter 3 pre-

sents Project Initiation, with a focus on the System Request, Feasibility Analysis, and Pro-

ject Selection. In Chapter 4, students learn about Project Management, with emphasis on

the Workplan, Staffing Plan, Project Charter, and Risk Assessment that are used to help

manage and control the project.

Part Two presents techniques needed during the Analysis Phase. In Chapter 5, students

are introduced to a variety of requirements gathering techniques that are used to create an

Analysis Plan after learning an assortment of analysis techniques to help with Business

Automation, Business Improvement, and Business Process Reengineering. Using the iden-

tified requirements, Chapter 6 focuses on constructing Functional Models, Chapter 7

addresses producing Structural Models, and Chapter 8 tackles creating Behavioral Models.

Part Three addresses the Design Phase. In Chapter 9, students learn how to evolve the

analysis models into design models via the use of factoring, partitions, and layers. The stu-

dents also learn to create an Alternative Matrix that can be used to compare custom, pack-

aged, and outsourcing alternatives. Chapter 10 concentrates on designing the individual

Preface xv

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

classes and their respective methods through the use of contracts and method specifica-

tions. Chapter 11 presents the issues involved in designing persistence for objects. These

issues include the different storage formats that can be used for object persistence, how to

map an object-oriented design into the chosen storage format, and how to design a set of

data access and manipulation classes that act as a translator between the classes in the

application and the object persistence. Chapter12 presents the design of the human com-

puter interaction layer where students learn how to design user interfaces using Use Sce-

narios, Windows Navigation Diagrams, Real Use Cases, Interface Standards, and User

Interface Templates. Chapter 13 focuses on the physical architecture design, which includes

Deployment Diagrams and Hardware/Software Specification.

Part Four provides material that is related to the Implementation Phase. Chapter 14

focuses on system construction where students learn how to build, test, and document the

system. Installation and operations are covered in Chapter 15 where students learn about

the Conversion Plan, Change Management Plan, Support Plan, and Project Assessment.

SUPPLEMENTS http://www.wiley.com/college/dennis

Instructor’s Resources Web Site

■ PowerPoint slides, that instructors can tailor to their classroom needs and that

students can use to guide their reading and studying activities

■ Test Bank, that includes a variety of questions ranging from multiple choice to

essay style questions. A computerized version of the Test Bank will also be available.

Online Instructor’s Manual

The Instructor’s Manual provides resources to support the instructor both inside and out

of the classroom:

■ Short experiential exercises that instructors can use to help students experience

and understand key topics in each chapter.

■ Short stories have been provided by people working in both corporate and con-

sulting environments for instructors to insert into lectures to make concepts

more colorful and real

■ Additional mini-cases for every chapter allow students to perform some of the

key concepts that were learned in the chapter.

■ Solutions to end of chapter questions and exercises are provided.

Student Web Site

■ Relevant Web links, including career resources Web site.

■ Web Quizzes help students prepare for class tests.

Cases in Systems Analysis and Design

A separate Case Book on CD-ROM, provides a set of more than a dozen cases that can be

used to supplement the book and provide exercises for students to practice with. The cases

are primarily drawn from the U.S. and Canada, but also include a number of international

cases. We are always looking for new cases, so if you have a case that might be appropriate

please contact us directly (or your local Wiley sales representative).

xvi Preface

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Software Tools

Five Software Tools can be purchased with the text in special packages:

1. Oracle’s 9i Database Suite, which includes Oracle 9i Personal Edition, Oracle 9i

Enterprise Edition, and Oracle 9i Standard Edition.

2. Oracle’s Developer Suite, which includes Oracle Developer and Oracle Designer.

This software is available under a “Development Sublicense” for personal devel-

opment purposes only, and has no time restrictions or limitations.

3. Visible Systems Corporation’s Visible Analyst Student Edition.

4. Microsoft’s Visio

5. Microsoft’s Project

Contact your local Wiley sales representative for details, including pricing and ordering

information.

ACKNOWLEDGEMENTS

Thanks to Roberta Roth, University of Northern Iowa and Suresh Chalasani of University

of Wisconsin Parkside, for their work on the supplements.

We would like to thank the following reviewers for their helpful and insightful com-

ments on the second edition: Murugan Anandarajon, Drexel University; Ron Anson, Boise

State University; Noushin Ashrafi, University of Massachusetts Boston; Dirk Baldwin, Uni-

versity of Wisconsin; Robert Barker, University of Louisville; Terry Fox, Baylor University;

Donald Golden, Cleveland State University; Cleotilde Gonzalez, Carnegie Melon Univer-

sity; Scott James, Saginaw Valley State University; Rajiv Kishore, State University of New

York–Buffalo; Ravindra Krovi, University of Akron; Fernando Maymi, United States Mili-

tary Academy at West Point; Fred Niederman, Saint Louis University; Graham Peace, West

Virginia University; J. Drew Procaccino, Rider University; Marcus Rothenberger, University

of Wisconsin–Milwaukee; June Verner, Drexel University; Heinz Roland Weistroffer, Vir-

ginia Commonwealth University; and Amy Woszczynski, Kennesaw State University.

We also thank the following reviewers from the first edition: Evans Adams, Fort Lewis

College; Noushin Ashrafi, University of Massachusetts, Boston; Dirk Baldwin, University of

Wisconsin-Parkside; Qing Cao, University of Missouri–Kansas City; Ahmad Ghafarian,

North Georgia College & State University; Daniel V. Goulet, University of Wisconsin–

Stevens Point; Harvey Hayashi, Loyalist College of Applied Arts and Technology; Jean-Piere

Kuilboer, University of Massachusetts, Boston; Daniel Mittleman, DePaul University; Fred

Niederman, Saint Louis University; H. Robert Pajkowski, DeVry Institute of Technology,

Scarborough, Ontario; June S. Park, University of Iowa; Tom Pettay, DeVry Institute of

Technology, Columbus, Ohio; Neil Ramiller, Portland State University; Eliot Rich, Univer-

sity at Albany, State University of New York; Carl Scott, University of Houston; Keng Siau,

University of Nebraska–Lincoln; Jonathan Trower, Baylor University; Anna Wachholz,

Sheridan College; Randy S. Weinberg, Carnegie Mellon University; Eli J. Weissman, DeVry

Institute of Technology, Long Island City, NY; Heinz Roland Weistroffer, Virginia Com-

monwealth University; Amy Wilson, DeVry Institute of Technology, Decatur, GA; and Vin-

cent C. Yen, Wright State University.

Preface xvii

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

1

This chapter introduces the systems development life cycle (SDLC), the fundamental

four-phase model (planning, analysis, design, and implementation) that is common to all

information system development projects. It then describes the evolution of system devel-

opment methodologies. Finally, the chapter closes with a discussion of the roles and skills

necessary within the project team.

OBJECTIVES

■ Understand the fundamental systems development life cycle and its four phases.
■ Understand the evolution of systems development methodologies.
■ Be familiar with the different roles on the project team.

CHAPTER OUTLINE

INTRODUCTION

The systems development life cycle (SDLC) is the process of understanding how an infor-

mation system (IS) can support business needs, designing the system, building it, and

delivering it to users. If you have taken a programming class or have programmed on your

own, this probably sounds pretty simple. Unfortunately, this is not the case. A 1996 survey

by the Standish Group found that 42 percent of all corporate IS projects were abandoned

before completion. A similar study done in 1996 by the General Accounting Office found

53 percent of all U.S. government IS projects were abandoned. Unfortunately, many of the

Introduction

The Systems Development Life Cycle

Planning

Analysis

Design

Implementation

Systems Development Methodologies

Structured Design

Rapid Application Development (RAD)

Agile Development

Selecting the Appropriate Development

Methodology

Project Team Roles and Skills

Business Analyst

Systems Analyst

Infrastructure Analyst

Change Management Analyst

Project Manager

Summary

C H A P T E R 1

Introduction to Systems

Analysis and Design
C

op
yr

ig
ht

ed
 M

at
er

ia
l

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

systems that aren’t abandoned are delivered to the users significantly late, cost far more

than planned, and have fewer features than originally planned.

Most of us would like to think that these problems only occur to “other” people or

“other” organizations, but they happen in most companies. Even Microsoft has a history of

failures and overdue projects (e.g., Windows 1.0, Windows 95). 1

Although we would like to promote this book as a “silver bullet” that will keep you from

IS failures, we readily admit that a silver bullet that guarantees IS development success sim-

ply does not exist.2 Instead, this book will provide you with several fundamental concepts

and many practical techniques that you can use to improve the probability of success.

The key person in the SDLC is the systems analyst who analyzes the business situation,

identifies opportunities for improvements, and designs an information system to imple-

ment them. Being a systems analyst is one of the most interesting, exciting, and challeng-

ing jobs around. As a systems analyst, you will work with a variety of people and learn how

they conduct business. Specifically, you will work with a team of systems analysts, pro-

grammers, and others on a common mission. You will feel the satisfaction of seeing systems

that you designed and developed make a significant business impact, while knowing that

you contributed your unique skills to make that happen.

It is important to remember that the primary objective of the systems analyst is not to

create a wonderful system. The primary goal is to create value for the organization, which

for most companies means increasing profits (government agencies and not-for-profit

organizations measure value differently). Many failed systems were abandoned because the

analysts tried to build a wonderful system without clearly understanding how the system

would fit with the organization’s goals, current business processes, and other information

systems to provide value. An investment in an information system is like any other invest-

ment, such as a new machine tool. The goal is not to acquire the tool, because the tool is

simply a means to an end; the goal is to enable the organization to perform work better so

it can earn greater profits or serve its constituents more effectively.

This book will introduce you to the fundamental skills you need to be a systems ana-

lyst. This is a pragmatic book that discusses best practices in systems development; it does

not present a general survey of systems development that exposes you to everything about

the topic. By definition, systems analysts do things and challenge the current way that orga-

nizations work. To get the most out of this book, you will need to actively apply the ideas

and concepts in the examples, and those in the “Your Turn” exercises that are presented

throughout, to your own systems development project. This book will guide you through

all the steps for delivering a successful information system. Also, we will illustrate how one

organization (which we call CD Selections) applies the steps in one project (developing a

Web-based CD sales system). By the time you finish the book, you won’t be an expert ana-

lyst, but you will be ready to start building systems for real.

In this chapter, we first introduce the basic SDLC that IS projects follow. This life

cycle is common to all projects, although the focus and approach to each phase of the life

cycle may differ. In the next section, we describe three fundamentally different types of

system development methodologies: structured design, rapid application development,

and agile development. Finally, we discuss one of the most challenging aspects of systems

2 Chapter 1 Introduction to Systems Analysis and Design

1 For more information on the problem, see Capers Jones, Patterns of Software System Failure and Success (Lon-
don: International Thompson Computer Press, 1996); Capers Jones, Assessment and Control of Software Project
Risks (Englewood Cliffs, NJ: Yourdon Press, 1994); Julia King, "IS reins in runaway projects," Computerworld
(February 24, 1997).
2 The idea of using the silver bullet metaphor was first described in a paper by Frederick Brooks, see Frederick P.
Brooks, Jr., “No Silver Bullet – Essence and Accident in Software Engineering,” Information Processing 1986, the
Proceedings of the IFIP Tenth World Computing Conference, edited by H.-J. Kugler (1986): 1069-76.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

development, the depth and breadth of skills that are required of systems analysts. Today,

most organizations use project teams that contain members with unique, but comple-

mentary skills. This chapter closes with a discussion of the key roles played by members

of the systems development team.

THE SYSTEMS DEVELOPMENT LIFE CYCLE

In many ways, building an information system is similar to building a house. First, the

house (or the information system) starts with a basic idea. Second, this idea is transformed

into a simple drawing that is shown to the customer and refined (often through several

drawings, each improving on the other) until the customer agrees that the picture depicts

what he or she wants. Third, a set of blueprints is designed that presents much more

detailed information about the house (e.g., the type of water faucets, where the telephone

jacks will be placed). Finally, the house is built following the blueprints—and often with

some changes directed by the customer as the house is erected.

The SDLC has a similar set of four fundamental phases: planning, analysis, design, and

implementation. Different projects may emphasize different parts of the SDLC or approach

the SDLC phases in different ways, but all projects have elements of these four phases. Each

phase is itself composed of a series of steps, which rely upon techniques that produce deliv-

erables (specific documents and files that provide understanding about the project).

For example, when you apply for admission to a university, there are several phases

that all students go through: information gathering, applying, and accepting. Each of these

phases has steps—information gathering includes steps like searching for schools, request-

ing information, and reading brochures. Students then use techniques (e.g., Internet

searching) that can be applied to steps (e.g., requesting information) to create deliverables

(e.g., evaluations of different aspects of universities).

In many projects, the SDLC phases and steps proceed in a logical path from start to

finish. In other projects, the project teams move through the steps consecutively, incre-

mentally, iteratively, or in other patterns. In this section, we describe the phases, steps, and

some of the techniques that are used to accomplish the steps at a very high level. We should

emphasize that not all organizations follow the SDLC in exactly the same way. As we shall

shortly see, there are many variations on the overall SDLC.

The Systems Development Life Cycle 3

A real-estate group in the federal government cosponsored
a data warehouse with the IT department. A formal proposal
was written by IT in which costs were estimated at
$800,000, the project duration was estimated to be eight
months, and the responsibility for funding was defined as the
business unit’s. The IT department proceeded with the pro-
ject before it even knew if the project had been accepted.

The project actually lasted two years because require-
ments gathering took nine months instead of one and a
half, the planned user base grew from 200 to 2,500, and
the approval process to buy technology for the project

took a year. Three weeks prior to technical delivery, the IT
director canceled the project. This failed endeavor cost the
organization and taxpayers $2.5 million.

Source: Hugh J. Watson et al., “Data Warehousing Failure: Case Studies

and Findings,” The Journal of Data Warehousing 4 (1) (1999): 44–54.

Question:

1. Why did this system fail? Why would a company
spend money and time on a project and then can-
cel it? What could have been done to prevent this?

1-A An Expensive False StartCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

For now, there are two important points to understand about the SDLC. First, you

should get a general sense of the phases and steps that IS projects move through and some

of the techniques that produce certain deliverables. Second, it is important to understand

that the SDLC is a process of gradual refinement. The deliverables produced in the analysis

phase provide a general idea of the shape of the new system. These deliverables are used as

input to the design phase, which then refines them to produce a set of deliverables that

describes in much more detailed terms exactly how the system will be built. These deliver-

ables, in turn, are used in the implementation phase to produce the actual system. Each

phase refines and elaborates on the work done previously.

Planning

The planning phase is the fundamental process of understanding why an information sys-

tem should be built and determining how the project team will go about building it. It has

two steps:

1. During project initiation, the system’s business value to the organization is identi-

fied—how will it lower costs or increase revenues? Most ideas for new systems

come from outside the IS area (from the marketing department, accounting

department, etc.) in the form of a system request. A system request presents a brief

summary of a business need, and it explains how a system that supports the need

will create business value. The IS department works together with the person or

department that generated the request (called the project sponsor) to conduct a

feasibility analysis. The feasibility analysis examines key aspects of the proposed

project:

■ The technical feasibility (Can we build it?)

■ The economic feasibility (Will it provide business value?)

■ The organizational feasibility (If we build it, will it be used?)

The system request and feasibility analysis are presented to an information sys-

tems approval committee (sometimes called a steering committee), which decides

whether the project should be undertaken.

2. Once the project is approved, it enters—project management. During project

management, the project manager creates a workplan, staffs the project, and puts

techniques in place to help the project team control and direct the project

through the entire SDLC. The deliverable for project management is a project plan

that describes how the project team will go about developing the system.

Analysis

The analysis phase answers the questions of who will use the system, what the system will

do, and where and when it will be used. During this phase, the project team investigates any

current system(s), identifies improvement opportunities, and develops a concept for the

new system. This phase has three steps:

1. An analysis strategy is developed to guide the project team’s efforts. Such a strat-

egy usually includes an analysis of the current system (called the as-is system) and

its problems, and then ways to design a new system (called the to-be system).

2. The next step is requirements gathering (e.g., through interviews or question-

naires). The analysis of this information—in conjunction with input from project

sponsor and many other people—leads to the development of a concept for a new

system. The system concept is then used as a basis to develop a set of business

4 Chapter 1 Introduction to Systems Analysis and Design

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

analysis models that describes how the business will operate if the new system

were developed. The set of models typically includes models that represent the

data and processes necessary to support the underlying business process.

3. The analyses, system concept, and models are combined into a document called

the system proposal, which is presented to the project sponsor and other key deci-

sion makers (e.g., members of the approval committee) that decide whether the

project should continue to move forward.

The system proposal is the initial deliverable that describes what business require-

ments the new system should meet. Because it is really the first step in the design of the new

system, some experts argue that it is inappropriate to use the term analysis as the name for

this phase; some argue a better name would be analysis and initial design. Most organiza-

tions continue use to the name analysis for this phase, however, so we will use it in this book

as well. Just keep in mind that the deliverable from the analysis phase is both an analysis

and a high-level initial design for the new system.

Design

The design phase decides how the system will operate, in terms of the hardware, software,

and network infrastructure; the user interface, forms and reports; and the specific pro-

grams, databases, and files that will be needed. Although most of the strategic decisions

about the system were made in the development of the system concept during the analysis

phase, the steps in the design phase determine exactly how the system will operate. The

design phase has four steps:

1. The design strategy must be developed. This clarifies whether the system will be

developed by the company’s own programmers, whether it will be outsourced to

another firm (usually a consulting firm), or whether the company will buy an

existing software package.

2. This leads to the development of the basic architecture design for the system that

describes the hardware, software, and network infrastructure that will be used. In

most cases, the system will add or change the infrastructure that already exists in

the organization. The interface design specifies how the users will move through

the system (e.g., navigation methods such as menus and on-screen buttons) and

the forms and reports that the system will use.

3. The database and file specifications are developed. These define exactly what data

will be stored and where they will be stored.

4. The analyst team develops the program design, which defines the programs that

need to be written and exactly what each program will do.

This collection of deliverables (architecture design, interface design, database and file

specifications, and program design) is the system specification that is handed to the pro-

gramming team for implementation. At the end of the design phase, the feasibility analysis

and project plan are reexamined and revised, and another decision is made by the project

sponsor and approval committee about whether to terminate the project or continue.

Implementation

The final phase in the SDLC is the implementation phase, during which the system is actu-

ally built (or purchased, in the case of a packaged software design). This is the phase that

usually gets the most attention, because for most systems it is longest and most expensive

single part of the development process. This phase has three steps:

The Systems Development Life Cycle 5

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

1. System construction is the first step. The system is built and tested to ensure it per-

forms as designed. Since the cost of bugs can be immense, testing is one of the

most critical steps in implementation. Most organizations spend more time and

attention on testing than on writing the programs in the first place.

2. The system is installed. Installation is the process by which the old system is

turned off and the new one is turned on. It may include a direct cutover

approach (in which the new system immediately replaces the old system), a par-

allel conversion approach (in which both the old and new systems are operated

for a month or two until it is clear that there are no bugs in the new system), or

a phased conversion strategy (in which the new system is installed in one part of

the organization as an initial trial and then gradually installed in others). One of

the most important aspects of conversion is the development of a training plan

to teach users how to use the new system and help manage the changes caused

by the new system.

3. The analyst team establishes a support plan for the system. This plan usually

includes a formal or informal post-implementation review, as well as a systematic

way for identifying major and minor changes needed for the system.

SYSTEMS DEVELOPMENT METHODOLOGIES

A methodology is a formalized approach to implementing the SDLC (i.e., it is a list of steps

and deliverables). There are many different systems development methodologies, and each

one is unique based on the order and focus it places on each SDLC phase. Some method-

ologies are formal standards used by government agencies, while others have been devel-

oped by consulting firms to sell to clients. Many organizations have internal methodologies

that have been honed over the years, and they explain exactly how each phase of the SDLC

is to be performed in that company.

There are many ways to categorize methodologies. One way is by looking at whether

they focus on business processes or the data that support the business. Methodologies are

process-centered if they emphasize process models as the core of the system concept. In Fig-

ure 1-1, for example, process-centered methodologies would focus first on defining the

processes (e.g., assemble sandwich ingredients). Methodologies are data-centered if they

emphasize data models as the core of the system concept. In Figure 1-1, for example, data-

centered methodologies would focus first on defining the contents of the storage areas

(e.g., refrigerator) and how the contents were organized.3 By contrast, object-oriented

methodologies attempt to balance the focus between process and data by incorporating both

into one model. In Figure 1-1, these methodologies would focus first on defining the major

elements of the system (e.g., sandwiches, lunches) and look at the processes and data that

were involved with each element.

Another important factor in categorizing methodologies is the sequencing of the

SDLC phases and the amount of time and effort devoted to each.4 In the early days of

6 Chapter 1 Introduction to Systems Analysis and Design

3 The classic modern process-centered methodology is that by Edward Yourdon, Modern Structured Analysis
(Englewood Cliffs, NJ: Yourdon Press, 1989). An example of a data-centered methodology is information engi-
neering by James Martin, Information Engineering, vols. 1-3 (Englewood Cliffs, NJ: Prentice Hall, 1989). A widely
accepted standardized non–object-oriented methodology that balances processes and data is IDEF; see FIPS 183,
Integration Definition for Function Modeling, Federal Information Processing Standards Publications, U.S.
Department of Commerce, 1993.
4 A good reference for comparing systems development methodologies is Steve McConnell, Rapid Development
(Redmond, WA: Microsoft Press, 1996).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

computing, the need for formal and well-planned life cycle methodologies was not well

understood. Programmers tended to move directly from a very simple planning phase

right into the construction step of the implementation phase. In other words, they moved

directly from a very fuzzy, not well-thought-out system request into writing code.

This is the same approach that you sometimes use when writing programs for a pro-

gramming class. It can work for small programs that require only one programmer, but

if the requirements are complex or unclear, you may miss important aspects of the prob-

lem and have to start all over again, throwing away part of the program (and the time

and effort spent writing it). This approach also makes teamwork difficult because mem-

bers have little idea about what needs to be accomplished and how to work together to

produce a final product.

Systems Development Methodologies 7

aParent aRefrigerator aCupboard aSandwich aLunch aLunchBag

GetJelly

GetPeanutButter

GetCookies

GetBread

CreateSandwich

GetMilk

CreateLunch

GetLunchBag

PutLunchInBag

FIGURE 1-1 A Simple Behavioral Model for Making Lunch

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Structured Design

The first category of systems development methodologies is called structured design. These

methodologies became dominant in the 1980s, replacing the previous, ad hoc, and undis-

ciplined approaches. Structured design methodologies adopt a formal step-by-step

approach to the SDLC that moves logically from one phase to the next. Numerous process-

centered and data-centered methodologies follow the basic approach of the two structured

design categories outlined next.

Waterfall Development The original structured design methodology (that is still used

today) is waterfall development. With waterfall development–based methodologies, the ana-

lysts and users proceed in sequence from one phase to the next (see Figure 1-2). The key

deliverables for each phase are typically very long (often hundreds of pages in length) and

are presented to the project sponsor for approval as the project moves from phase to phase.

Once the sponsor approves the work that was conducted for a phase, the phase ends and the

next one begins. This methodology is referred to as waterfall development because it moves

forward from phase to phase in the same manner as a waterfall. While it is possible to go

backward in the SDLC (e.g., from design back to analysis), it is extremely difficult (imagine

yourself as a salmon trying to swim “upstream” against a waterfall, as shown in Figure 1-2).

Structured design also introduced the use of formal modeling or diagramming tech-

niques to describe the basic business processes and the data that support them. Traditional

structured design uses one set of diagrams to represent the processes and a separate set of

diagrams to represent data. Because two sets of diagrams are used, the systems analyst must

decide which set to develop first and use as the core of the system—process-model diagrams

or data-model diagrams. There is much debate over which should come first, the processes

or the data, because both are important to the system. As a result, several different structured

design methodologies have evolved that follow the basic steps of the waterfall model, but use

different modeling approaches at different times. Those that attempt to emphasize process-

model diagrams as the core of the system are process-centered, while those that emphasize

data-model diagrams as the core of the system concept are data-centered.

8 Chapter 1 Introduction to Systems Analysis and Design

System

Planning

Analysis

Design

Implementation

FIGURE 1-2

A Waterfall

Development–based

Methodology

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

The two key advantages of the structured design waterfall approach are that it identi-

fies system requirements long before programming begins and it minimizes changes to the

requirements as the project proceeds. The two key disadvantages are that the design must

be completely specified before programming begins and that a long time elapses between

the completion of the system proposal in the analysis phase and the delivery of the system

(usually many months or years). The lengthy deliverables are often a poor communication

mechanism; the result is that important requirements can be overlooked in the voluminous

documentation. Users rarely are prepared for their introduction to the new system, which

occurs long after the initial idea for the system was introduced. If the project team misses

important requirements, expensive post-implementation programming may be needed

(imagine yourself trying to design a car on paper; how likely would you be to remember

interior lights that come on when the doors open, or to specify the right number of valves

on the engine?).

A system also may require significant rework because the business environment has

changed from the time that the analysis phase occurred. When changes do occur, it means

going back to the initial phases and following the change through each of the subsequent

phases in turn.

Parallel Development The parallel development methodology attempts to address the

problem of long delays between the analysis phase and the delivery of the system. Instead

of doing design and implementation in sequence, it performs a general design for the

whole system and then divides the project into a series of distinct subprojects that can be

designed and implemented in parallel. Once all subprojects are complete, there is a final

integration of the separate pieces, and the system is delivered (see Figure 1-3).

The primary advantage of this methodology is that it can reduce the schedule time to

deliver a system; thus, there is less chance of changes in the business environment causing

rework. However, the approach still suffers from problems caused by paper documents. It

also adds a new problem: Sometimes the subprojects are not completely independent;

design decisions made in one subproject may affect another, and the end of the project may

require significant integration efforts.

Rapid Application Development (RAD)

A second category of methodologies includes rapid application development

(RAD)–based methodologies. These are a newer class of systems development method-

ologies that emerged in the 1990s. RAD-based methodologies attempt to address both

weaknesses of structured design methodologies by adjusting the SDLC phases to get

some part of the system developed quickly and into the hands of the users. In this way,

the users can better understand the system and suggest revisions that bring the system

closer to what is needed.5

Most RAD-based methodologies recommend that analysts use special techniques and

computer tools to speed up the analysis, design, and implementation phases, such as CASE tools

(see Chapter 4), joint application design (JAD) sessions (see Chapter 5), fourth

generation/visual programming languages that simplify and speed-up programming (e.g.,

Visual Basic), and code generators that automatically produce programs from design specifica-

tions. It is the combination of the changed SDLC phases and the use of these tools and tech-

niques that improve the speed and quality of systems development. However, there is one

Systems Development Methodologies 9

5 One of the best RAD books is that by Steve McConnell, Rapid Development (Redmond, WA: Microsoft
Press, 1996).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

possible subtle problem with RAD-based methodologies: user expectation management. Due

to the use of the tools and techniques that can improve the speed and quality of systems devel-

opment, user expectations of what is possible may dramatically change. As the user better

understands the information technology, the systems requirements tend to expand. This was

less of a problem when using methodologies that spent a lot of time thoroughly documenting

requirements. There are process-centered, data-centered and object-oriented methodologies

that follow the basic approaches of the three RAD categories described below.

Phased Development A phased development–based methodology breaks the overall system

into a series of versions that are developed sequentially. The analysis phase identifies the overall

system concept, and the project team, users, and system sponsor then categorize the require-

ments into a series of versions. The most important and fundamental requirements are bun-

dled into the first version of the system. The analysis phase then leads into design and

implementation, but only with the set of requirements identified for version 1 (see Figure 1-4).

Once version 1 is implemented, work begins on version 2. Additional analysis is per-

formed based on the previously identified requirements and combined with new ideas and

issues that arose from the users’ experience with version 1. Version 2 then is designed and

implemented, and work immediately begins on the next version. This process continues

until the system is complete or is no longer in use.

Phased development–based methodologies have the advantage of quickly getting a use-

ful system into the hands of the users. While the system does not perform all the functions

10 Chapter 1 Introduction to Systems Analysis and Design

System

Planning

Analysis

Design

Implementation

Design

Integration

Implementation

Design

Implementation

Design

Subproject 2

Subproject 1

Subproject 3

FIGURE 1-3 A Parallel Development-based Methodology

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

the users need at first, it does begin to provide business value sooner than if the system were

delivered after completion, as is the case with the waterfall or parallel methodology. Like-

wise, because users begin to work with the system sooner, they are more likely to identify

important additional requirements sooner than with structured design situations.

The major drawback to phased development is that users begin to work with systems

that are intentionally incomplete. It is critical to identify the most important and useful fea-

tures and include them in the first version, while managing users’ expectations along the way.

Prototyping A prototyping-based methodology performs the analysis, design, and

implementation phases concurrently, and all three phases are performed repeatedly in a

cycle until the system is completed. With these methodologies, the basics of analysis and

design are performed, and work immediately begins on a system prototype, a “quick-and-

dirty” program that provides a minimal amount of features. The first prototype is usu-

ally the first part of the system that the user will use. This is shown to the users and

Systems Development Methodologies 11

System
version 1

Planning

Analysis

Analysis

Implementation

Design

Analysis

Implementation

Design

Analysis

Implementation

Design

System
version 2

System
version 3

FIGURE 1-4 A Phased Development–based Methodology

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

project sponsor who provide comments, which are used to re-analyze, re-design, and re-

implement a second prototype that provides a few more features. This process continues

in a cycle until the analysts, users, and sponsor agree that the prototype provides enough

functionality to be installed and used in the organization. After the prototype (now

called the system) is installed, refinement occurs until it is accepted as the new system

(see Figure 1-5).

The key advantage of a prototyping-based methodology is that it very quickly provides

a system for the users to interact with, even if it is not ready for widespread organizational

use at first. Prototyping reassures the users that the project team is working on the system

(there are no long delays in which the users see little progress), and prototyping helps to

more quickly refine real requirements. Rather than attempting to understand a system

specification on paper, the users can interact with the prototype to better understand what

it can and cannot do.

The major problem with prototyping is that its fast-paced system releases challenge

attempts to conduct careful, methodical analysis. Often the prototype undergoes such sig-

nificant changes that many initial design decisions become poor ones. This can cause prob-

lems in the development of complex systems because fundamental issues and problems are

not recognized until well into the development process. Imagine building a car and dis-

covering late in the prototyping process that you have to take the whole engine out to

change the oil (because no one thought about the need to change the oil until after it had

been driven 10,000 miles).

Throwaway Prototyping Throwaway prototyping-based methodologies are similar to

prototyping-based methodologies in that they include the development of prototypes;

however throwaway prototypes are done at a different point in the SDLC. These prototypes

are used for a very different purpose than ones previously discussed, and they have a very

different appearance (see Figure 1-6).

The throwaway prototyping-based methodologies have a relatively thorough analysis

phase that is used to gather information and to develop ideas for the system concept.

However, many of the features suggested by the users may be not well understood, and

there may be challenging technical issues to be solved. Each of these issues is examined by

analyzing, designing, and building a design prototype. A design prototype is not a working

system; it is a product that represents a part of the system that needs additional refine-

ment, and it only contains enough detail to enable users to understand the issues under

consideration. For example, suppose users are not completely clear on how an order entry

system should work. The analyst team might build a series of HTML pages viewed using

12 Chapter 1 Introduction to Systems Analysis and Design

System
prototype

System

Planning

Analysis

Design

Implementation

Implementation

FIGURE 1-5

A Prototyping-based

Methodology

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

a Web browser to help the users visualize such a system. In this case, a series of mock-up

screens appear to be a system, but they really do nothing. Or, suppose that the project

team needs to develop a sophisticated graphics program in Java. The team could write a

portion of the program with pretend data to ensure that they could do a full-blown pro-

gram successfully.

A system that is developed using this type of methodology probably relies on several

design prototypes during the analysis and design phases. Each of the prototypes is used to

minimize the risk associated with the system by confirming that important issues are

understood before the real system is built. Once the issues are resolved, the project moves

into design and implementation. At this point, the design prototypes are thrown away,

which is an important difference between these methodologies and prototyping method-

ologies, in which the prototypes evolve into the final system.

Throwaway prototyping-based methodologies balance the benefits of well-

thought-out analysis and design phases with the advantages of using prototypes to

refine key issues before a system is built. It may take longer to deliver the final system

as compared to prototyping-based methodologies (since the prototypes do not become

the final system), but this type of methodology usually produces more stable and reli-

able systems.

Agile Development6

A third category of systems development methodologies is still emerging today: agile

development.7 These programming-centric methodologies have few rules and practices,

all of which are fairly easy to follow. They focus on streamlining the SDLC by eliminat-

ing much of the modeling and documentation overhead, and the time spent on those

tasks. Instead, projects emphasize simple, iterative application development. Examples

Systems Development Methodologies 13

Design
prototype

System

Analysis

Analysis

Design

Implementation

Planning

Implementation

Design

FIGURE 1-6 A Throwaway Prototyping–based Methodology

6 Two good sources of information on agile development and object-oriented systems is S.W. Ambler, Agile Mod-
eling: Effective Practices for Extreme Programming and The Unified Process (New York: John Wiley & Sons, 2002),
and R.C. Martin, Agile Software Development: Principles, Patterns, and Practices (Englewood Cliffs, NJ: Prentice
Hall, 2003).
7 For more information, see www.AgileAlliance.org.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

of agile development methodologies include extreme programming (XP),8 Scrum,9 and

the Dynamic Systems Development Method (DSDM).10 Next, we describe XP as an

example agile development approach. Typically, XP is used in conjunction with object-

oriented methodologies.

Extreme Programming11 Extreme programming (XP) is founded on four core values:

communication, simplicity, feedback, and courage. These four values provide a founda-

tion on which XP developers use to create any system. First, the developers must provide

rapid feedback to the end users on a continuous basis. Second, XP requires developers to

follow the KISS principle.12 Third, developers must make incremental changes to grow

the system and they must not only accept change, they must embrace change. Fourth,

developers must have a quality first mentality. XP also supports team members in devel-

oping their own skills.

Three of the key principles that XP uses to create successful systems are continuous

testing, simple coding performed by pairs of developers, and close interactions with end

users to build systems very quickly. After a superficial planning process, projects perform

analysis, design, and implementation phases iteratively (see Figure 1-7).

Testing and efficient coding practices are core to XP. In fact, each day code is tested and

placed into an integrative testing environment. If bugs exist, the code is backed out until it

is completely free of errors. XP relies heavily on refactoring, which is a disciplined way to

restructure code to keep it simple.

An XP project begins with user stories that describe what the system needs to do.

Then, programmers code in small, simple modules and test to meet those needs. Users are

required to be available to clear up questions and issues as they arise. Standards are very

important to minimize confusion, so XP teams use a common set of names, descriptions,

and coding practices. XP projects deliver results sooner than even the RAD approaches, and

they rarely get bogged down in gathering requirements for the system.

14 Chapter 1 Introduction to Systems Analysis and Design

8 For more information, see www.extremeprogramming.com.
9 For more information, see www.controlchaos.com.
10 For more information, see www.dsdm.org.
11 For more information, see K. Beck, eXtreme Programming Explained: Embrace Change (Reading, MA: Addison-
Wesley, 2000) and M. Lippert, S. Roock, and H. Wolf, eXtreme Programming in Action: Practical Experiences from
Real World Projects (New York: John Wiley & Sons, 2002).
12 Keep It Simple, Stupid.

Implementation

Design

Analysis

System

Planning

FIGURE 1-7

The Extreme Program-

ming Methodology

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

For small projects with highly motivated, cohesive, stable, and experienced teams, XP

should work just fine. However, if the project is not small or the teams aren’t jelled13 then

the success of an XP development effort is doubtful. This tends to throw the whole idea of

bringing outside contractors into an existing team environment using XP into doubt.14

The chance of outsiders “jelling” with insiders may simply be too optimistic. XP requires a

great deal of discipline, otherwise projects will become unfocused and chaotic. Further-

more, it is only recommended for small groups of developers—no more than ten develop-

ers, and it is not advised for large mission-critical applications. Due to the lack of analysis

and design documentation, there is only code documentation associated with XP, main-

taining large systems built with XP may be impossible. And since mission-critical business

information systems tend to exist for a long time, the utility of XP as a business informa-

tion system development methodology is in doubt. Finally, the methodology needs a lot of

on-site user input, something to which many business units cannot commit.15

Selecting the Appropriate Development Methodology

Since there are many methodologies, the first challenge faced by analysts is to select which

methodology to use. Choosing a methodology is not simple, because no one methodology

is always best (if it were, we’d simply use it everywhere!). Many organizations have stan-

dards and policies to guide the choice of methodology. You will find that organizations

range from having one “approved” methodology, to having several methodology options,

to having no formal policies at all.

Figure 1-8 summarizes some important methodology selection criteria. One impor-

tant item not discussed in this figure is the degree of experience of the analyst team. Many

of the RAD-based methodologies require the use of “new” tools and techniques that have

a significant learning curve. Often these tools and techniques increase the complexity of the

project and require extra time for learning. However, once they are adopted and the team

becomes experienced, the tools and techniques can significantly increase the speed in

which the methodology can deliver a final system.

Clarity of User Requirements When the user requirements for what the system should do

are unclear, it is difficult to understand them by talking about them and explaining them with

written reports. Users normally need to interact with technology to really understand what the

new system can do and how to best apply it to their needs. Prototyping and throwaway proto-

typing–based RAD methodologies are usually more appropriate when user requirements are

unclear because they provide prototypes for users to interact with early in the SDLC.

Familiarity with Technology When the system will use new technology with which the

analysts and programmers are not familiar (e.g., the first Web development project with

Java), early application of the new technology in the methodology will improve the chance

of success. If the system is designed without some familiarity with the base technology,

risks increase because the tools might not be capable of doing what is needed. Throwaway

Systems Development Methodologies 15

13 A “jelled team” is one that has low turnover, a strong sense of identity, a sense of eliteness, a feeling that they
jointly own the product being developed, and enjoyment in working together. For more information regarding
jelled teams, see T. DeMarco and T. Lister. Peopleware: Productive Projects and Teams, New York, NY (Dorsett,
House, 1987).
14 Considering the tendency for offshore outsourcing, this is a major obstacle for XP to overcome. For more
information on offshore outsourcing, see P. Thibodeau, ITAA panel debates outsourcing pros, cons, Computer-
world Morning Update (September 25, 2003), and S.W. Ambler, “Chicken Little Was Right,” Software Development
(October 2003).
15 Many of the observations described on the utility of XP as a development approach was based on conversa-
tions with Brian Henderson-Sellers.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

prototyping–based methodologies are particularly appropriate for a lack of familiarity with

technology because they explicitly encourage the developers to develop design prototypes

for areas with high risks. Phased development-based methodologies are good as well,

because they create opportunities to investigate the technology in some depth before the

design is complete. While one might think prototyping-based methodologies would also be

appropriate, they are much less so, since the early prototypes that are built usually only

scratch the surface of the new technology. Usually, it is only after several prototypes and

several months that the developers discover weaknesses or problems in the new technology.

System Complexity Complex systems require careful and detailed analysis and design.

Throwaway prototyping–based methodologies are particularly well suited to such detailed

analysis and design, as opposed to prototyping-based methodologies, which are not. The

traditional structured design–based methodologies can handle complex systems, but with-

out the ability to get the system or prototypes into the users’ hands early on, some key

issues may be overlooked. Although phased development–based methodologies enable

users to interact with the system early in the process, we have observed that project teams

who follow these tend to devote less attention to the analysis of the complete problem

domain than they might using others.

System Reliability System reliability is usually an important factor in system develop-

ment—after all, who wants an unreliable system? However, reliability is just one factor

among several. For some applications reliability is truly critical (e.g., medical equipment,

missile control systems), while for other applications is it is merely important (e.g., games,

Internet video). Throwaway prototyping methodologies are the most appropriate when

system reliability is a high priority, because it combines detailed analysis and design phases

with the ability for the project team to test many different approaches through design pro-

totypes before completing the design. Prototyping methodologies are generally not a good

choice when reliability is critical because it lacks the careful analysis and design phases that

are essential for dependable systems.

Short Time Schedules Projects that have short time schedules are well suited for RAD-

based methodologies. This is due to them being designed to increase the speed of devel-

opment. Prototyping and phased development–based methodologies are excellent

choices when timelines are short because they best enable the project team to adjust the

16 Chapter 1 Introduction to Systems Analysis and Design

with Unclear User Requirements Poor Poor Good Excellent Excellent Excellent

with Unfamiliar Technology Poor Poor Good Poor Excellent Poor

that are Complex Good Good Good Poor Excellent Poor

that are Reliable Good Good Good Poor Excellent Good

with a Short Time Schedule Poor Good Excellent Excellent Good Excellent

with Schedule Visibility Poor Poor Excellent Excellent Good Good

Agile

Ability to

Structured Methodologies RAD Methodologies Methodologies

Throwaway
Develop Systems Waterfall Parallel Phased Prototyping Prototyping XP

FIGURE 1-8 Criteria for Selecting a Methodology

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

functionality in the system based on a specific delivery date, and if the project schedule

starts to slip, it can be readjusted by removing functionality from the version or proto-

type under development. Waterfall-based methodologies are the worst choice when time

is at a premium because it does not allow for easy schedule changes.

Schedule Visibility One of the greatest challenges in systems development is determin-

ing whether a project is on schedule. This is particularly true of the structured design

methodologies since design and implementation occur at the end of the project. The RAD-

based methodologies move many of the critical design decisions earlier in the project to

help project managers recognize and address risk factors and keep expectations in check.

PROJECT TEAM ROLES AND SKILLS

As should be clear from the various phases and steps performed during the SDLC, the pro-

ject team needs a variety of skills. Project members are change agents who identify ways to

improve an organization, build an information system to support them, and train and

motivate others to use the system. Leading a successful organizational change effort is one

of the most difficult jobs that someone can do. Understanding what to change and how to

change it, and convincing others of the need for change, requires a wide range of skills.

These skills can be broken down into six major categories: technical, business, analytical,

interpersonal, management, and ethical.

Analysts must have the technical skills to understand the organization’s existing tech-

nical environment, the technology that will comprise the new system, and the way in which

both can be fit into an integrated technical solution. Business skills are required to under-

stand how IT can be applied to business situations and to ensure that the IT delivers real

business value. Analysts are continuous problem solvers at both the project and the orga-

nizational level, and they put their analytical skills to the test regularly.

Often, analysts need to communicate effectively one-on-one with users and business

managers (who often have little experience with technology) and with programmers (who

often have more technical expertise than the analyst). They must be able to give presenta-

tions to large and small groups and write reports. Not only do they need to have strong

interpersonal abilities, but also they need to manage people with whom they work and they

need to manage the pressure and risks associated with unclear situations.

Project Team Roles and Skills 17

Suppose you are an analyst for the Roanoke Software
Consulting Company (RSCC), a large consulting firm
with offices around the world. The company wants to
build a new knowledge management system that can
identify and track the expertise of individual consultants
anywhere in the world based on their education and the
various consulting projects on which they have worked.
Assume that this is a new idea that has never before
been attempted in RSCC or elsewhere. RSCC has an

international network, but the offices in each country
may use somewhat different hardware and software.
RSCC management wants the system up and running
within a year.

Question:

1. What type of methodology would you recommend
RSCC use? Why?

1-1 Selecting a MethodologyYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Finally, analysts must deal fairly, honestly, and ethically with other project team mem-

bers, managers, and system users. Analysts often deal with confidential information or

information that, if shared with others, could cause harm (e.g., dissent among employees);

it is important to maintain confidence and trust with all people.

In addition to these six general skill sets, analysts require many specific skills that are asso-

ciated with roles that are performed on a project. In the early days of systems development,

most organizations expected one person, the analyst, to have all of the specific skills needed to

conduct a systems development project. Some small organizations still expect one person to

perform many roles, but because organizations and technology have become more complex,

most large organizations now build project teams that contain several individuals with clearly

defined responsibilities. Different organizations divide the roles differently, but Figure 1-9 pre-

sents one commonly used set of project team roles. Most IS teams include many other indi-

viduals, such as the programmers, who actually write the programs that make up the system,

network engineers, who focus on the design of the network, database administrators, who deal

with optimizing the physical design of the database, and technical writers, who prepare the help

screens and other documentation (e.g., users manuals, systems manuals).

Business Analyst

The business analyst focuses on the business issues surrounding the system. These include

identifying the business value that the system will create, developing ideas and suggestions for

how the business processes can be improved, and designing the new processes and policies in

conjunction with the systems analyst. This individual will likely have business experience and

some type of professional training (e.g., the business analyst for accounting systems will likely

be a CPA [in the United States] or a CA [in Canada]). He or she represents the interests of the

project sponsor and the ultimate users of the system. The business analyst assists in the plan-

ning and design phases, but is most active in the analysis phase.

18 Chapter 1 Introduction to Systems Analysis and Design

Business analyst Analyzing the key business aspects of the system

Identifying how the system will provide business value

Designing the new business processes and policies

Systems analyst Identifying how technology can improve business processes

Designing the new business processes

Designing the information system

Ensuring that the system conforms to information systems standards

Infrastructure analyst Ensuring the system conforms to infrastructure standards

Identifying infrastructure changes needed to support the system

Change management analyst Developing and executing a change management plan

Developing and executing a user training plan

Project manager Managing the team of analysts, programmers, technical writers,
and other specialists

Developing and monitoring the project plan

Assigning resources

Serving as the primary point of contact for the project

Role Responsibilities

FIGURE 1-9

Project Team Roles

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Systems Analyst

The systems analyst focuses on the IS issues surrounding the system. This person devel-

ops ideas and suggestions for how information technology can improve business

processes, designs the new business processes with help from the business analyst,

designs the new information system, and ensures that all IS standards are maintained.

The systems analyst likely will have significant training and experience in analysis and

design, programming, and even areas of the business. He or she represents the interests

of the IS department and works intensively through the project, but perhaps less so dur-

ing the implementation phase.

Infrastructure Analyst

The infrastructure analyst focuses on the technical issues surrounding how the system

will interact with the organization’s technical infrastructure (e.g., hardware, software,

networks and databases). The infrastructure analyst tasks include ensuring that the new

information system conforms to organizational standards and identifying infrastructure

changes needed to support the system. This individual will likely have significant train-

ing and experience in networking, database administration, and various hardware and

software products. He or she represents the interests of the organization and IS group

that will ultimately have to operate and support the new system once it has been

installed. The infrastructure analyst works throughout the project, but perhaps less so

during planning and analysis phases.

Change Management Analyst

The change management analyst focuses on the people and management issues surround-

ing the system installation. The roles of this person include ensuring that the adequate doc-

umentation and support are available to users, providing user training on the new system,

and developing strategies to overcome resistance to change. This individual likely will have

significant training and experience in organizational behavior in general, and change man-

agement in particular. He or she represents the interests of the project sponsor and users

for whom the system is being designed. The change management analyst works most

actively during the implementation phase, but begins laying the groundwork for change

during the analysis and design phases.

Project Manager

The project manager is responsible for ensuring that the project is completed on time

and within budget and that the system delivers all benefits that were intended by the

project sponsor. The role of the project manager includes managing the team members,

developing the project plan, assigning resources, and being the primary point of contact

when people outside the team have questions about the project. This individual likely

will have significant experience in project management and likely has worked for many

years as a systems analyst beforehand. He or she represents the interests of the IS

department and the project sponsor. The project manager works intensely during all

phases of the project.

Project Team Roles and Skills 19

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

SUMMARY

The Systems Development Life Cycle

All systems development projects follow essentially the same fundamental process called

the system development life cycle (SDLC). SLDC starts with a planning phase in which the

project team identifies the business value of the system, conducts a feasibility analysis, and

plans the project. The second phase is the analysis phase, in which the team develops an

analysis strategy, gathers information, and builds a set of analysis models. In the next phase,

the design phase, the team develops the physical architecture design, interface design, data-

base and file specifications, and program design. In the final phase, implementation, the

system is built, installed, and maintained.

The Evolution of Systems Development Methodologies

System development methodologies are formalized approaches to implementing an SDLC.

System development methodologies have evolved over the decades. Structured design

methodologies, such as waterfall and parallel development, emphasize decomposition of a

problem by either focusing on process decomposition (process-centric methodologies) or data

decomposition (data-centric methodologies). They produce a solid, well-thought-out system,

but can overlook requirements because users must specify them early in the design process

before seeing the actual system. RAD-based methodologies attempt to speed up development

and make it easier for users to specify requirements by having parts of the system developed

sooner either by producing different versions (phased development) or by using prototypes

(prototyping, throwaway prototyping) through the use of CASE tools and fourth genera-

tion/visual programming languages. However, RAD-based methodologies still tend to be

either process-centric or data-centric. Agile development methodologies, such as XP, focus on

streamlining the SDLC by eliminating many of the tasks and time associated with require-

ments definition and documentation. Several factors influence the choice of a methodology:

clarity of the user requirements; familiarity with the base technology; system complexity; need

for system reliability; time pressures; and the need to see progress on the time schedule.

Project Team Roles and Skills The project team needs a variety of skills. All analysts

need to have general skills, such as change management, ethics, communications, and

technical. However, different kinds of analysts require specific skills in addition to these.

Business analysts usually have business skills that help them to understand how the busi-

ness issues surrounding the system, whereas systems analysts also have significant experi-

ence in analysis and design and programming. The infrastructure analyst focuses on

technical issues surrounding how the system will interact with the organization’s techni-

cal infrastructure, and the change management analyst focuses on people and manage-

ment issues surrounding the system installation. In addition to analysts, project teams will

include a project manager, programmers, technical writers, and other specialists.

20 Chapter 1 Introduction to Systems Analysis and Design

Suppose you decide to become an analyst after you grad-
uate. What type of analyst would you most prefer to be?
What type of courses should you take before you graduate?
What type of summer job or internship should you seek?

Question:

1. Develop a short plan that describes how you will
prepare for your career as an analyst.

1.2 Being an AnalystYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

KEY TERMS

Agile development

Analysis model

Analysis phase

Analysis strategy

Approval committee

Architecture design

As-is system

Business analyst

Change agent

Change management analyst

Construction

Database administrator

Database and file specification

Data-centered methodology

Deliverable

Design phase

Design prototype

Design strategy

Extreme programming (XP)

Feasibility analysis

Gradual refinement

Implementation phase

Infrastructure analyst

Installation

Interface design

Methodology

Network engineer

Object-oriented methodology

Parallel development

Phase

Phased development

Planning phase

Process-centered methodology

Program design

Programmer

Project initiation

Project management

Project manager

Project plan

Project sponsor

Prototyping

Refactoring

Rapid application development (RAD)

Requirements gathering

Steering committee

Step

Structured design

Support plan

System development life cycle (SDLC)

System proposal

System prototype

System request

System specification

Systems analyst

Technical writer

Technique

Throwaway prototyping

To-be system

Training plan

Version

Waterfall development

Workplan

Exercises 21

QUESTIONS

1. Compare and contrast phases, steps, techniques, and

deliverables.

2. Describe the major phases in the systems develop-

ment life cycle (SDLC).

3. Describe the principal steps in the planning phase.

What are the major deliverables?

4. Describe the principal steps in the analysis phase.

What are the major deliverables?

5. Describe the principal steps in the design phase.

What are the major deliverables?

6. Describe the principal steps in the implementation

phase. What are the major deliverables?

7. What are the roles of a project sponsor and the

approval committee?

8. What does gradual refinement mean in the context

of SDLC?

9. Compare and contrast process-centered methodolo-

gies with data-centered methodologies.

10. Compare and contrast structured design-based

methodologies in general to RAD-based methodolo-

gies in general.

11. Compare and contrast extreme programming and

throwaway prototyping.

12. Describe the major elements and issues with water-

fall development.

13. Describe the major elements and issues with parallel

development.

14. Describe the major elements and issues with phased

development.

15. Describe the major elements and issues with proto-

typing.

16. Describe the major elements and issues with throw-

away prototyping.

17. What are the key factors in selecting a methodology?

18. What are the major roles on a project team?

19. Compare and contrast the role of a systems analyst,

business analyst, and infrastructure analyst.

20. Which phase in the SDLC is most important? Why?

EXERCISES

A. Suppose you are a project manager using a waterfall

development–based methodology on a large and com-

plex project. Your manager has just read the latest arti-

cle in Computerworld that advocates replacing this

methodology with prototyping and comes to your

office requesting you to switch. What do you say?

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

22 Chapter 1 Introduction to Systems Analysis and Design

MINICASES

1. Barbara Singleton, manager of western regional sales at

the WAMAP Company, requested that the IS department

develop a sales force management and tracking system

that would enable her to better monitor the performance

of her sales staff. Unfortunately, due to the massive back-

log of work facing the IS department, her request was

given a low priority. After six months of inaction by the IS

department, Barbara decided to take matters into her own

hands. Based on the advice of friends, Barbara purchased

a PC and simple database software and constructed a sales

force management and tracking system on her own.

Although Barbara’s system has been “completed”

for about six weeks, it still has many features that do

not work correctly, and some functions are full of

errors. Barbara’s assistant is so mistrustful of the sys-

tem that she has secretly gone back to using her old

paper-based system, since it is much more reliable.

Over dinner one evening, Barbara complained to a

systems analyst friend, “I don’t know what went wrong

with this project. It seemed pretty simple to me. Those

IS guys wanted me to follow this elaborate set of steps

and tasks, but I didn’t think all that really applied to a

PC-based system. I just thought I could build this sys-

tem and tweak it around until I got what I wanted

without all the fuss and bother of the methodology the

IS guys were pushing. I mean, doesn’t that just apply to

their big, expensive systems?”

Assuming you are Barbara’s systems analyst friend,

how would you respond to her complaint?

2. Marcus Weber, IS project manager at ICAN Mutual

Insurance Co., is reviewing the staffing arrangements

for his next major project, the development of an expert

system-based underwriters assistant. This new system

will involve a whole new way for the underwriters to per-

form their tasks. The underwriters assistant system will

function as sort of an underwriting supervisor, review-

ing key elements of each application, checking for con-

sistency in the underwriter’s decisions, and ensuring that

no critical factors have been overlooked. The goal of the

new system is to improve the quality of the underwrit-

ers’ decisions and to improve underwriter productivity.

It is expected that the new system will substantially

change the way the underwriting staff do their jobs.

Marcus is dismayed to learn that due to budget con-

straints, he must choose between one of two available

staff members. Barry Filmore has had considerable

experience and training in individual and organiza-

tional behavior. Barry has worked on several other pro-

jects in which the end users had to make significant

adjustments to the new system, and Barry seems to have

a knack for anticipating problems and smoothing the

transition to a new work environment. Marcus had

hoped to have Barry’s involvement in this project.

Marcus’s other potential staff member is Kim

Danville. Prior to joining ICAN Mutual, Kim had con-

siderable work experience with the expert system tech-

nologies that ICAN has chosen for this expert system

project. Marcus was counting on Kim to help integrate

the new expert system technology into ICAN’s systems

environment, and also to provide on-the-job training

and insights to the other developers on this team.

Given that Marcus’s budget will only permit him to

add Barry or Kim to this project team, but not both, what

choice do you recommend for him? Justify your answer.

B. The basic types of methodologies discussed in this chap-

ter can be combined and integrated to form new hybrid

methodologies. Suppose you were to combine throw-

away prototyping with the use of waterfall development.

What would the methodology look like? Draw a picture

(similar to those in Figures 1-2 through 1-7). How

would this new methodology compare to the others?

C. Suppose you were an analyst working for a small com-

pany to develop an accounting system. What type of

methodology would you use? Why?

D. Suppose you were an analyst developing a new execu-

tive information system intended to provide key strate-

gic information from existing corporate databases to

senior executives to help in their decision making. What

type of methodology would you use? Why?

E. Suppose you were an analyst developing a new informa-

tion system to automate the sales transactions and man-

age inventory for each retail store in a large chain. The

system would be installed at each store and exchange

data with a mainframe computer at the company’s head

office. What type of methodology would you use? Why?

F. Look in the classified section of your local newspaper.

What kinds of job opportunities are available for peo-

ple who want analyst positions? Compare and con-

trast the skills that the ads ask for to the skills that we

presented in this chapter.

G. Think about your ideal analyst position. Write a news-

paper ad to hire someone for that position. What

requirements would the job have? What skills and

experience would be required? How would an appli-

cant be able to demonstrate having the appropriate

skills and experience?

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

This chapter introduces Object-Oriented Systems Analysis and Design with the Unified

Modeling Language, Version 2.0. First, the chapter introduces the basic characteristics of

object-oriented systems. Second, it introduces UML 2.0. Third, the chapter overviews

Object-Oriented Systems Analysis and Design and describes the Unified Process. Finally,

based on the Unified Process and the UML 2.0, the chapter provides a minimalist approach

to Object-Oriented Systems Analysis and Design with UML 2.0.

OBJECTIVES:

■ Understand the basic characteristics of object-oriented systems.
■ Be familiar with the Unified Modeling Language (UML), Version 2.0.
■ Be familiar with the Unified Process.
■ Understand a minimalist approach to object-oriented systems analysis and design.

CHAPTER OUTLINE

Introduction

Basic Characteristics of

Object-Oriented Systems

Classes and Objects

Methods and Messages

Encapsulation and Information Hiding

Inheritance

Polymorphism and Dynamic Binding

The Unified Modeling Language, Version 2.0

Structure Diagrams

Behavior Diagrams

Extension Mechanisms

Object-Oriented Systems Analysis

and Design

Use-case driven

Architecture Centric

Iterative and Incremental

The Unified Process

A Minimalist Approach to Object-Oriented

Systems Analysis and Design with UML 2.0

Benefits of Object-Oriented Systems

Analysis and Design

Extensions to the Unified Process

The Minimalist Object-Oriented

Systems Analysis and Design Approach

Summary

C H A P T E R 2

Introduction to Object-Oriented

Systems Analysis and Design with the

Unified Modeling Language, Version 2.0

23

C
op

yr
ig

ht
ed

 M
at

er
ia

l

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

INTRODUCTION

Until recent years, analysts focused on either data or business processes when developing

systems. As they moved through the SDLC, they emphasized either the data for the system

(data-centric approaches) or the processes that it would support (process-centric

approaches). In the mid-1980s, developers were capable of building systems that could be

more efficient if the analyst worked with a system’s data and processes simultaneously and

focused on integrating the two. As such, project teams began using an object-oriented

approach, whereby self-contained modules called objects (containing both data and

processes) were used as the building blocks for systems.

The ideas behind object-oriented approaches are not new. They can be traced back to

the object-oriented programming languages Simula, created in the 1960s, and Smalltalk,

created in the early 1970s. Until the mid-1980s, developers had to keep the data and

processes separate to be capable of building systems that could run on the mainframe com-

puters of that era. Today, due to the increase in processor power and the decrease in proces-

sor cost, object-oriented approaches are feasible. One of the major hurdles of learning

object-oriented approaches to developing information systems is the volume of new ter-

minology. In this chapter we overview the basic characteristics of an object-oriented sys-

tem, provide an overview of the second version of the Unified Modeling Language (UML,

2.0), introduce basic object-oriented systems analysis and design and the Unified Process,

and present a minimalist approach to object-oriented systems analysis and design with

UML 2.0.

BASIC CHARACTERISTICS OF OBJECT-ORIENTED SYSTEMS

Object-oriented systems focus on capturing the structure and behavior of information sys-

tems in little modules that encompass both data and process. These little modules are

known as objects. In this section of the chapter we describe the basic characteristics of

object-oriented systems, which include classes, objects, methods, messages, encapsulation,

information hiding, inheritance, polymorphism, and dynamic binding.

Classes and Objects

A class is the general template we use to define and create specific instances, or objects.

Every object is associated with a class. For example, all of the objects that capture informa-

tion about patients could fall into a class called Patient, because there are attributes (e.g.,

names, addresses, and birth dates) and methods (e.g., insert new instances, maintain

information, and delete entries) that all patients share (see Figure 2-1).

An object is an instantiation of a class. In other words, an object is a person, place,

event, or thing about which we want to capture information. If we were building an

appointment system for a doctor’s office, classes might include doctor, patient, and

appointment. The specific patients like Jim Maloney, Mary Wilson, and Theresa Marks are

considered instances, or objects, of the patient class.

Each object has attributes that describe information about the object, such as a

patient’s name, birth date, address, and phone number. The state of an object is defined by

the value of its attributes and its relationships with other objects at a particular point in

time. For example, a patient might have a state of “new” or “current” or “former.”

Each object also has behaviors. The behaviors specify what the object can do. For

example, an appointment object likely can schedule a new appointment, delete an appoint-

ment, and locate the next available appointment.

24 Chapter 2 Introduction to Object-Oriented Systems Analysis and Design

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

One of the more confusing aspects of object-oriented systems development is the fact

that in most object-oriented programming languages, both classes and instances of classes

can have attributes and methods. Class attributes and methods tend to be used to model

attributes (or methods) that deal with issues related to all instances of the class. For exam-

ple, to create a new patient object, a message is sent to the patient class to create a new

instance of itself. However, from a systems analysis and design point of view, we will focus

primarily on attributes and methods of objects and not of classes.

Methods and Messages

Methods implement an object’s behavior. A method is nothing more than an action that an

object can perform. As such, they are analogous to a function or procedure in a traditional

programming language such as C, Cobol, or Pascal. Messages are information sent to

objects to trigger methods. Essentially, a message is a function or procedure call from one

object to another object. For example, if a patient is new to the doctor’s office, the system

will send an insert message to the application. The patient object will receive a message

(instruction) and do what it needs to do to go about inserting the new patient into the sys-

tem (execute its method). See Figure 2-2.

Encapsulation and Information Hiding

The ideas of encapsulation and information hiding are interrelated in object-oriented sys-

tems. However, neither of the terms is new. Encapsulation is simply the combination of

process and data into a single entity. Traditional approaches to information systems devel-

opment tend to be either process-centric (e.g., structured systems) or data-centric (e.g.,

information engineering). Object-oriented approaches combine process and data into

holistic entities (objects).

Basic Characteristics of Object-Oriented Systems 25

PATIENT

– Name
– Birthdate
– Address
– Phone Number

+ Insert ()
+ Delete ()

Patient

– Patient name
– Doctor name
– Date
– time

+ Insert ()
+ Delete ()

Appointment

Classes

PATIENT aPatient : Patient

 Patient name = John Smith
 Doctor name = Dr. David Broussesau
 Date = September 17 , 2002
 time = 9:30 A.M.

anAppointment : Appointment

Objects

An instance of the Appointment class

An instance of the Patient class

 Name = Theresa Marks
 Birthdate = March 26, 1965
 Address = 50 Winds Way, Ocean City, NJ 09009
 Phone Number = (804) 555-7889

Instantiation

FIGURE 2-1 Classes and Objects

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Information hiding was first promoted in structured systems development. The prin-

ciple of information hiding suggests that only the information required to use a software

module be published to the user of the module. Typically, this implies the information

required to be passed to the module, and the information returned from the module is

published. Exactly how the module implements the required functionality is not relevant.

We really do not care how the object performs its functions, as long as the functions occur.

In object-oriented systems, combining encapsulation with the information hiding princi-

ple suggests that the information hiding principle be applied to objects instead of merely

applying it to functions or processes. As such, objects are treated like black boxes.

The fact that we can use an object by calling methods is the key to reusability because

it shields the internal workings of the object from changes in the outside system, and it

keeps the system from being affected when changes are made to an object. In Figure 2-2,

notice how a message (insert new patient) is sent to an object yet the internal algorithms

needed to respond to the message are hidden from other parts of the system. The only

information that an object needs to know is the set of operations, or methods, that other

objects can perform and what messages need to be sent to trigger them.

Inheritance

Inheritance, as an information systems development characteristic, was proposed in data

modeling in the late 1970s and the early 1980s. The data modeling literature suggests

using inheritance to identify higher-level, or more general, classes of objects. Common

sets of attributes and methods can be organized into superclasses. Typically, classes are

arranged in a hierarchy whereby the superclasses, or general classes, are at the top, and the

subclasses, or specific classes, are at the bottom. In Figure 2-3, person is a superclass to

the classes Doctor and Patient. Doctor, in turn, is a superclass to general practitioner and

specialist. Notice how a class (e.g., doctor) can serve as a superclass and subclass concur-

rently. The relationship between the class and its superclass is known as the A-Kind-Of

(AKO) relationship. For example, in Figure 2-3, a general practitioner is A-Kind-Of doc-

tor, which is A-Kind-Of person.

Subclasses inherit the appropriate attributes and methods from the superclasses

above them. That is, each subclass contains attributes and methods from its parent

superclass. For example, Figure 2-3 shows that both doctor and patient are subclasses of

person and therefore will inherit the attributes and methods of the person class. Inheri-

tance makes it simpler to define classes. Instead of repeating the attributes and methods

in the doctor and patient classes separately, the attributes and methods that are common

26 Chapter 2 Introduction to Object-Oriented Systems Analysis and Design

Insert ()
Delete ()

Patient

Name
Birthdate
Address
Phone number

Insert new instance.

The object’s insert method will
respond to the message and
insert a new patient instance.

A message is sent to the application.
FIGURE 2-2

Messages and Methods

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

to both are placed in the person class and inherited by those classes below it. Notice how

much more efficient hierarchies of object classes are than the same objects without a

hierarchy in Figure 2-4.

Most classes throughout a hierarchy will lead to instances; any class that has instances

is called a concrete class. For example, if Mary Wilson and Jim Maloney were instances of

the patient class, patient would be considered a concrete class. Some classes do not produce

instances because they are used merely as templates for other more specific classes (espe-

cially those classes located high up in a hierarchy). The classes are referred to as abstract

classes. Person would be an example of an abstract class. Instead of creating objects from

person, we would create instances representing the more specific classes of Doctor and

Patient, both types of person (see Figure 2-3). What kind of class is the general practitioner

class? Why?

Basic Characteristics of Object-Oriented Systems 27

Come up with a set of examples of using encapsulation
and information hiding in everyday life. For example, is
there any information about yourself that you would not
mind if everyone knew? How would someone retrieve

this information? What about personal information that
you would prefer to be private? How would you prevent
someone from retrieving it?

2-1 Encapsulation and Information HidingYOUR

TURN

Concrete class

General
practitioner

Specialist

Abstract class
Concrete class

PatientDoctor

Abstract class
Person

FIGURE 2-3

Class Hierarchy

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Polymorphism and Dynamic Binding

Polymorphism means that the same message can be interpreted differently by different

classes of objects. For example, inserting a patient means something different than

inserting an appointment. As such, different pieces of information need to be collected

and stored. Luckily, we do not have to be concerned with how something is done when

using objects. We can simply send a message to an object, and that object will be

responsible for interpreting the message appropriately. For example, if we sent the

message “Draw yourself ” to a square object, a circle object, and a triangle object, the

results would be very different, even though the message is the same. Notice in Figure

2-5 how each object responds appropriately (and differently) even though the mes-

sages are identical.

Polymorphism is made possible through dynamic binding. Dynamic, or late, bind-

ing is a technique that delays typing the object until run-time. As such, the specific

method that is actually called is not chosen by the object-oriented system until the sys-

tem is running. This is in contrast to static binding. In a statically bound system, the type

of object would be determined at compile time. Therefore, the developer would have to

choose which method should be called instead of allowing the system to do it. This is

why in most traditional programming languages you find complicated decision logic

based on the different types of objects in a system. For example, in a traditional pro-

gramming language, instead of sending the message “Draw yourself ” to the different

28 Chapter 2 Introduction to Object-Oriented Systems Analysis and Design

See if you can come up with at least three different
classes that you might find in a typical business situa-
tion. Select one of the classes and create at least a

three-level inheritance hierarchy using the class.
Which of the classes are abstract, if any, and which
ones are concrete?

2-2 InheritanceYOUR

TURN

Last name
First name
Birthdate
Insurance carrier

Update carrier
Update birthdate

Patient

Last name
First name
Birthdate
Medical school
specialty

Update specialty
Update birthdate

Doctor

Insurance carrier

With InheritanceWithout Inheritance

Update carrier

Patient

Medical school
specialty

Update specialty

Doctor

Last name
First name
Birthdate

Update birthdate

Person

FIGURE 2-4

Inheritance

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

types of graphical objects in Figure 2-5, you would have to write decision logic using a

case statement or a set of if statements to determine what kind of graphical object you

wanted to draw, and you would have to name each draw function differently (e.g., draw-

square, draw-circle, or draw-triangle). This obviously would make the system much

more complicated and more difficult to understand.

THE UNIFIED MODELING LANGUAGE, VERSION 2.0

Until 1995, object concepts were popular but implemented in many different ways by dif-

ferent developers. Each developer had his or her own methodology and notation (e.g.,

Booch, Coad, Moses, OMT, OOSE, and SOMA1). Then in 1995, Rational Software

brought three industry leaders together to create a single approach to object-oriented sys-

The Unified Modeling Language, Version 2.0 29

1 See Grady Booch, Object-Oriented Analysis and Design with Applications, 2nd Ed. (Redwood City, CA: Ben-
jamin/Cummings, 1994); Peter Coad and Edward Yourdon, Object-Oriented Analysis, 2nd Ed. (Englewood Cliffs,
NJ: Yourdon Press, 1991); Peter Coad and Edward Yourdon, Object-Oriented Design (Englewood Cliffs, NJ: Your-
don Press, 1991); Brian Henderson-Sellers and Julian Edwards, BookTwo of Object-Oriented Knowledge: The
Working Object (Sydney, Australia: Prentice Hall, 1994); James Rumbaugh, Michael Blaha, William Premerlani,
Frederick Eddy, and William Lorensen, Object-Oriented Modeling and Design (Englewood Cliffs, NJ, 1991); Ivar
Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Overgaard, Object-Oriented Software Engineering: A
Use Case Approach (Wokingham, England: Addison-Wesley, 1992); Ian Graham, Migrating to Object Technology
(Wokingham, England: Addison-Wesley, 1994).

Insert ()
Delete ()

Patient

Name
Birthdate
Address
Phone number

Insert new instance.

1. An insert message is sent
to the patient object.

2. The object’s method
responds to the message.

3. The application responds appropriately.

04/13/1972

50 Virginia Lane, Athens, GA 30605

804-555-9090

Wilson, Mary

Date of Birth:

Home Address:

Daytime Phone:

Last Name, First Name:

Please input the following information for the new patient:

New Patient

Insert ()
Delete ()

Appointment

Patient name
Doctor name
Date
Time

Insert new instance.

1. An insert message is sent
to the appointment object.

2. The object’s method
responds to the message.

3. The application responds appropriately.

Dr. Mathew Anderson

03 26 2003

12:30 PM

Wilson, Mary

Select Doctor:

Date (MM/DD/YYYY):

Time:

Patient Last Name, First Name:

Please input the following information for the new appointment:

New Appointment

FIGURE 2-5 Polymorphism and Encapsulation

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

tems development. Grady Booch, Ivar Jacobson, and James Rumbaugh worked with oth-

ers to create a standard set of diagramming techniques known as the Unified Modeling

Language (UML). The objective of UML is to provide a common vocabulary of object-

oriented terms and diagramming techniques that is rich enough to model any systems

development project from analysis through implementation. In November 1997, the

Object Management Group (OMG) formally accepted UML as the standard for all object

developers. Over the years since, the UML has gone through multiple minor revisions.

The current version of UML, Version 2.0, was accepted by the members of the OMG dur-

ing their spring and summer meetings of 2003.

The Version 2.0 of the UML defines a set of fourteen diagramming techniques used to

model a system. The diagrams are broken into two major groupings: one for modeling

structure of a system and one for modeling behavior. The structure modeling diagrams

include class, object, package, deployment, component, and composite structure diagrams.

The behavior modeling diagrams include activity, sequence, communication, interaction

overview, timing, behavior state machine, protocol state machine, and use case diagrams.2

Figure 2-6 provides and overview of these diagrams.

Depending on where in the development process the system is, different diagrams

play a more important role. In some cases, the same diagramming technique is used

throughout the development process. In that case, the diagrams start off very conceptual

and abstract. As the system is developed, the diagrams evolve to include details that ulti-

mately lead to code generation and development. In other words, the diagrams move from

documenting the requirements to laying out the design. Overall, the consistent notation,

integration among the diagramming techniques, and the application of the diagrams

across the entire development process makes the UML a powerful and flexible language

for analysts and developers. In the remainder of this section, we provide an overview of

the diagramming techniques supported by the UML. In later chapters, we provide more

detail on using a subset of the UML in object-oriented systems analysis and design.

Structure Diagrams

In this section of the chapter, we introduce the static, structure diagrams of the UML 2.0.

As mentioned above, the structure diagrams include the class, object, package, deployment,

component, and composite structure diagrams. Structure diagrams provide a way for rep-

resenting the data and static relationships that are in an information system. Below, we

describe the basic purpose of each of the structure diagrams.

30 Chapter 2 Introduction to Object-Oriented Systems Analysis and Design

Can you think of any way in which you use polymor-
phism and/or dynamic binding in your everyday life? For
example, when you are told to do some task, do you
always perform the task like everyone else you know

does? Do you always perform the task the same way or is
the method of performance depend on where you are
when you perform the task?

2-3 Polymorphism and Dynamic BindingYOUR

TURN

2 The material contained in this section is based on the Unified Modeling Language: Superstructure Version 2.0,
ptc/03-08-02 (www.uml.org). Additional useful references include Michael Jesse Chonoles and James A. Schardt,
UML 2 for Dummies (Indianapolis, IN: Wiley, 2003), Hans-Erik Eriksson, Magnus Penker, Brian Lyons, and
David Fado, UML 2 Toolkit (Indianapolis, IN: Wiley, 2004), and Kendall Scott, Fast Track UML 2.0 (Berkeley, CA:
Apress, 2004). For a complete description of all diagrams, see www.uml.org.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Class Diagrams The primary purpose of the class diagram is to create a vocabulary that

is used by both the analyst and users. Class diagrams typically represent the things, ideas or

concepts that are contained in the application. For example, if you were building a payroll

application, a class diagram would probably contain classes that represent things such as

employees, checks, and the payroll register. The class diagram would also portray the rela-

tionships among classes. The actual syntax of the class diagram is presented in Chapter 7.

Object Diagrams Object diagrams are very similar to class diagrams. The primary dif-

ference is that an object diagram portrays objects and their relationships. The primary pur-

pose of an object diagram is to allow an analyst to uncover additional details of a class. In

some cases, instantiating a class diagram may aid a user or analyst in discovering additional

relevant attributes, relationships, and/or operations, or possibly discover that some of the

attributes, relationships, or operations have been misplaced. Like the class diagram, the

actual syntax and use of the object diagram is presented in Chapter 7.

Package Diagrams Package diagrams are primarily used to group elements of the other

UML diagrams together into a higher-level construct: a package. Package diagrams are

essentially class diagrams that only show packages, instead of classes, and dependency

relationships, instead of the typical relationships shown on class diagrams. For example,

if we had an appointment system for a doctor’s office, it may make sense to group a

patient class with the patient’s medical history class together to form a patient class package.

The Unified Modeling Language, Version 2.0 31

Diagram Name Used to Primary Phase

Structure Diagrams
Class Illustrate the relationships between classes modeled in the system. Analysis, Design

Object Illustrate the relationships between objects modeled in the system. Analysis, Design

Used when actual instances of the classes will better communicate
the model.

Package Group other UML elements together to form higher level constructs. Analysis, Design,
Implementation

Deployment Show the physical architecture of the system. Can also be used to show Physical Design,
software components being deployed onto the physical architecture. Implementation

Component illustrate the physical relationships among the software components. Physical Design,
Implementation

Composite Structure Illustrate the internal structure of a class, i.e., the relationships among Analysis, Design
the parts of a class.

Behavioral Diagrams
Activity Illustrate business workflows independent of classes, the flow of activities Analysis, Design

in a use case, or detailed design of a method.

Sequence Model the behavior of objects within a use case. Focuses on the time-based Analysis, Design
ordering of an activity.

Communication Model the behavior of objects within a use case. Focuses on the communi- Analysis, Design
cation among a set of collaborating objects of an activity.

Interaction Overview Illustrate an overview of the flow of control of a process. Analysis, Design

Timing Illustrate the interaction that takes place among a set of objects and the Analysis, Design
state changes in which they go through along a time axis.

Behavioral State Machine Examine the behavior of one class. Analysis, Design

Protocol State Machine Illustrates the dependencies among the different interfaces of a class. Analysis, Design

Use-Case Capture business requirements for the system and to illustrate the inter- Analysis
action between the system and its environment.

FIGURE 2-6 UML 2.0 Diagram Summary

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Furthermore, it could be useful to create a treatment package that contains symptoms of

illnesses, illnesses, and the typical medications that are prescribed for them. We provide

more details in using package diagrams in Chapters 6 through 9.

Deployment Diagrams Deployment diagrams are used to represent the relationships between

the hardware components used in the physical infrastructure of an information system. For

example, when designing a distributed information system that will use a wide area network, a

deployment diagram can be used to show the communication relationships among the differ-

ent nodes in the network. They also can be used to represent the software components and how

they are deployed over the physical architecture or infrastructure of an information system. In

this case, a deployment diagram represents the environment for the execution of the software.

In Chapter 13, we describe designing the physical architecture of an information system and use

an extension to the deployment diagram to represent the design.

Component Diagrams Component diagrams allow the designer to model physical rela-

tionships among the physical modules of code. The diagram when combined with the

deployment diagram can be used to portray the physical distribution of the software mod-

ules over a network. For example, when designing client-server systems, it is useful to show

which classes or packages of classes will reside on the client nodes and which ones will

reside on the server. Component diagrams also can be useful in designing and developing

component–based systems. Since this book focuses on object-oriented systems analysis and

design, we will not discuss further the use of component diagrams.

Composite Structure Diagrams The UML 2.0 provides a new diagram for when the

internal structure of a class is complex: the composite structure diagram. Composite struc-

ture diagrams are used to model the relationships among parts of a class. For example,

when modeling a payroll register, an analyst may want a class that represents the entire

report as well as classes that represent the header, footer, and detail lines of the report. In a

standard class diagram, this would require the analyst to model the payroll register as four

separate classes with relationships connecting them together. Instead, the composite struc-

ture diagram would contain three subclasses: header, footer, and detail lines. Composite

structure diagrams also are useful when modeling the internal structure of a component

for a component-based system.

Often, the composite structure diagram is a redundant modeling mechanism because

its models also can be communicated using packages and package diagrams. Because of

this redundancy, and because we are not covering component-based systems development,

we will not discuss them further in this book.

32 Chapter 2 Introduction to Object-Oriented Systems Analysis and Design

Why are structure diagrams considered to be static?
Consider the implementation of a system for the Career
Services department of your university that would sup-
port the student interview and job placement
processes. Briefly describe to your primary contact in
the Career Services department the kinds of informa-

tion that the following structure diagrams would com-
municate: A) class, B) object, C) package, D) deploy-
ment, E) component, and F) composite structure. Be
sure to include examples from the Career Services
department so that your non-technical user will be able
to understand your explanations!

2-4 Structure DiagramsYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Behavior Diagrams

In this section of the chapter, we introduce the dynamic, behavior diagrams of the UML 2.0.

The behavior diagrams included in UML 2.0 are the activity, sequence, communication,

interaction overview, timing, behavior state machine, protocol state machine, and use case

diagrams. Behavior modeling diagrams provide the analyst with a way to depict the

dynamic relationships among the instances or objects that represent the business informa-

tion system. They also allow the modeling of the dynamic behavior of individual objects

throughout their lifetime. The behavior diagrams support the analyst in modeling the

functional requirements of an evolving information system.

Activity Diagrams Activity diagrams provide the analyst with the ability to model

processes in an information system. Activity diagrams can be used to model workflows,

individual use cases, or the decision logic contained within an individual method.3 They

also provide an approach to model parallel processes. Activity diagrams are further

described in Chapter 6.

Interaction Diagrams Interaction diagrams portray the interaction among the objects of

an object-oriented information system. UML 2.0 provides four different interaction dia-

grams: sequence, communication, interaction overview, and timing diagrams. Each of

these diagrams is introduced here.

1. Sequence diagrams allow an analyst to portray the dynamic interaction among

objects in an information system. Sequence diagrams are by far the most common kind

of interaction diagram used in object-oriented modeling. They emphasize the time-based

ordering of the activity that takes place with a set of collaborating objects. They are very

useful in helping an analyst understand real-time specifications and complex use cases

(see below). These diagrams can be used to describe both the logical and physical interac-

tions among the objects. As such, they are useful in both analysis and design activities.

We describe sequence diagrams in more detail in Chapter 8.

2. Communication diagrams provide an alternative view of the dynamic interaction

that takes place among the objects in an object-oriented information system. Where

sequence diagrams emphasize the time-based ordering of an activity, communication

diagrams focus on the set of messages that are passed within a set of collaborating

objects. In other words, communication diagrams depict how objects collaborate to sup-

port some aspect of the required functionality of the system. The sequence or time-based

ordering of the messages is shown through a sequence numbering scheme. From a practi-

cal point of view, communication diagrams and sequence diagrams provide the same

information. As such, we describe communication diagrams in more detail in Chapter 8

with the sequence diagrams.

3. Interaction overview diagrams help analysts understand complex use cases. They

provide an overview of a process’s flow of control. Interaction overview diagrams extend

activity diagrams through the addition of sequence fragments from sequence diagrams.

In effect, sequence fragments are treated as if they were activities in an activity diagram.

The Unified Modeling Language, Version 2.0 33

3 For those who are familiar with traditional structured analysis and design, activity diagrams combine the ideas
that underlie data flow diagrams and system flowcharts. Essentially, they are sophisticated and updated data flow
diagrams. Technically speaking, activity diagrams combine process modeling ideas from many different tech-
niques including event models, statecharts, and Petri Nets. However, UML 2.0’s activity diagram has more in
common with Petri Nets than the other process modeling techniques. For a good description of using Petri Nets
to model business workflows see Wil van der Aalst and Kees van Hee, Workflow Management: Models, Methods,
and Systems (Cambridge, MA: MIT Press, 2002).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

The primary advantage of using interaction overview diagrams is that you can easily

model alternative sequence flows. However, practically speaking, this can be accom-

plished using activity diagrams and use cases instead. Due to their limited use, interac-

tion overview diagrams are not described in more detail in this book.

4. Timing diagrams portray the interaction between objects along a time axis. The

primary purpose of the timing diagram is to show the change of state of an object in

response to events over time. They tend to be very useful when developing real-time or

embedded systems. However, like interaction overview diagrams, due to their limited use,

we do not describe timing diagrams in more detail in this book.

State Machines In UML 2.0, there are two different state machines: behavior and proto-

col.4 Behavior state machines are used to describe the changes that an object may go

through during its lifetime. Protocol state machines portray a specified sequence of events

to which an object may respond.

1. Behavior state machines provide a method for modeling the different states, or sets

of values, that instances of a class may go through during their lifetime. For example, a

patient can change over time from being a New Patient to a Current Patient to a Former

Patient. Each of these “types” of patients is really a different state of the same patient. The

different states are connected by events that cause the instance (patient) to transition from

one state to another. We describe behavior state machines in more detail in Chapter 8.

2. Protocol state machines support the analyst in designing dependencies among ele-

ments of the class’ interface. For example, typically speaking you must open a file or database

before querying or updating it. Unlike behavior state machines, protocol state machines may

be associated with component ports or class interfaces. Protocol state machines are very spe-

cialized. As such, we do not provide any more detail on them in this book.

Use Case Diagrams Use case diagrams allow the analyst to model the interaction of an infor-

mation system and its environment. The environment of an information system includes both

the end user and any external system that interacts with the information system. The primary

use of the use case diagram is to provide a means to document and understand the require-

ments of the evolving information system. Use cases and use case diagrams are some of the

most important tools that are used in object-oriented systems analysis and design. We describe

use cases and use case diagrams in more detail later in this chapter and in Chapter 6.

34 Chapter 2 Introduction to Object-Oriented Systems Analysis and Design

4 UML 2.0 state machines are based on work by David Harel. See David Harel, On Visual Formalisms, CACM, 31
(5) (May 1988), 514–530 and David Harel, A Visual Formalism for Complex Systems, Science of Computer Pro-
gramming, 8, (1987), 231–274.

Why are behavior diagrams considered to be static? Con-
sider the implementation of a system for the Career Services
department of your university that would support the student
interview and job placement processes. Briefly describe to
your primary contact in the Career Services department the
kinds of information that the following structure diagrams

would communicate: A) activity, B) sequence, C) communi-
cation, D) interaction overview, E) timing, F) behavior state
machines, G) protocol state machines, and H) use case. Be
sure to include examples from the Career Services depart-
ment so that you non-technical user will be able to under-
stand your explanations!

2-5 Behavior DiagramsYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Extension Mechanisms

As large and as complete as the UML is, it is impossible for the creators of the UML to

anticipate all potential uses. Fortunately, the creators of the UML also have provided a set

of extension mechanisms. These include stereotypes, tagged values, constraints, and pro-

files. Each of these is described next.

Stereotypes A stereotype provides the analyst with the ability to incrementally extend the

UML using the model elements already in the UML. A stereotype is shown as a text item

enclosed within guillemets (<< >>) or angle brackets (<< >>). Stereotypes can be associated

with any model element (e.g., class, object, use case, relationships) within any UML dia-

gram. We will use stereotypes in Chapter 12 in conjunction with a special form of the

behavior state machine: the window navigation diagram.

Tagged Values In the UML, all model elements have properties that describe them. For

example, all elements have a name. There are times that it is useful to add properties to the

base elements. Tagged values are used to add new properties to a base element. For exam-

ple, if a project team was interested in tracing the authorship of each class in a class dia-

gram, the project team could extend the class element to include an author property. It is

also possible to associate tagged values with specific stereotypes. In this manner, when the

analyst applies a stereotype to a model element, all of the additional tagged values associ-

ated with the stereotype also are applied. We do not describe tagged values in any more

detail in this book.

Constraints Constraints allow the analyst to model problem domain specific semantics

by placing additional restrictions on the use of model elements. Constraints are typically

modeled using the Object Constraint Language (OCL).5 We return to a discussion of con-

straints and object-oriented systems analysis and design in Chapter 10.

Profiles Profiles allow the developer to group a set of model elements that have been

extended using stereotypes, tagged values, and/or constraints into a package. Profiles have

been used to create modeling extensions that can address specific types of implementation

platforms, such as .NET, or specific modeling domains, such as embedded systems. Profiles

are simply a convenience. In this text, we do not further describe the use of profiles.

OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN

Object-oriented approaches to developing information systems, technically speaking, can

use any of the traditional methodologies presented in Chapter 1 (waterfall development,

parallel development, phased development, prototyping, and throwaway prototyping).

However, the object-oriented approaches are most associated with a phased development

RAD methodology. The primary difference between a traditional approach like structured

design and an object-oriented approach is how a problem is decomposed. In traditional

approaches, the problem decomposition process is either process-centric or data-centric.

However, when modeling real-world systems, processes and data are so closely related that

it is difficult to pick one or the other as the primary focus. Based on this lack of congruence

Object-Oriented Systems Analysis and Design 35

5 For more specifics on the OCL, see Jos Warmer and Anneke Kleppe, The Object Constraint Language: Precise
Modeling with UML (Reading, MA: Addison-Wesley, 1999) and the UML 2.0 OCL Specification, ptc/03-10-14
(www.uml.org <http://www.uml.org/>).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

with the real-world, new object-oriented methodologies have emerged that use the RAD-

based sequence of SDLC phases but attempt to balance the emphasis between process and

data by focusing the decomposition of problems on objects that contain both data and

processes. Both approaches are valid approaches to developing information systems. In this

book, we focus only on object-oriented approaches.6

According to the creators of UML, Grady Booch, Ivar Jacobson, and James Rum-

baugh,7 any modern object-oriented approach to developing information systems must be

(1) use-case driven, (2) architecture-centric, and (3) iterative and incremental.

Use-Case Driven

Use-case driven means that use cases are the primary modeling tool to define the behavior

of the system. A use case describes how the user interacts with the system to perform some

activity, such as placing an order, making a reservation, or searching for information. The

use cases are used to identify and to communicate the requirements for the system to the

programmers who must write the system.

Use cases are inherently simple because they focus on only one activity at a time. In

contrast, the process model diagrams used by traditional structured and RAD methodolo-

gies are far more complex because they require the system analyst and user to develop

models of the entire system. With traditional methodologies, each business activity is

decomposed into a set of subprocesses, which are, in turn, decomposed into further sub-

processes, and so on. This goes on until no further process decomposition makes sense, and

it often requires dozens of pages of interlocking diagrams. In contrast, use cases focus on

only one activity at a time, so developing models is much simpler.8 We describe use cases

and use case diagrams in Chapter 6.

Architecture Centric

Any modern approach to systems analysis and design should be architecture centric.

Architecture centric means that the underlying software architecture of the evolving sys-

tem specification drives the specification, construction, and documentation of the sys-

tem. Modern object-oriented systems analysis and design approaches should support at

least three separate but interrelated architectural views of a system: functional, static,

and dynamic.

The functional view describes the external behavior of the system from the perspective

of the user. Use cases and use case diagrams are the primary approach used to depict the

functional view. Also, in some cases, activity diagrams are used to supplement use cases. The

static view describes the structure of the system in terms of attributes, methods, classes, and

relationships. The structure diagrams portray the static view of an evolving object-oriented

information system. The dynamic view describes the internal behavior of the system in terms

of messages passed among objects and state changes within an object. The dynamic view is

represented in UML by behavior diagrams.

36 Chapter 2 Introduction to Object-Oriented Systems Analysis and Design

6 See Alan Dennis and Barbara Haley Wixom, Systems Analysis and Design: An Applied Approach, 2nd Ed. (New
York: Wiley, 2003) for a description of the traditional approaches.
7 Grady Booch, Ivar Jacobson, and James Rumbaugh, The Unified Modeling Language User Guide (Reading, MA:
Addison-Wesley, 1999).
8 For those of you that have experience with traditional structured analysis and design, this will be one of the
most unusual aspects of object-oriented analysis and design using UML. Structured approaches emphasize the
decomposition of the complete business process into subprocesses and sub-subprocesses. Object-oriented
approaches stress focusing on just one use case activity at a time and distributing that single use case over a set
of communicating and collaborating objects. Therefore, use case modeling may seem initially unsettling or
counter-intuitive, but in the long run this single focus does make analysis and design simpler.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Iterative and Incremental

Modern object-oriented systems analysis and design approaches emphasize iterative

and incremental development that undergoes continuous testing and refinement

throughout the life of the project. Each iteration of the system brings it closer and closer

to real user needs.

The Unified Process

The Unified Process is a specific methodology that maps out when and how to use the

various UML techniques for object-oriented analysis and design. The primary con-

tributors were Grady Booch, Ivar Jacobsen, and James Rumbaugh of Rational.

Whereas the UML provides structural support for developing the structure and

behavior of an information system, the Unified Process provides the behavioral sup-

port. The Unified Process, of course, is use-case driven, architecture centric, and iter-

ative and incremental.

The Unified Process is a two-dimensional systems development process described by a

set of phases and workflows. The phases are inception, elaboration, construction, and tran-

sition. The workflows include business modeling, requirements, analysis, design, imple-

mentation, test, deployment, project management, configuration and change management,

and environment. In the remainder of this section, we describe the phases and workflows

of the Unified Process.9 Figure 2-7 depicts the Unified Process.

Phases The phases of the Unified Process support an analyst in developing information

systems in an iterative and incremental manner. The phases describe how an information

system evolves through time. Depending on which development phase the evolving system

is currently in, the level of activity will vary over the workflows. The curves, in Figure 2-7,

associated with each workflow approximates the amount of activity that takes place during

the specific phase. For example, the inception phase primarily involves the business mod-

eling and requirements workflows, while practically ignoring the test and deployment

workflows. Each phase contains a set of iterations, and each iteration uses the various

workflows to create an incremental version of the evolving information system. As the sys-

tem evolves through the phases, it improves and becomes more complete. Each phase has

objectives, a focus of activity over the workflows, and incremental deliverables. Each of the

phases is described as follows.

Inception In many ways, the inception phase is very similar to the planning phase of a

traditional SDLC approach. In this phase, a business case is made for the proposed system.

This includes feasibility analysis that should answer questions such as the following:

■ Do we have the technical capability to build it? (technical feasibility)

■ If we build it, will it provide business value? (economic feasibility)

■ If we build it, will it be used by the organization? (organizational feasibility)

Object-Oriented Systems Analysis and Design 37

9 The material in this section is based on Khawar Zaman Ahmed and Cary E. Umrysh, Developing Enterprise Java
Applications with J2EE and UML (Boston, MA: Addison-Wesley, 2002); Jim Arlow and Ila Neustadt, UML and
The Unified Process: Practical Object-Oriented Analysis & Design (Boston, MA: Addison-Wesley, 2002); Peter Eeles,
Kelli Houston, Wojtek Kozacynski, Building J2EE Applications with the Rational Unified Process, (Boston, MA:
Addison-Wesley, 2003); Ivar Jacobson, Grady Booch, and James Rumbaugh, The Unified Software Development
Process (Reading, MA: Addison-Wesley, 1999); Phillipe Krutchten, The Rational Unified Process: An Introduction,
2nd Ed. (Boston, MA: Addison-Wesley, 2000).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

To answer these questions, the development team performs work related primarily to

the business modeling, requirements, and analysis workflows. In some cases, depending

on the technical difficulties that could be encountered during the development of the sys-

tem, a throw-away prototype is developed. This implies that the design, implementation,

and test workflows also could be involved. The project management and environment

supporting workflows are very relevant to this phase. The primary deliverables from the

inception phase are: (1) a vision document that sets the scope of the project, identifies the

primary requirements and constraints, sets up an initial project plan, and describes the

feasibility of and risks associated with the project, and (2) the adoption of the necessary

environment to develop the system.

Elaboration When one typically thinks about object-oriented systems analysis and

design, the activities related to the elaboration phase of the Unified Process are the most

relevant. The analysis and design workflows are the primary focus during this phase. The

elaboration phase continues with developing the vision document, including finalizing

the business case, revising the risk assessment, and completing a project plan in sufficient

detail to allow the stakeholders to be able to agree with constructing the actual final sys-

tem. It deals with gathering the requirements, building the UML structural and behavioral

38 Chapter 2 Introduction to Object-Oriented Systems Analysis and Design

Phases

Business Modeling

Inception

Engineering Workflows

Elaboration Construction Transition

Phases Inception

Supporting Workflows

Elaboration Construction Transition

Requirements

Analysis

Design

Implementation

Configuration and
Change Management

Iter
1

… Iter
i

Iter
i + 1

… Iter
j

Iter
j + 1

… Iter
k

Iter
k + 1

… Iter
m

Project Management

Environment

Test

Deployment

FIGURE 2-7 The Unified Process

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

models of the problem domain, and detailing the how the problem domain models fit into

the evolving system architecture. Developers are involved with all but the deployment

engineering workflow in this phase. As the developers iterate over the workflows, the

importance of addressing configuration and change management becomes apparent.

Also, the development tools acquired during the inception phase become critical to the

success of the project during this phase.10 The primary deliverables of this phase include

(1) the UML structure and behavior diagrams and (2) an executable of a baseline version

of the evolving information system. The baseline version serves as the foundation for all

later iterations. By providing a solid foundation at this point in time, the developers can

begin to grow the system toward its completion in the construction and transition phases.

Construction The construction phase, as expected by its name, is heavily focused on

programming the evolving information system. As such, it is primarily concerned with the

implementation workflow. However, the requirements, analysis, and design workflows also

are involved with this phase. It is during this phase that missing requirements are uncov-

ered, and the analysis and design models are finally completed. Typically, there are itera-

tions of the workflows during this phase, and during the last iteration, the deployment

workflow kicks into high gear. The configuration and change management workflow, with

its version control activities, becomes extremely important during the construction phase.

At times, an iteration may have to be rolled back. Without good version controls, rolling

back to a previous version (incremental implementation) of the system is nearly impossi-

ble. The primary deliverable of this phase is an implementation of the system that can be

released for beta and acceptance testing.

Transition Like the construction phase, the transition phase addresses aspects typically

associated with the implementation phase of a traditional SDLC approach. Its primary focus

is on the testing and deployment workflows. Essentially, the business modeling, require-

ments, and analysis workflows should have been completed in earlier iterations of the evolv-

ing information system. Depending on the results from the testing workflow, it is possible

that some redesign and programming activities on the design and implementation work-

flows could be necessary, but they should be minimal at this point in time. From a manage-

rial perspective, the project management, configuration and change management, and

environment are involved. Some of the activities that take place are beta and acceptance test-

ing, fine tuning the design and implementation, user training, and the actual rolling out of

the final product onto a production platform. Obviously, the primary deliverable is the

actual executable information system. The other deliverables include user manuals, a plan to

support the users, and a plan for upgrading the information system in the future.

Workflows The workflows describe the tasks or activities that a developer performs to evolve

an information system over time. The workflows of the Unified Process are grouped into two

broad categories: engineering and supporting. We describe each of the workflows as follows.

Engineering Workflows The engineering workflows include business modeling,

requirements, analysis, design, implementation, test, and deployment workflows. The engi-

neering workflows deal with the activities that produce the technical product (i.e., the

information system). Next, we describe each engineering workflow.

Object-Oriented Systems Analysis and Design 39

10 With UML being comprised of fourteen different, related diagramming techniques, keeping the diagrams
coordinated and the different versions of the evolving system synchronized is typically beyond the capabilities of
a mere mortal systems developer. These tools typically include project management and CASE (Computer Aided
Software Engineering) tools. We describe the use of these tools in Chapter 3.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Business Modeling. The Business modeling workflow uncovers problems and identifies

potential projects within a user organization. This workflow aids management in under-

standing the scope of the projects that can improve the efficiency and effectiveness of a user

organization. The primary purpose of business modeling is to ensure that both developer

and user organizations understand where and how the to-be-developed information sys-

tem fits into the business processes of the user organization. This workflow primarily is

executed during the inception phase to ensure that we develop information systems that

make business sense. The activities that take place on this workflow are most closely asso-

ciated with the planning phase of the traditional SDLC; however, requirements gathering

and use case and business process modeling techniques also are used to understand the

business situation.

Requirements. In the Unified Process, the requirements workflow includes eliciting both

functional and nonfunctional requirements. Typically, requirements are gathered from

project stakeholders, such as end users, managers within the end user organization, and

even customers. There are many different ways in which to capture requirements, includ-

ing interviews, observation techniques, joint application development, document analysis,

and questionnaires (see Chapter 5). As you should expect, the requirements workflow is

utilized the most during the inception and elaboration phases. The identified requirements

are very useful in developing the vision document and the use cases used throughout the

development process. It should be stressed that additional requirements tend to be discov-

ered throughout the development process. In fact, only the transition phase tends to have

few if any additional requirements identified.

Analysis. The analysis workflow predominantly addresses creating an analysis model of

the problem domain. In the Unified Process, the analyst begins designing the architecture

associated with the problem domain, and using the UML, the analyst creates structural and

behavioral diagrams that depict a description of the problem domain classes and their

interactions. The primary purpose of the analysis workflow is to ensure that both the devel-

oper and user organizations understand the underlying problem and its domain without

overanalyzing. If they are not careful, analysts can create analysis paralysis, which occurs

when the project becomes so bogged down with analysis that the system is never actually

designed or implemented. A second purpose of the analysis workflow is to identify useful

reusable classes for class libraries. By reusing predefined classes, the analyst can avoid “rein-

venting the wheel” when creating the structural and behavioral diagrams. The analysis

workflow is predominantly associated with the elaboration phase, but like the require-

ments workflow, it is possible that additional analysis will be required throughout the

development process.

■ Design. The design workflow transitions the analysis model into a form that can be

used to implement the system: the design model. Where the analysis workflow concen-

trated on understanding the problem domain, the design workflow, focuses on develop-

ing a solution that will execute in a specific environment. Basically, the design workflow

simply enhances the evolving information system description by adding classes that

address the environment of the information system to the evolving analysis model. As

such, the design workflow addresses activities, such as user interface design, database

design, physical architecture design, detailed problem domain class design, and the opti-

mization of the evolving information system. The design workflow primarily is associated

with the elaboration and construction phases of the Unified Process.

■ Implementation. The primary purpose of the implementation workflow is to create

an executable solution based on the design model (i.e., programming). This includes not

only writing new classes, but also incorporating reusable classes from executable class

libraries into the evolving solution. As with any programming activity, testing of the new

40 Chapter 2 Introduction to Object-Oriented Systems Analysis and Design

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

classes and their interactions with the incorporated reusable classes must occur. Finally,

in the case of multiple groups performing the implementation of the information system,

the implementers also must integrate the separate, individually tested, modules to create

an executable version of the system. The implementation workflow primarily is associ-

ated with the elaboration and construction phases.

■ Test. The primary purpose of the test workflow is to increase the quality of the evolv-

ing system. As such, testing goes beyond the simple unit testing associated with the imple-

mentation workflow. In this case, testing also includes testing the integration of all modules

used to implement the system, user acceptance testing, and the actual alpha testing of the

software. Practically speaking, testing should go on throughout the development of the sys-

tem; testing of the analysis and design models are involved during the elaboration and con-

struction phases, while implementation testing is performed primarily during the

construction and, to some degree, transition phases. Basically, at the end of each iteration

during the development of the information system, some type of test should be performed.

■ Deployment. The deployment workflow is most associated with the transition phase

of the Unified Process. The deployment workflow includes activities, such as software

packaging, distribution, installation, and beta testing. When actually deploying the new

information system into a user organization, the developers may have to convert the cur-

rent data, interface the new software with the existing software, and provide end user

training on the use of the new system.

Supporting Workflows The supporting workflows include the project management,

configuration and change management, and the environment workflows. The supporting

workflows focus on the managerial aspects of information system development.

■ Project management. While the other workflows associated with the Unified

Process technically are active during all four phases, the project management workflow is

the only truly cross-phase workflow. The development process supports incremental and

iterative development, so information systems tend to grow or evolve over time. At the

end of each iteration, a new incremental version of the system is ready for delivery. The

project management workflow is quite important due to the complexity of the two-

dimensional development model of the Unified Process (workflows and phases). This

workflow’s activities include risk identification and management, scope management,

estimating the time to complete each iteration and the entire project, estimating the cost

of the individual iteration and the whole project, and tracking the progress being made

toward the final version of the evolving information system.

■ Configuration and change management. The primary purpose of the configuration

and change management workflow is to keep track of the state of the evolving system. In a

nutshell, the evolving information system comprises a set of artifacts that includes, for

example, diagrams, source code, and executables. During the development process, these

artifacts are modified. The amount of work, and hence dollars, that goes into the develop-

ment of the artifacts is substantial. As such, the artifacts themselves should be handled as

any expensive asset would be handled—access controls must be put into place to safeguard

the artifacts from being stolen or destroyed. Furthermore, since the artifacts are modified

on a regular, if not continuous, basis, good version control mechanisms should be estab-

lished. Finally, a good deal of project management information needs to be captured (e.g.,

author, time, and location of each modification). The configuration and change manage-

ment workflow is associated mostly with the construction and transition phases.

■ Environment. During the development of an information system, the develop-

ment team needs to use different tools and processes. The environment workflow

Object-Oriented Systems Analysis and Design 41

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

addresses these needs. For example, a computer aided software engineering tool that

supports the development of an object-oriented information system via the UML could

be required. Other tools necessary would include programming environments, project

management tools, and configuration management tools. The environment workflow

includes acquiring and installing these tools. Even though this workflow can be active

during all of the phases of the Unified Process, it should primarily be involved with the

inception phase.

A MINIMALIST APPROACH TO OBJECT-ORIENTED SYSTEMS
ANALYSIS AND DESIGN WITH UML 2.0

The UML is an object-oriented modeling language used to describe information sys-

tems. It provides a common vocabulary of object-oriented terms and a set of diagram-

ming techniques that are rich enough to model any systems development project from

analysis through implementation. Although the UML defines a large set of diagram-

ming techniques, this book focuses on a smaller set of the most commonly used tech-

niques. It should be stressed that UML is nothing more than a notation. Although

unlikely, it is possible to develop an information system using a traditional approach

with UML. The UML does not dictate any formal approach to developing information

systems, but its iterative nature is best-suited to RAD-based approaches such as phased

development (see Figure 1-4). A popular RAD-based approach that uses the UML is the

Unified Process.

Benefits of Object-Oriented Systems Analysis and Design

So far we have described several major concepts that permeate the object-oriented

approach, in general, and the UML 2.0 and Unified Process, in particular, but you may be

wondering how these concepts affect the performance of a project team. The answer is sim-

ple. Concepts in the object-oriented approach enable analysts to break a complex system

into smaller, more manageable modules, work on the modules individually, and easily piece

the modules back together to form an information system. This modularity makes system

development easier to grasp, easier to share among members of a project team, and easier

to communicate to users who are needed to provide requirements and confirm how well

the system meets the requirements throughout the SDLC.

By modularizing system development, the project team actually is creating reusable pieces

that can be plugged into other systems efforts, or used as starting points for other projects.

Ultimately, this can save time because new projects don’t have to start completely from scratch.

Finally, many people argue that “object-think” is a much more realistic way to think

about the real world. Users typically do not think in terms of data or process; instead, they

see their business as a collection of logical units that contain both—so communicating in

terms of objects improves the interaction between the user and the analyst or developer.

Figure 2-8 summarizes the major concepts of the object-oriented approach and how each

concept contributes to the benefits.

Extensions to the Unified Process

As large and as complex as the Unified Process is, many authors have pointed out a set

of critical weaknesses. First, the Unified Process does not address staffing, budgeting, or

contract management issues. These activities were explicitly left out of the Unified

Process. Second, the Unified Process does not address issues relating to maintenance,

42 Chapter 2 Introduction to Object-Oriented Systems Analysis and Design

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

operations, or support of the product once it has been delivered. As such, it is not a

complete software process; it is only a development process. Third, the Unified Process

does not address cross- or inter- project issues. Considering the importance of reuse in

object-oriented systems development and the fact that in many organizations employ-

ees work on many different projects at the same time, leaving out inter-project issues is

a major omission.

To address these omissions, Ambler and Constantine suggest the addition of a Pro-

duction phase and two workflows: the Operations and Support workflow and the Infra-

structure Management workflow (see Figure 2-9).11 In addition to these new workflows,

the test, deployment and environment workflows are modified, and the project manage-

ment and configuration and change management workflows are extended into the pro-

duction phase. These extensions are based on alternative object-oriented software

A Minimalist Approach to Object-Oriented Systems Analysis and Design with UML 2.0 43

11 S.W. Ambler and L.L. Constantine, The Unified Process Inception Phase: Best Practices in Implementing the U
(CMP Books, 2000); S.W. Ambler and L.L. Constantine, The Unified Process Elaboration Phase: Best Practices in
Implementing the UP (CMP Books, 2000); S.W. Ambler and L.L. Constantine, The Unified Process Construction
Phase: Best Practices in Implementing the UP (CMP Books, 2000); S.W. Ambler and L.L. Constantine, The Unified
Process Transition and Production Phases: Best Practices in Implementing the UP (CMP Books, 2002).

Concept Supports Leads to

Classes, objects, methods,
and messages

Encapsulation and informa-
tion hiding

Inheritance

Polymorphism and Dynamic
Binding

Use-case driven and use
cases

Architecture centric and
functional, static, and
dynamic views

Iterative and incremental
development

■ A more realistic way for people to
think about their business

■ Highly cohesive units that contain
both data and processes

■ Loosely coupled units

■ Allows us to use classes as stan-
dard templates from which other
classes can be built

■ Minimal messaging that is inter-
preted by objects themselves

■ Allows users and analysts to
focus on how a user will interact
with the system to perform a sin-
gle activity

■ Viewing the evolving system
from multiple points of view

■ Continuous testing and refine-
ment of the evolving system

■ Better communication between user and analyst or
developer

■ Reusable objects

■ Benefits from having a highly cohesive system
(see cohesion in Chapter 13)

■ Reusable objects

■ Fewer ripple effects from changes within an
object or in the system itself

■ Benefits from having a loosely coupled system
design (see coupling in Chapter 13)

■ Less redundancy

■ Faster creation of new classes

■ Standards and consistency within and across
development efforts

■ Ease in supporting exceptions

■ Simpler programming of events

■ Ease in replacing or changing objects in a system

■ Fewer ripple effects from changes within an
object or in the system itself

■ Better understanding and gathering of user needs

■ Better communication between user and analyst

■ Better understanding and modeling of user needs

■ More complete depiction of information system

■ Meeting real needs of users

■ Higher quality systems

FIGURE 2-8 Benefits of the Object Approach

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

processes: the OPEN process and the Object-Oriented Software Process.12 The new phase,

new workflows, and the modifications and extensions to the existing workflows are

described next.

Production Phase The production phase is concerned primarily with issues related

to the software product after it has been successfully deployed. As you should expect,

the phase focuses on issues related to updating, maintaining, and operating the soft-

ware. Unlike the previous phases, there are no iterations or incremental deliverables. If

44 Chapter 2 Introduction to Object-Oriented Systems Analysis and Design

12 S.W. Ambler, Process Patterns—Building Large-Scale Systems Using Object Technology (Cambridge, UK: SIGS
Books/Cambridge University Press, 1998); S.W. Ambler, More Process Patterns—Delivering Large-Scale Systems
Using Object Technology (Cambridge, UK: SIGS Books/Cambridge University Press, 1999); I. Graham, B. Hen-
derson-Sellers, and H. Younessi, The OPEN Process Specification (Harlow, UK: Addison-Wesley, 1997); B. Hen-
derson-Sellers and B. Unhelkar, OPEN modeling with UML (Harlow, UK: Addison-Wesley, 2000).

Phases

Business Modeling

Inception

Engineering Workflows

Elaboration Construction Transition

Phases Inception

Supporting Workflows

Elaboration Construction Transition

Production

Production

Requirements

Analysis

Design

Implementation

Configuration and
Change Management

Infrastructure
Management

Project Management

Environment

Operations and Support

Iter
1

… Iter
i

Iter
i + 1

… Iter
j

Iter
j + 1

… Iter
k

Iter
k + 1

… Iter
m

Test

Deployment

FIGURE 2-9 The Enhanced Unified Process

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

a new release of the software is to be developed, then the developers must begin a new

run through the first four phases again. Based on the activities that take place during

this phase, no engineering workflows are relevant. The supporting workflows that are

active during this phase include the configuration and change management workflow,

the project management workflow, the new operations and support workflow, and the

infrastructure management workflow.

Operations and Support Workflow The operations and support workflow, as you might

guess, addresses issues related to supporting the current version of the software and operat-

ing the software on a daily basis. Activities include creating plans for the operation and sup-

port of the software product once it has been deployed, creating training and user

documentation, putting into place necessary backup procedures, monitoring and optimiz-

ing the performance of the software, and performing corrective maintenance on the soft-

ware. This workflow becomes active during the construction phase and increases in level of

activity throughout the transition and finally, the production phase. The workflow finally

drops off when the current version of the software is replaced by a new version. Many devel-

opers are under the false impression that once the software has been delivered to the cus-

tomer, their work is finished. In most cases, the work of supporting the software product is

much more costly and time consuming than the original development. As such, as a devel-

oper, your work may have just begun.

Infrastructure Management Workflow The infrastructure management workflow’s

primary purpose is to support the development of the infrastructure necessary to

develop object-oriented systems. Activities like development and modification of

libraries, standards, and enterprise models are very important. When the development

and maintenance of a problem domain architecture model goes beyond the scope of a

single project and reuse is going to occur, the infrastructure management workflow is

essential. Another very important set of cross-project activities is the improvement of

the software development process. Since the activities on this workflow tend to affect

many projects and the Unified Process only focuses on a specific project, the Unified

Process tends to ignore these activities (i.e., they are simply beyond the scope and pur-

pose of the Unified Process).

Existing Workflow Modifications and Extensions In addition to the workflows that

were added to address deficiencies contained in the Unified Process, existing workflows had

to be modified and/or extended into the production phase. These workflows include the

test, deployment, environment, project management, and configuration and change man-

agement workflows. Each of the enhancements is described next.

Test For information systems of high quality to be developed, testing should be done on

every deliverable, including those created during the inception phase. Otherwise, less than

quality systems will be delivered to the customer.

Deployment In most corporations today, legacy systems exist, and these systems have

databases associated with them that must be converted to interact with the new systems.

Due to the complexity of deploying new systems, the conversion requires significant

planning. As such, the activities on the deployment workflow need to begin in the incep-

tion phase instead of waiting until the end of the construction phase as suggested by the

Unified Process.

A Minimalist Approach to Object-Oriented Systems Analysis and Design with UML 2.0 45

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Environment The environment workflow needed to be modified to include activities

related to setting up the operations and production environment. The actual work per-

formed is similar to the work related to setting up the development environment that was

performed during the inception phase. In this case, the additional work is performed dur-

ing the transition phase.

Project Management Even though this workflow does not include staffing the project,

managing the contracts among the customers and vendors, and managing the project’s

budget, these activities are crucial to the success of any software development project. As

such, we suggest extending project management to include these activities. Furthermore,

this workflow should additionally occur in the production phase to address issues such as

training, staff management, and client relationship management.

Configuration and Change Management The configuration and change management

workflow is extended into the new production phase. Activities performed during the pro-

duction phase include identifying potential improvements to the operational system and

assessing the potential impact of the proposed changes. Once these changes have been

identified and their impact understood, the developers can schedule the changes to be

made and deployed with future releases.

The Minimalist Object-Oriented Systems Analysis and Design Approach

As we stated previously, object-oriented systems analysis and design (OOSAD)

approaches are based on a phased-development RAD approach. However, because of the

iteration across the functional, static, and dynamic views of the evolving information

system, an actual object-oriented development process tends to be more complex than

typical phased-development RAD approaches. For example, the two-dimensional model

of the Unified Process and the identified extensions is much more complex than a typi-

cal phased-development RAD approach (compare Figures 1-4 and 2-9). From a learning

perspective, the complexity of the enhanced Unified Process makes putting it into prac-

tice in the classroom practically impossible. As such, we have followed a minimalist

style13 of presenting a generic approach to OOSAD. The minimalist OOSAD

(MOOSAD) approach that we present in this section is based on the Unified Process as

extended by the processes associated with the OPEN Process and the Object-Oriented

Software Process approaches to object-oriented systems development. We also have

included concepts from XP14 to help in controlling the complexity of the development

process. Finally, due to the size and complexity of the UML, we only use a minimal set of

the UML with our minimalist approach.15

Figure 2-10 portrays our modified phased-development RAD-based approach. The

solid lines in Figure 2-10 represent information flows from one step in our approach to

46 Chapter 2 Introduction to Object-Oriented Systems Analysis and Design

13 John M. Carrol, The Nurnberg Funnel: Designing Minimalist Instruction for Practical Computer Skill (Cam-
bridge, MA: MIT Press, 1990).
14 For more information, see K. Beck, eXtreme Programming Explained: Embrace Change (Reading, MA: Addison-Wes-
ley, 2000), M. Lippert, S. Roock, and H. Wolf, eXtreme Programming in Action: Practical Experiences from Real World
Projects (New York: Wiley, 2002), or online at www.extremeprogramming.com. Also, see discussion in Chapter 1.
15 In many places, the UML is not sufficient for our purposes. For example, the UML does not have any useful
diagrams to design user interfaces. In cases where the UML is not sufficient, we will use extensions. However, our
overall intention is to minimize both the size and complexity of the UML for learning purposes. For more infor-
mation on the UML see www.uml.org.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

another step. The dashed lines represent feedback from a later step to an earlier one. For

example, plans flow from the planning step into the requirements determination and use

case development step, and feedback from the requirements determination and use case

development step flows back to the planning step.

A Minimalist Approach to Object-Oriented Systems Analysis and Design with UML 2.0 47

Planning

Requirements
Determination
and Use Case
Development

Analysis

Implementation

Design

Iteration 2
System

Library Patterns

Analysis

Implementation

Design

Iteration 1
System

Analysis

Implementation

Design

Iteration n
System

Library Patterns

Installation

Library Patterns

FIGURE 2-10 The Minimalist Object-Oriented Systems Analysis and Design (MOOSAD) Approach

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

The first step of the approach is planning. If you will recall, planning deals with

understanding why an information system should be built, and determining how the

project team will go about building it. The second step of the approach is requirements

determination and use case development. As mentioned above, use cases identify and com-

municate the high-level requirements for the system (i.e., they provide a functional or

external behavioral view of the system). Use cases and the use case model drive the

remaining steps in our approach (i.e., all of the information required from the remain-

ing steps in our approach is derived from the use cases and the use case model).

Next, the developers of the system perform a build. Each build makes incremental

progress toward delivering the entire system. The first build is based on the use cases with

the highest priority. Builds are performed until the system is complete. Each build com-

prises an analysis, design, and implementation step. Each build provides feedback to the

requirements determination and use case development step and delivers a functional sys-

tem to the next build and a set of patterns that can be included in the library.16 Later builds

incorporate additional lower-priority and newly identified use cases. Again, each build is

based on the remaining use cases with the highest priority. For project management pur-

poses, a build utilizes the idea of timeboxing.17 Typically, in object-oriented systems devel-

opment, the time frame for each timebox varies from one to two weeks to one to two

months, depending on the size and complexity of the project.

Figure 2-11 maps the enhanced Unified Process’s phases and workflows into our

minimalist approach and the relevant chapters in which the material is covered. We use

our minimalist OOSAD approach in this textbook only to simplify the learning experi-

ence. You should realize that a two-dimensional model of the development process is

more realistic in practice.

As Figure 2-11 shows, in this text we are focused primarily in the area associated with

the elaboration phase and the requirements, analysis, design, and project management

workflows of the extended Unified Process. In many object-oriented systems development

environments today, code generation is supported. Thus, from a business perspective, we

believe the activities associated with these workflows are the most important. The remain-

der of the book is organized around the steps in our MOOSAD approach (see Figure 2-12).

SUMMARY

Today, the most exciting change to systems analysis and design is the move to object-

oriented techniques, which view a system as a collection of self-contained objects that

have both data and processes. However, the ideas underlying object-oriented tech-

niques are simply ideas that have either evolved from traditional approaches to systems

development or they are old ideas that have now become practical due to the cost-per-

formance ratios of modern computer hardware in comparison to the ratios of the past.

Today, the cost of developing modern software is composed primarily of the cost asso-

ciated with the developers themselves and not the computers. As such, object-oriented

approaches to developing information systems hold out much promise in controlling

these costs.

48 Chapter 2 Introduction to Object-Oriented Systems Analysis and Design

16 A pattern is a useful group of collaborating classes that provide a solution to a commonly occurring problem.
We describe the use of patterns in more detail in Chapter 7.
17 Timeboxing sets a fixed deadline for a project and delivers the system by that deadline no matter what, even if
the functionality needs to be reduced. Timeboxing ensures that project teams don’t get hung up on the final “fin-
ishing touches” that can drag out indefinitely. Timeboxing is covered in more detail in Chapter 4.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Basic Characteristics of Object-Oriented Systems

An object is a person, place, or thing about which we want to capture information. Each

object has attributes that describe information about it and behaviors, which are described

by methods that specify what an object can do. Objects are grouped into classes, which are

collections of objects that share common attributes and methods. The classes can be

arranged in a hierarchical fashion in which low-level classes, or subclasses, inherit attrib-

utes and methods from superclasses above them to reduce the redundancy in development.

Objects communicate with each other by sending messages, which trigger methods. Poly-

morphism allows a message to be interpreted differently by different kinds of objects. This

form of communication allows us to treat objects like black boxes and ignore the inner

workings of the objects. The idea of concealing an object’s inner processes and data from

the outside is known as encapsulation. The benefit of these object concepts is a modular,

reusable development process.

Summary 49

Enhanced UP Phases MOOSAD Steps Chapters

Inception Planning
Requirements Determination & Use Case Development 3–6

Elaboration Requirements Determination & Use Case Development 5–13
Analysis
Design

Construction Implementation 11, 14

Transition Implementation 14, 15
Installation

Production Installation 15

Enhanced UP
Engineering Workflows MOOSAD Steps Chapters

Business Modeling Planning 3, 5–7

Requirements Requirements Determination & Use Case Development 5–7, 12

Analysis Analysis 6–8

Design Design 9–13

Implementation Implementation 11, 14

Test Implementation 14

Deployment Installation 15

Enhanced UP
Supporting Workflows MOOSAD Steps Chapters

Project Management Across Steps 3, 4, 6, 15

Configuration and Change Management Across Steps 3, 15

Environment Across Steps 4

Operations and Support Installation 15

Infrastructure Management Across Steps 4

FIGURE 2-11
The Enhanced Unified

Process and the

MOOSAD Approach

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Unified Modeling Language

The Unified Modeling Language, or UML, is a standard set of diagramming tech-

niques that provide a graphical representation that is rich enough to model any sys-

tems development project from analysis through implementation. Today most

object-oriented systems analysis and design approaches use the UML to depict an

evolving system. The UML uses a set of different diagrams to portray the various

views of the evolving system. The diagrams are grouped into two broad classifica-

tions: structure and behavior. The structure diagrams include class, object, package,

deployment, component, and composite structure diagrams. The behavior diagrams

50 Chapter 2 Introduction to Object-Oriented Systems Analysis and Design

Chapter Step Sample Techniques Deliverable

3 Identifying Business Value System Request System Request

Analyze Feasibility Technical Feasibility, Economic Feasibility, Feasibility Study

Organizational Feasibility

4 Develop Workplan Task Identification Workplan

Time Estimation

Staff the Project Creating a Staffing Plan Staffing Plan

Creating a Project Charter Project Charter

Control and Direct Project Refine Estimates GANTT Chart

Track Tasks PERT/CPM

Coordinate Project CASE Tool

Manage Scope Standards List

Mitigate Risk Risk Assessment

5 Requirements Determination Improvement Identification Techniques Information

Interviews

JAD

Questionnaires

6 Functional Modeling Activity Diagram Functional Model

Use Cases Use Case Points

Use Case Diagram

Use Case Point Estimation

7 Structural Modeling CRC Cards Structural Models

Class Diagram

Object Diagram

8 Behavioral Modeling Sequence Diagram Dynamic Models

Communication Diagram

Behavioral State Machine

9 Moving on to Design Factoring Factored Models

Partitions and Layers Design Strategy

Package Diagrams

Custom Development

Package Development

Outsourcing

FIGURE 2-12 Textbook Overview (Continues)

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

include activity, sequence, communication, interaction overview, timing, behavior

state machine, protocol state machine, and use case diagrams.

Object-Oriented Systems Analysis and Design

Object-oriented systems analysis and design (OOSAD) are most associated with a phased

development RAD-based methodology where the time spent in each phase is very short.

OOSAD uses a use-case driven, architecture centric, iterative, and incremental informa-

tion systems development approach. It supports three different views of the evolving sys-

tem: functional, static, and dynamic. OOSAD allows the analyst to decompose complex

problems into smaller, more manageable components using a commonly accepted set of

notations. Also, many people believe that users do not think in terms of data or processes,

but instead think in terms of a collection of collaborating objects. As such, object-oriented

systems analysis and design allows the analyst to interact with the user using objects from

the user’s environment instead of a set of separate processes and data.

Summary 51

Chapter Step Sample Techniques Deliverable

10 Class and Method Design Reuse Restructured Models

Factoring Class Design

Design Optimization Contracts

Constraints Method Design

Method Specification
Activity Diagram

11 Data Management Layer Design Selecting an Object Persistence Format Object Persistence

Mapping Problem Domain Objects to Design

Object Persistence Formats Data Access and

Optimizing Object Persistence Manipulation Design

Designing Data Access and
Manipulation Classes

12 Human Computer Interaction Windows Navigation Diagram Interface Design
Layer Design Real Use Cases

Input Design

Output Design

13 Physical Architecture Layer Design Hardware Design Physical Architecture
Design

System Software Design Infrastructure Design

Network Design

14 Construction Software Testing Test Plan

Documentation

Completed System

15 Installation Direct Conversion Conversion Plan

Parallel Conversion Training Plan

Phased Conversion

Operations and Support Support Strategy Support Plan

Post-Implementation Review

FIGURE 2-12 Textbook Overview (Continued)

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

52 Chapter 2 Introduction to Object-Oriented Systems Analysis and Design

KEY TERMS

A-Kind-Of (AKO)

Abstract classes

Activity diagram

Analysis model

Analysis paralysis

Analysis workflow

Architecture centric

Attribute

Behavior

Behavior diagrams

Behavior state machine

Build

Business modeling workflow

Class

Class diagram

Communication diagram

Component diagram

Composite structure diagram

Concrete classes

Configuration and change manage-

ment workflow

Constraints

Construction phase

Deployment diagram

Deployment workflow

Design model

Design workflow

Dynamic binding

Dynamic view

Elaboration phase

Encapsulation

Engineering workflows

Environment workflow

Functional view

Inception phase

Incremental

Infrastructure management workflow

Implementation workflow

Information hiding

Inherit

Inheritance

Instance

Interaction diagram

Interaction overview diagram

Iterative

Message

Method

Object

Object diagram

Object management group (OMG)

Object-oriented approach

Object-oriented methodologies

Operations and support workflow

Package

One of the most popular approaches to object-oriented systems analysis and design is

the Unified Process. The Unified Process is a two-dimensional systems development process

described with a set of phases and workflows. The phases consist of the inception, elabora-

tion, construction, and transition phases. The workflows are organized into two subcate-

gories: engineering and supporting. The engineering workflows include business modeling,

requirements, analysis, design, implementation, test, and deployment workflows, while the

supporting workflows comprise the project management, configuration and change man-

agement, and the environment workflows. Depending on which development phase the

evolving system is currently in, the level of activity will vary over the workflows.

A Minimalist Approach to Object-Oriented Systems Analysis
and Design with UML

The Minimalist OOSAD (MOOSAD) approach is based on the processes described in the

Unified Process, the Open Process, the Object-Oriented Software Process, and XP

approaches to object-oriented systems development. It uses a modified phased-delivery

RAD approach to its life cycle. It is also use-case driven, architecture centric, and iterative

and incremental. It supports three different generic views of the evolving system: func-

tional, static, and dynamic. Furthermore, it utilizes timeboxes to manage the creation of

builds of the system. Finally, it uses UML 2.0 as its graphical notation to support the struc-

tural and behavioral modeling of the system.

Review Figures 2-7, 2-9, 2-10, and 2-11. Based on
your understanding of the UP, the EUP, and MOOSAD,
suggest a set of steps for an alternative object-oriented

systems development method. Be sure that the steps
will be capable of delivering an executable and main-
tainable system.

2-6 OO Systems Analysis and Design MethodologyYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Exercises 53

QUESTIONS

1. Describe the major elements and issues with an object-

oriented approach to developing information systems.

2. What is the difference between classes and objects?

3. What are methods and messages?

4. Why are encapsulation and information hiding

important characteristics of object-oriented systems?

5. What is meant by polymorphism when applied to

object-oriented systems?

6. Compare and contrast dynamic and static binding.

7. What is the Unified Modeling Language?

8. Who is the Object Management Group?

9. What is the primary purpose of structure diagrams?

10. For what are behavior diagrams used?

11. What is a use case?

12. What is meant by use-case driven?

13. Why is it important for an OOSAD approach to be

architecture centric?

14. What does it mean for an OOSAD approach to be

incremental and iterative?

15. What are the phases and workflows of the Unified Process?

16. Compare the phases of the Unified Process with the

phases of the waterfall model described in Chapter 1.

17. What are the benefits of an object-oriented approach

to systems analysis and design?

18. Compare and contrast the typical phased delivery

RAD SDLC with the modified-phased delivery RAD

SDLC associated with the OOSAD approach

described in this chapter.

19. What are the steps or phases of the minimalist

OOSAD approach described in this chapter?

20. What are the different views supported by the mini-

malist OOSAD approach described in this chapter?

21. What diagrams and models support the different

views identified in the previous question?

22. What is a build?

23. What is a pattern?

24. How do the Unified Process’s phases and workflows

map into the steps of the minimalist OOSAD

approach described in this chapter?

EXERCISES

A. Investigate the Unified Modeling Language on the

Web. Write a paragraph news brief describing the cur-

rent state of the UML. (Hint: A good Web site to begin

with is www.uml.org.)

B. Investigate Rational’s Unified Process (RUP) on the

Web. RUP is a commercial version that extends

aspects of the Unified Process. Write a brief memo

describing how it is related to the Unified Process as

described in this chapter. (Hint: A good Web site to

begin with is www.rational.com.)

C. Investigate the Object Management Group (OMG) on

the Web. Write a report describing the purpose of the

OMG and what it is involved with, besides the UML.

(Hint: A good Web site to begin with is www.omg.org.)

D. Using the Web, find a set of CASE tools that support the

UML. A couple of examples include Rational Rose and

Poseidon. Find at least two additional ones. Write a short

report describing how well they support the UML, and

make a recommendation as to which one you believe

would be best for a project team to use in developing an

Package diagram

Pattern

Phased development RAD

Phases

Planning

Polymorphism

Production phase

Profiles

Project management workflow

Protocol state machine

Requirements determination

Requirements workflow

Sequence diagram

Simula

Smalltalk

State

State machine

Static binding

Static view

Stereotypes

Structure diagrams

Subclass

Superclass

Supporting workflows

Tagged Values

Test workflow

Timeboxing

Timing diagram

Transition phase

Unified Modeling Language (UML)

Use case

Use case development

Use case diagram

Use-case driven

Workflows

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

54 Chapter 2 Introduction to Object-Oriented Systems Analysis and Design

object-oriented information system using the UML.

E. Suppose you are a project manager that typically has

been using a waterfall development-based methodol-

ogy on a large and complex project. Your manager has

just read the latest article in Computerworld that

advocates replacing this methodology with the Uni-

fied Process and comes to your office requesting you

to switch. What do you say?

F. Suppose you were an analyst working for a small com-

pany to develop an accounting system. Would you use

the Unified Process to develop the system, or would

you prefer one of the traditional approaches described

in Chapter 1? Why?

G. Suppose you were an analyst developing a new infor-

mation system to automate the sales transactions

and manage inventory for each retail store in a large

chain. The system would be installed at each store

and exchange data with a mainframe computer at the

company’s head office. Would you use the Unified

Process to develop the system or would you prefer

one of the traditional approaches described in Chap-

ter 1? Why?

1. Joe Brown, the president of Roanoke Manufacturing,

requested that Jack Jones, the MIS department man-

ager, to investigate the viability of selling their prod-

ucts over the Web. Currently, the MIS department is

still using an IBM mainframe as their primary

deployment environment. As a first step, Jack con-

tacted his friends at IBM to see if they had any sug-

gestions as to how Roanoke Manufacturing could

move toward supporting sales in an electronic com-

merce environment while keeping their mainframe as

their main system. His friends explained that IBM

(www.ibm.com) now supports Java and Lynix on

their mainframes. Furthermore, Jack learned that

IBM owns Rational (www.rational.com), the creator

of the UML and the Unified Precess. As such, they

suggested that Jack investigate using object-oriented

systems as a basis for developing the new system.

They also suggested that using the Rational Unified

Process (RUP), Java, and virtual Lynix machines on

his current mainframe as a way to support the move-

ment toward a distributed electronic commerce sys-

tem would protect his current investment in his

legacy systems while allowing the new system to be

developed in a more modern manner.

Even though Jack’s IBM friends were very persuasive,

Jack is still a little wary about moving his operation

from a structured systems approach to this new object-

oriented approach. Assuming that you are one of Jack’s

IBM friends, how would you convince him to move

toward using an object-oriented systems development

method, such as RUP, and using Java and Lynix as a

basis for developing and deploying the new system on

Roanoke Manufacturing’s current mainframe.

2. While recently attending a software development

conference, Susan Brown, a systems analyst at

Staunton Consulting, was exposed to object-oriented

approaches to developing software. Based on what

she learned, she feels that object-oriented approaches

are a must for her firm to survive in the consulting

business in the future. the advantages of using object-

oriented approaches seem to vastly out weigh the

benefits of remaining with the software development

methods used by Staunton Consulting. However,

even though she has 15 years of software develop-

ment experience, she feels somewhat overwhelmed

with the complexity of using UML 2.0, with its 14

diagrams, and the Enhanced Unified Process.

Assuming that you are a close friend that has been

using your own firm’s UML 1.3 based object-oriented

systems development method for the past 5 years, how

would you help Susan overcome her concern with the

complexity of UML 2.0 and the Enhanced Unified

Process? Furthermore, it would be helpful if you

helped her create a short checklist of characteristics of

software development projects that she could use to

base her recommendation for her firm to switch to an

object-oriented systems development approach that

used UML 2.0.

MINICASES

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

R
isk

A
ssessm

ent
Standards

Staffing
Plan

W
orkplan

Feasibility
A

nalysis
System

R

equest

PART ONE

Planning Phase

The Planning Phase is the fundamental process of

understanding why an information system should be

built, and determining how the project team will

build it. The deliverables are combined into a system

request which is presented to the project sponsor

and approval committee at the end of this phase.

They decide whether it is advisable to proceed with

the system.

CHAPTER 3

Project Initiation

CHAPTER 4

Project

Management

C
op

yr
ig

ht
ed

 M
at

er
ia

l

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

57

This chapter describes Project Initiation, the point at which an organization creates and

assesses the original goals and expectations for a new system. The first step in the process

is to identify a project that will deliver value to the business and to create a system request

that provides basic information about the proposed system. Next the analysts perform a

feasibility analysis to determine the technical, economic, and organizational feasibility of

the system, and if appropriate, the system is selected, and the development project begins.

OBJECTIVES

■ Understand the importance of linking the information system to business needs.
■ Be able to create a system request.
■ Understand how to assess technical, economic, and organizational feasibility.
■ Be able to perform a feasibility analysis.
■ Understand how projects are selected in some organizations.

CHAPTER OUTLINE

INTRODUCTION

The first step in any new development project is for someone—a manager, staff member,

sales representative, or systems analyst—to see an opportunity to improve the business.

New systems start first and foremost from some business need or opportunity. Many ideas

for new systems or improvements to existing ones arise from the application of a new tech-

nology, but an understanding of technology is usually secondary to a solid understanding

of the business and its objectives.

This may sound like common sense, but unfortunately, many projects are started with-

out a clear understanding of how the system will improve the business. The IS field is filled

with thousands of buzzwords, fads, and trends (e.g., customer relationship management

[CRM], mobile computing, data mining). The promise of these innovations can appear so

attractive that organizations begin projects even if they are not sure what value they offer,

Introduction

Project Identification

System Request

Applying the Concepts at CD Selections

Feasibility Analysis

Technical Feasibility

Economic Feasibility

Organizational Feasibility

Applying the Concepts at CD Selections

Project Selection

Applying the Concepts at CD Selections

Summary

C H A P T E R 3

Project Initiation

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

because they believe that the technologies are somehow important in their own right. A

1996 survey by the Standish Group found that 42 percent of all corporate IS projects were

abandoned before completion; a similar 1996 study by the General Accounting Office

found 53 percent of all U.S. government IS projects were abandoned. Most times, problems

can be traced back to the very beginning of the SDLC where too little attention was given

to the identifying business value and understanding the risks associated with the project.

Does this mean that technical people should not recommend new systems projects?

Absolutely not. In fact, the ideal situation is for both IT people (i.e., the experts in systems) and

the business people (i.e., the experts in business) to work closely to find ways for technology

to support business needs. In this way, organizations can leverage the exciting technologies that

are available while ensuring that projects are based upon real business objectives, such as

increasing sales, improving customer service, and decreasing operating expenses. Ultimately,

information systems need to affect the organization’s bottom line (in a positive way!).

In general, a project is a set of activities with a starting point and an ending point

meant to create a system that brings value to the business. Project initiation begins when

someone (or some group) in the organization (called the project sponsor) identifies some

business value that can be gained from using information technology. The proposed pro-

ject is described briefly using a technique called the system request, which is submitted to

an approval committee for consideration. The approval committee reviews the system

request and makes an initial determination, based on the information provided, of whether

to investigate the proposal or not. If so, the next step is the feasibility analysis.

The feasibility analysis plays an important role in deciding whether to proceed with an

IS development project. It examines the technical, economic, and organizational pros and

cons of developing the system, and it gives the organization a slightly more detailed picture

of the advantages of investing in the system as well as any obstacles that could arise. In most

cases, the project sponsor works together with an analyst (or analyst team) to develop the

feasibility analysis for the approval committee.

Once the feasibility analysis has been completed, it is submitted back to the approval com-

mittee along with a revised system request. The committee then decides whether to approve

the project, decline the project, or table it until additional information is available. Projects are

selected by weighing risks and return, and by making trade-offs at the organizational level.

58 Chapter 3 Project Initiation

A CIO needs to have a global view when identifying
and selecting projects for her organization. I would get
lost in the trees if I were to manage on a project-by-
project basis. Given this, I categorize my projects
according to my three roles as a CIO, and the mix of
my project portfolio changes depending on the current
business environment.

My primary role is to keep the business running. That
means every day when each person comes to work, they
can perform his or her job efficiently. I measure this using
various service level, cost, and productivity measures.
Projects that keep the business running could have a high
priority if the business were in the middle of a merger, or
a low priority if things were running smoothly, and it were
“business as usual.”

My second role is to push innovation that creates
value for the business. I manage this by looking at our
lines of business and asking which lines of business create
the most value for the company. These are the areas for
which I should be providing the most value. For example,
if we had a highly innovative marketing strategy, I would
push for innovation there. If operations were running
smoothly, I would push less for innovation in that area.

My third role is strategic, to look beyond today and
find new opportunities for both IT and the business of
providing energy. This may include investigating process
systems, such as automated meter reading or looking into
the possibilities of wireless technologies.

—Lyn McDermid

3-A Interview with Lyn McDermid, CIO, Dominion Virginia PowerCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

PROJECT IDENTIFICATION

A project is identified when someone in the organization identifies a business need to build

a system. This could occur within a business unit or IT, by a steering committee charged

with identifying business opportunities, or evolve from a recommendation made by exter-

nal consultants. Examples of business needs include supporting a new marketing cam-

paign, reaching out to a new type of customer, or improving interactions with suppliers.

Sometimes, needs arise from some kind of “pain” within the organization, such as a drop

in market share, poor customer service levels, or increased competition. Other times, new

business initiatives and strategies are created, and a system is required to enable them.

Business needs also can surface when the organization identifies unique and compet-

itive ways of using IT. Many organizations keep an eye on emerging technology, which is

technology that is still being developed and not yet viable for widespread business use. For

example, if companies stay abreast of technology like the Internet, smart cards, and scent

technology in their earliest stages, they can develop business strategies that leverage the

capabilities of these technologies and introduce them into the marketplace as a first mover.

Ideally, they can take advantage of this first-mover advantage by making money and con-

tinuing to innovate while competitors trail behind.

The project sponsor is someone who recognizes the strong business need for a system

and has an interest in seeing the system succeed. He or she will work throughout the SDLC

to make sure that the project is moving in the right direction from the perspective of the

business. The project sponsor serves as the primary point of contact for the system. Usu-

ally the sponsor of the project is from a business function, such as Marketing, Accounting,

or Finance; however, members of the IT area also can sponsor or cosponsor a project.

The size or scope of the project determines the kind of sponsor that is needed. A

small, departmental system may only require sponsorship from a single manager; how-

ever, a large, organizational initiative may need support from the entire senior manage-

ment team, and even the CEO. If a project is purely technical in nature (e.g.,

improvements to the existing IT infrastructure; research into the viability of an emerging

Project Identification 59

Dominion Virginia Power is one of the nation’s ten
largest investor-owned electric utilities. The company
delivers power to more than two million homes and
businesses in Virginia and North Carolina. In 1997, the
company overhauled some of its core processes and
technology. The goal was to improve customer service
and cut operations costs by developing a new workflow
and geographic information system. When the project
was finished, service engineers who used to sift through
thousands of paper maps could pinpoint the locations of
electricity poles with computerized searches. The pro-
ject helped the utility improve management of all its
facilities, records, maps, scheduling, and human
resources. That, in turn, helped increase employee pro-
ductivity, improve customer response times, and reduce
the costs of operating crews.

Questions:

1. What kinds of things does Dominion Virginia Power
do that requires it to know power pole locations?
How often does it do these things? Who benefits if
the company can locate power poles faster?

2. Based on your answers to question 1, describe three
tangible benefits that the company can receive from
its new computer system. How can these be quanti-
fied?

3. Based on your answers to question 1, describe three
intangible benefits that the company can receive
from its new computer system. How can these be
quantified?

Source: Computerworld (November 11, 1997).

3-1 Identify Tangible and Intangible ValueYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

technology), then sponsorship from IT is appropriate. When projects have great impor-

tance to the business, yet are technically complex, joint sponsorship by both the business

and IT may be necessary.

The business need drives the high-level business requirements for the system. Require-

ments are what the information system will do, or what functionality it will contain. They

need to be explained at a high level so that the approval committee and, ultimately, the pro-

ject team understand what the business expects from the final product. Business require-

ments are what features and capabilities the information system will have to include, such

as the ability to collect customer orders online or the ability for suppliers to receive inven-

tory information as orders are placed and sales are made.

The project sponsor also should have an idea of the business value to be gained from

the system, both in tangible and intangible ways. Tangible value can be quantified and mea-

sured easily (e.g., 2 percent reduction in operating costs). An intangible value results from

an intuitive belief that the system provides important, but hard-to-measure benefits to the

organization (e.g., improved customer service, a better competitive position).

Once the project sponsor identifies a project that meets an important business need,

and he or she can identify the system’s business requirements and value, it is time to for-

mally initiate the project. In most organizations, project initiation begins with a technique

called a system request.

System Request

A system request is a document that describes the business reasons for building a system

and the value that the system is expected to provide. The project sponsor usually com-

pletes this form as part of a formal system project selection process within the organiza-

tion. Most system requests include five elements: project sponsor, business need, business

requirements, business value, and special issues (see Figure 3-1). The sponsor describes

the person who will serve as the primary contact for the project, and the business need

presents the reasons prompting the project. The business requirements of the project refer

to the business capabilities that the system will need to have, and the business value

describes the benefits that the organization should expect from the system. Special issues

are included on the document as a catchall for other information that should be consid-

ered in assessing the project. For example, the project may need to be completed by a spe-

cific deadline. Project teams need to be aware of any special circumstances that could

affect the outcome of the system.

The completed system request is submitted to the approval committee for consideration.

This approval committee could be a company steering committee that meets regularly to

make information systems decisions, a senior executive who has control of organizational

resources, or any other decision-making body that governs the use of business investments.

The committee reviews the system request and makes an initial determination, based on the

information provided, of whether to investigate the proposal or not. If so, the next step is to

conduct a feasibility analysis.

Applying the Concepts at CD Selections

Throughout the book, we will apply the concepts in each chapter to a fictitious company

called CD Selections. For example, in this section, we will illustrate the creation of a system

request. CD Selections is a chain of fifty music stores located in California, with headquar-

ters in Los Angeles. Annual sales last year were $50 million, and they have been growing at

about 3 percent to 5 percent per year for the past few years.

60 Chapter 3 Project Initiation

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Background Margaret Mooney, Vice President of Marketing, has recently become both

excited by and concerned with the rise of Internet sites selling CDs. The Internet has great

potential, but Margaret wants to use it in the right way. Rushing into e-commerce without

considering things like its effect on existing brick-and-mortar stores and the implications

on existing systems at CD Selections could cause more harm than good.

CD Selections currently has a Web site that provides basic information about the com-

pany and about each of its stores (e.g., map, operating hours, phone number). The page

was developed by an Internet consulting firm and is hosted by a prominent local Internet

Service Provider (ISP) in Los Angeles. The IT department at CD Selections has become

experienced with Internet technology as it has worked with the ISP to maintain the site;

however, it still has a lot to learn when it comes to conducting business over the Web.

System Request At CD Selections, new IT projects are reviewed and approved by a pro-

ject steering committee that meets quarterly. The committee has representatives from IT as

well as from the major areas of the business. For Margaret, the first step was to prepare a

system request for the committee.

Project Identification 61

Project Sponsor The person who initiates the Several members of the Finance
project and who serves as the department
primary point of contact for the Vice President of Marketing
project on the business side. IT Manager

Steering committee
CIO
CEO

Business Need The business-related reason for Increase sales
initiating the system. Improve market share

Improve access to information
Improve customer service
Decrease product defects
Streamline supply acquisition
Processes

Business Requirements The business capabilities that the Provide onIine access to information
system will provide. Capture customer demographic

information
Include product search capabilities
Produce management reports
Include online user support

Business Value The benefits that the system will 3 percent increase in sales
create for the organization. 1 percent increase in market share

Reduction in headcount by 5 FTEs*
$200,000 cost savings from

decreased supply costs
$150,000 savings from removal of

existing system

Special Issues or Issues that are relevant to the Government-mandated deadline for
Constraints implementation of the system May 30

and committee make decisions System needed in time for the
about the project. Christmas holiday season

Top-level security clearance needed
by project team to work with data

* = Full-time equivalent

FIGURE 3-1

Elements of the System

Request Form

Element Description Examples

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Figure 3-2 shows the system request she prepared. The sponsor is Margaret, and the

business needs are to increase sales and to better service retail customers. Notice that the

need does not focus on the technology, such as the need “to upgrade our Web page.” The

focus is on the business aspects: sales and customer service.

For now, the business requirements are described at a very high level of detail. In this

case, Margaret’s vision for the requirements includes the ability to help brick-and-mortar

stores reach out to new customers. Specifically, customers should be able to search for

products over the Internet, locate a retail store that contains the product, put a product on

“hold” for later store pickup, and order products that are not currently being stocked.

The business value describes how the requirements will affect the business. Margaret

found identifying intangible business value to be fairly straightforward in this case. The

Internet is a “hot” area, so she expects the Internet to improve customer recognition and sat-

isfaction. Estimating tangible value is more difficult. She expects that Internet ordering will

increase sales in the retail stores, but by how much?

Margaret decides to have her marketing group do some market research to learn how

many retail customers do not complete purchases because the store does not carry the item

they are looking for. They learn that stores lose approximately 5 percent of total sales from

“out-of-stocks and nonstocks.” This number gives Margaret some idea of how much sales

could increase from the existing customer base (i.e., about $50,000 per store), but it does

not indicate how many new customers the system will generate.

Estimating how much revenue CD Selections should anticipate from new Internet cus-

tomers was not simple. One approach was to use some of CD Selections’ standard models

for predicting sales of new stores. Retail stores average about $1 million in sales per year

(after they have been open a year or two), depending upon location factors such as city

population, average incomes, proximity to universities, and so on. Margaret estimated that

adding the new Internet site would have similar effects of adding a new store. This would

suggest ongoing revenues of $1 million, give or take several hundred thousand dollars, after

the Web site had been operating for a few years.

Together, the sales from existing customer ($2.5 million) and new customers ($1 mil-

lion) totaled approximately $3.5 million. Margaret created conservative and optimistic

62 Chapter 3 Project Initiation

At Sprint, network projects originate from two vantage
points—IT and the business units. IT projects usually
address infrastructure and support needs. The business-
unit projects typically begin after a business need is iden-
tified locally, and a business group informally
collaborates with IT regarding how a solution can be
delivered to meet customer expectations.

Once an idea is developed, a more formal request
process begins, and an analysis team is assigned to investi-
gate and validate the opportunity. This team includes mem-
bers from the user community and IT, and they scope out
at a high level what the project will do; create estimates for
technology, training, and development costs; and create a

business case. This business case contains the economic
value-add and the net present value of the project.

Of course, not all projects undergo this rigorous
process. The larger the project, the more time is allocated
to the analysis team. It is important to remain flexible and
not let the process consume the organization. At the
beginning of each budgetary year, specific capital expen-
ditures are allocated for operational improvements and
maintenance. Moreover, this money is set aside to fund
quick projects that deliver immediate value without going
through the traditional approval process.

—Don Hallacy

3-B Interview with Don Hallacy, President, Technology Services, Sprint CorporationCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

estimates by reducing and increasing this figure by 25 percent. This created a possible

range of values from $2,625,000 to $4,375,000. Margaret is conservative, so she decided

to include the lower number as her sales projection. See Figure 3-2 for the completed

system request.

FEASIBILITY ANALYSIS

Once the need for the system and its business requirements have been defined, it is time

to create a more detailed business case to better understand the opportunities and limita-

tions associated with the proposed project. Feasibility analysis guides the organization in

determining whether to proceed with a project. Feasibility analysis also identifies the

Feasibility Analysis 63

System Request—Internet order project

Project sponsor: Margaret Mooney, Vice President of Marketing

Business Need: This project has been initiated to reach new Internet customers and
to better serve existing customers using Internet sales support.

Business Requirements:

Using the Web, customers should be able to search for products and identify the brick-
and-mortar stores that have them in stock. They should be able to put items on hold at a
store location or place an order for items that are not carried or not in stock. The func-
tionality that the system should have is listed below:

• Search through the CD Selections’ inventory of products

• Identify the retail stores that have the product in stock

• Put a product on hold at a retail store and schedule a time to pick up the product

• Place an order for products not currently in stock or not carried by CD Selections

• Receive confirmation that an order can be placed and when it will be in stock

Business Value:

We expect that CD Selections will increase sales by reducing lost sales due to out-of-
stock or nonstocked items and by reaching out to new customers through its Internet
presence. We expect the improved services will reduce customer complaints, primarily
because 50 percent of all customer complaints stem from out of stocks or nonstocked
items. Also, CD Selections should benefit from improved customer satisfaction and
increased brand recognition due to its Internet presence.

Conservative estimates of tangible value to the company includes:

• $750,000 in sales from new customers

• $1,875,000 in sales from existing customers

• $50,000 yearly reduction in customer service calls

Special Issues or Constraints:

• The Marketing Department views this as a strategic system. This Internet system will
add value to our current business model, and it also will serve as a proof of concept
for future Internet endeavors. For example, in the future, CD Selections may want to
sell products directly over the Internet.

• The system should be in place for the holiday shopping season next year.
FIGURE 3-2

System Request for CD

Selections

TEMPLATE

can be found at
www.wiley.com
/college/dennis

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

important risks associated with the project that must be addressed if the project is

approved. As with the system request, each organization has its own process and format

for the feasibility analysis, but most include three techniques: technical feasibility, eco-

nomic feasibility, and organizational feasibility. The results of these techniques are com-

bined into a Feasibility Study deliverable that is given to the approval committee at the end

of Project Initiation. See Figure 3-3.

Although we will discuss feasibility analysis now within the context of Project Initia-

tion, most project teams will revise their feasibility study throughout the SDLC and revisit

its contents at various checkpoints during the project. If at any point the project’s risks and

limitations outweigh its benefits, the project team may decide to cancel the project or make

necessary improvements.

64 Chapter 3 Project Initiation

Think about your own university or college and choose
an idea that could improve student satisfaction with the
course enrollment process. Currently can students enroll
for classes from anywhere? How long does it take? Are
directions simple to follow? Is online help available?

Next, think about how technology can help support
your idea. Would you need completely new technology?
Can the current system be changed?

Question:

1. Create a system request that you could give to the
administration that explains the sponsor, business
need, business requirements, and potential value of
the project. Include any constraints or issues that
should be considered.

3-2 Create a System RequestYOUR

TURN

Technical Feasibility: Can We Build It?

• Familiarity with Application: Less familiarity generates more risk

• Familiarity with Technology: Less familiarity generates more risk

• Project Size: Large projects have more risk

• Compatibility: The harder it is to integrate the system with the company’s
existing technology, the higher the risk

Economic Feasibility: Should We Build It?

• Development costs

• Annual operating costs

• Annual benefits (cost savings and revenues)

• Intangible costs and benefits

Organizational Feasibility: If We Build It, Will They Come?

• Project champion(s)

• Senior management

• Users

• Other stakeholders

• Is the project strategically aligned with the business?

FIGURE 3-3

Feasibility Analysis

Assessment Factors

TEMPLATE

can be found at
www.wiley.com
/college/dennis

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Technical Feasibility

The first technique in the feasibility analysis is to assess the technical feasibility of the pro-

ject, the extent to which the system can be successfully designed, developed, and installed

by the IT group. Technical feasibility analysis is in essence a technical risk analysis that

strives to answer the question: “Can we build it?”1

There are many risks that can endanger the successful completion of the project. First
and foremost is the users’ and analysts’ familiarity with the application. When analysts are
unfamiliar with the business application area, they have a greater chance of misunder-
standing the users or missing opportunities for improvement. The risks increase dramati-
cally when the users themselves are less familiar with an application, such as with the
development of a system to support a new business innovation (e.g., Microsoft starting up
a new Internet dating service). In general, the development of new systems is riskier than
extensions to an existing system because existing systems tend to be better understood.

Familiarity with the technology is another important source of technical risk. When a
system will use technology that has not been used before within the organization, there is a
greater chance that problems will occur and delays will be incurred because of the need to
learn how to use the technology. Risk increases dramatically when the technology itself is
new (e.g., a new Java development toolkit).

Project size is an important consideration, whether measured as the number of people
on the development team, the length of time it will take to complete the project, or the
number of distinct features in the system. Larger projects present more risk, both because
they are more complicated to manage and because there is a greater chance that some
important system requirements will be overlooked or misunderstood. The extent to which
the project is highly integrated with other systems (which is typical of large systems) can
cause problems because complexity is increased when many systems must work together.

Finally, project teams need to consider the compatibility of the new system with the tech-
nology that already exists in the organization. Systems rarely are built in a vacuum—they are
built in organizations that have numerous systems already in place. New technology and appli-
cations need to be able to integrate with the existing environment for many reasons. They may
rely on data from existing systems, they may produce data that feed other applications, and
they may have to use the company’s existing communications infrastructure. A new CRM sys-
tem, for example, has little, value if it does not use customer data found across the organiza-
tion, in existing sales systems, marketing applications, and customer service systems.

The assessment of a project’s technical feasibility is not cut-and-dried because in many
cases, some interpretation of the underlying conditions is needed (e.g., how large does a pro-
ject need to grow before it becomes less feasible?). One approach is to compare the project
under consideration with prior projects undertaken by the organization. Another option is
to consult with experienced IT professionals in the organization or external IT consultants;
often they will be able to judge whether a project is feasible from a technical perspective.

Economic Feasibility

The second element of a feasibility analysis is to perform an economic feasibility analysis (also
called a cost–benefit analysis) that identifies the financial risk associated with the project. This
attempts to answer the question: “Should we build the system?” Economic feasibility is deter-
mined by identifying costs and benefits associated with the system, assigning values to them,
and then calculating the cash flow and return on investment for the project. The more expen-
sive the project, the more rigorous and detailed the analysis. Figure 3-4 lists the steps to per-
form a cost–benefit analysis; each step will be described in the upcoming sections.

Feasibility Analysis 65

1 We use the words “build it” in the broadest sense. Organizations can also choose to buy a commercial software pack-
age and install it, in which case, the question might be: “Can we select the right package and successfully install it?”

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Identify Costs and Benefits The first task when developing an economic feasibility

analysis is to identify the kinds of costs and benefits the system will have and list them along

the left-hand column of a spreadsheet. Figure 3-5 lists examples of costs and benefits that

may be included.

66 Chapter 3 Project Initiation

1. Identify Costs and Benefits List the tangible costs and benefits for the project.
Include both one-time and recurring costs.

2. Assign Values to Costs and Benefits Work with business users and IT professionals to
create numbers for each of the costs and benefits.
Even intangibles should be valued if at all possi-
ble.

3. Determine Cash Flow Project what the costs and benefits will be over a
period of time, usually three to five years. Apply a
growth rate to the numbers, if necessary.

4. Determine Net Present Value Calculate what the value of future costs and bene-
fits are if measured by today’s standards. You will
need to select a rate of growth to apply the NPV
formula.

5. Determine Return on Investment Calculate how much money the organization will
receive in return for the investment it will make
using the ROI formula.

6. Calculate Break-Even Point Find the first year in which the system has greater
benefits than costs. Apply the break-even formula
using figures from that year. This will help you
understand how long it will take before the sys-
tem creates real value for the organization.

7. Graph Break-Even Point Plot the yearly costs and benefits on a line graph.
The point at which the lines cross is the break-
even point.

FIGURE 3-4

Steps to Conduct

Economic Feasibility

FIGURE 3-5

Example Costs and

Benefits for Economic

Feasibility

Development Team Salaries Software Upgrades

Consultant Fees Software Licensing Fees

Development Training Hardware Repairs

Hardware and Software Hardware Upgrades

Vendor Installation Operational Team Salaries

Office Space and Equipment Communications Charges

Data Conversion Costs User Training

Increased Sales Increased Market Share

Reductions in Staff Increased Brand Recognition

Reductions in Inventory Higher Quality Products

Reductions in IT Costs Improved Customer Service

Better Supplier Prices Better Supplier Relations

Development Costs Operational Costs

Tangible Benefits Intangible Benefits

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

The costs and benefits can be broken down into four categories (1) development costs,
(2) operational costs, (3) tangible benefits, and (4) intangibles. Development costs are those
tangible expenses that are incurred during the construction of the system, such as salaries
for the project team, hardware and software expenses, consultant fees, training, and office
space and equipment. Development costs are usually thought of as one-time costs. Opera-
tional costs are those tangible costs that are required to operate the system, such the salaries
for operations staff, software licensing fees, equipment upgrades, and communications
charges. Operational costs are usually thought of as ongoing costs.

Revenues and cost savings are those tangible benefits that the system enables the organi-
zation to collect or tangible expenses that the system enables the organization to avoid. Tangi-
ble benefits may include increased sales, reductions in staff, and reductions in inventory.

Of course, a project also can affect the organization’s bottom line by reaping intangi-
ble benefits or incurring intangible costs. Intangible costs and benefits are more difficult to
incorporate into the economic feasibility because they are based on intuition and belief
rather than “hard numbers.” Nonetheless, they should be listed in the spreadsheet along
with the tangible items.

Assign Values to Costs and Benefits Once the types of costs and benefits have been iden-

tified, you will need to assign specific dollar values to them. This may seem impossible—how

can someone quantify costs and benefits that haven’t happened yet? And how can those pre-

dictions be realistic? Although this task is very difficult, you have to do the best you can to

come up with reasonable numbers for all of the costs and benefits. Only then can the approval

committee make an educated decision about whether or not to move ahead with the project.

The best strategy for estimating costs and benefits is to rely on the people who have the

best understanding of them. For example, costs and benefits that are related to the technol-

ogy or the project itself can be provided by the company’s IT group or external consultants,

and business users can develop the numbers associated with the business (e.g., sales projec-

tions, order levels). You also can consider past projects, industry reports, and vendor infor-

mation, although these approaches probably will be a bit less accurate. Likely, all of the

estimates will be revised as the project proceeds.

What about the intangible costs and benefits? Sometimes, it is acceptable to list intangible

benefits, such as improved customer service, without assigning a dollar value; whereas, other

times estimates have to made regarding how much an intangible benefit is “worth.”We suggest

Feasibility Analysis 67

I conducted a case study at Carlson Hospitality, a global
leader in hospitality services, encompassing more than
1,300 hotel, resort, restaurant, and cruise ship operations in
79 countries. One of its brands, Radisson Hotels & Resorts,
researched guest stay information and guest satisfaction sur-
veys. The company was able to quantify how much of a
guest’s lifetime value can be attributed to his or her percep-
tion of the stay experience. As a result, Radisson knows how
much of the collective future value of the enterprise is at
stake given the perceived quality of stay experience. Using
this model, Radisson can confidently show that a 10 percent

increase in customer satisfaction among the 10 percent of
highest quality customers, will capture one-point market
share for the brand. Each point in market share for the Radis-
son brand is worth $20 million in additional revenue.

—Barbara Wixom

Question:

1. How can a project team use this information to help
determine the economic feasibility of a system?

3-C Intangible Value at Carlson HospitalityCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

that you quantify intangible costs or benefits if at all possible. If you do not, how will you know

if they have been realized? Suppose that a system is supposed to improve customer service.

This is intangible, but let’s assume that the greater customer service will decrease the number

of customer complaints by 10 percent each year over three years and that $200,000 is spent on

phone charges and phone operators who handle complaint calls. Suddenly we have some very

tangible numbers with which to set goals and measure the original intangible benefit.

Figure 3-6 shows costs and benefits along with assigned dollar values. Notice that the

customer service intangible benefit has been quantified based on fewer customer com-

plaint phone calls. The intangible benefit of being able to offer services that competitors

currently offer was not quantified, but it was listed so that the approval committee will

consider the benefit when assessing the system’s economic feasibility.

Determine Cash Flow A formal cost–benefit analysis usually contains costs and benefits over

a selected number of years (usually three to five years) to show cash flow over time (see Figure 3-

7). When using this cash flow method, the years are listed across the top of the spreadsheet to rep-

resent the time period for analysis, and numeric values are entered in the appropriate cells within

the spreadsheet’s body. Sometimes fixed amounts are entered into the columns. For example, Fig-

ure 3-7 lists the same amount for customer complaint calls and inventory costs for all five years.

Usually amounts are augmented by some rate of growth to adjust for inflation or business

68 Chapter 3 Project Initiation

Benefitsa

Increased sales 500,000

Improved customer serviceb 70,000

Reduced inventory costs 68,000

Total benefits 638,000

Development costs

2 servers @ $125,000 250,000

Printer 100,000

Software licenses 34,825

Server software 10,945

Development labor 1,236,525

Total development costs 1,632,295

Operational costs

Hardware 54,000

Software 20,000

Operational labor 111,788

Total operational costs 185,788

Total costs 1,818,083

a An important yet intangible benefit will be the ability to offer ser-

vices that our competitors currently offer.

b Customer service numbers have been based on reduced costs for

customer complaint phone calls.

FIGURE 3-6

Assign Values to Costs

and Benefits

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Feasibility Analysis 69

FIGURE 3-7 Cost–Benefit Analysis

Increased sales 500,000 530,000 561,800 595,508 631,238

Reduction in customer complaint calls 70,000 70,000 70,000 70,000 70,000

Reduced inventory costs 68,000 68,000 68,000 68,000 68,000

Total Benefits: 638,000 668,000 699,800 733,508 769,238

PV of Benefits: 619,417 629,654 640,416 651,712 663,552 3,204,752

PV of All Benefits: 619,417 1,249,072 1,889,488 2,541,200 3,204,752

2 Servers @ $125,000 250,000 0 0 0 0

Printer 100,000 0 0 0 0

Software licenses 34,825 0 0 0 0

Server software 10,945 0 0 0 0

Development labor 1,236,525 0 0 0 0

Total Development Costs: 1,632,295 0 0 0 0

Hardware 54,000 81,261 81,261 81,261 81,261

Software 20,000 20,000 20,000 20,000 20,000

Operational labor 111,788 116,260 120,910 125,746 130,776

Total Operational Costs: 185,788 217,521 222,171 227,007 232,037

Total Costs: 1,818,083 217,521 222,171 227,007 232,037

PV of Costs: 1,765,129 205,034 203,318 201,693 200,157 2,575,331

PV of All Costs: 1,765,129 1,970,163 2,173,481 2,375,174 2,575,331

Total Project Benefits—Costs: (1,180,083) 450,479 477,629 506,501 537,201

Yearly NPV: (1,145,712) 424,620 437,098 450,019 463,395 629,421

Cumulative NPV: (1,145,712) (721,091) (283,993) 166,026 629,421

Return on Investment: 24.44% (629,421/2,575,331)

Break-even Point: 3.63 years (break-even occurs in year 4; [450,019 – 166,026] / 450,019 = 0.63)

Intangible Benefits: This service is currently provided by competitors
Improved customer satisfaction

2003 2004 2005 2006 2007 Total

improvements, as shown by the 6 percent increase that is added to the sales numbers in the sam-

ple spreadsheet. Finally, totals are added to determine what the overall benefits will be, and the

higher the overall total, the more feasible the solution is in terms of its economic feasibility.

Determine Net Present Value and Return on Investment There are several problems

with the cash flow method because it does not consider the time value of money (i.e., a dol-

lar today is not worth a dollar tomorrow), and it does not show the overall “bang for the

buck” that the organization is receiving from its investment. Therefore, some project teams

add additional calculations to the spreadsheet to provide the approval committee with a

more accurate picture of the project’s worth.

Net present value (NPV) is used to compare the present value of future cash flows with

the investment outlay required to implement the project. Consider the table in Figure 3-8

that shows the future worth of a dollar investment today, given different numbers of years

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

and different rates of change. If you have a friend who owes you a dollar today, but instead

she gives you a dollar three years from now—you’ve been had! Given a 10 percent increase

in value, you’ll be receiving the equivalent of 75 cents in today’s terms.

NPV can be calculated in many different ways, some of which are extremely complex.

See Figure 3-9 for a basic calculation that can be used in your cash flow analysis to get more

relevant values. In Figure 3-7, the present value of the costs and benefits are calculated first

(i.e., they are shown at a discounted rate). Then NPV is calculated, and it shows the dis-

counted rate of the combined costs and benefits.

The return on investment (ROI) is a calculation that is listed somewhere on the spread-

sheet that measures the amount of money an organization receives in return for the money

it spends—a high ROI results when benefits far outweigh costs. ROI is determined by tak-

ing the total benefits less the costs of the system and dividing that number by the total costs

of the system (see Figure 3-9). ROI can be determined per year, or for the entire project

over a period of time. One drawback of ROI is that it only considers the end points of the

investment, not the cash flow in between, so it should not be used as the sole indicator of

a project’s worth. Find the ROI figure on the spreadsheet in Figure 3-7.

70 Chapter 3 Project Initiation

1 0.943 0.909 0.870

2 0.890 0.826 0.756

3 0.840 0.751 0.572

4 0.792 0.683 0.497

This table shows how much a dollar today is worth 1–4 years from now in

today’s terms across different interest rates.

Number of years 6% 10% 15%

FIGURE 3-8

The Value of a Future

Dollar Today

Present Value (PV) The amount of an investment today Amount
compared to that same amount in the future,
taking into account inflation and time.

(1 + interest rate)n

n = number of years in future

Net Present Value (NPV) The present value of benefit less the present PV Benefits – PV Costs
value of costs.

Return on Investment (ROI) The amount of revenues or cost savings results Total benefits – Total costs
from a given investment.

Total costs

Break-Even Point The point in time at which the costs of the Yearly NPV* – Cumulative NPV
project equal the value it has delivered.

Yearly NPV*

*Use the Yearly NPV amount from the first year in which
the project has a positive cash flow.

Add the above amount to the year in which the project
has a positive cash flow.

Calculation Definition Formula

FIGURE 3-9 Financial Calculations Used For Cost–Benefit Analysis

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Feasibility Analysis 71

In 1996, IDC conducted a study of sixty-two companies
that had implemented data warehousing. They found
that the implementations generated an average three-
year return on investment of 401 percent. The interesting
part is that while forty-five companies reported results
between 3 percent and 1,838 percent, the range varied
from—1,857 percent to as high as 16,000 percent!

Questions:

1. What kinds of reasons would you give for the vary-
ing degrees of return on investment?

2. How would you interpret these results if you were a
manager thinking about investing in data warehous-
ing for your company?

3-D Return on InvestmentCONCEPTS

IN ACTION

Break-even Point
1 2 3 54

0

500,000

1,000,000

1,500,000

2,000,000

D
o
ll

ar
s

2,500,000

3,500,000

Years

3,000,000
Costs

Benefits

FIGURE 3-10

Break-even Graph

Determine Break-Even Point If the project team needs to perform a rigorous

cost–benefit analysis, they may need to include information about the length of time

before the project will break-even, or when the returns will match the amount

invested in the project. The greater the time it takes to break-even, the riskier the pro-

ject. The break-even point is determined by looking at the cash flow over time and

identifying the year in which the benefits are larger than the costs (see Figure 3-7).

Then, the yearly and cumulative NPV for that year are divided by the yearly NPV to

determine how far into the year the break-even will occur. See Figure 3-9 for the

break-even calculation.

The break-even point also can be depicted graphically as shown in Figure 3-10. The

cumulative present value of the costs and benefits for each year are plotted on a line graph,

and the point at which the lines cross is the break-even point.

Alternatives to Traditional Cost–Benefit Analysis There have been concerns raised

as to the appropriateness of using traditional cost–benefit analysis using NPV and ROI

to determine economic feasibility of an IT project. One of the major problems of using

traditional cost–benefit analysis to determine the economic feasibility of an IT invest-

ment is that traditional cost–benefit analysis is based on the assumption that the

investor must either invest now or not invest at all. However, in most IT investment

decisions, the decision to invest is not a now-or-never decision. In most situations, an

information system is already in place. As such, the decision to replace or upgrade the

current information system can usually be delayed. There have been different proposals

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

made to overcome some of the weaknesses in traditional cost-benefit analysis.2 In this

section, we describe the primary alternative that has been proposed for object-oriented

systems: option pricing models (OPMs).3

At this point in time, OPMs have had limited use in economic feasibility analysis for IT

investment decisions in industry. In fact, there is some controversy as to whether an instru-

ment created for a traded asset (stock) can be used in evaluating IT investment opportuni-

ties. However, the preliminary research results demonstrate that their use in IT investment

evaluations may be warranted. OPMs have shown promise in evaluating the potential future

value of an investment in IT. In many cases in which traditional cost–benefit analysis of

investments in IT have predicted that the investment would be a failure, OPMs have shown

that they may indeed be feasible.

With object-oriented systems, where classes are designed not only for the current

application, but also for use in future development efforts, an investment in developing a

class or a set of classes may pay “dividends” well beyond the original system development

effort. Furthermore, with the iterative and incremental development emphasis in the

object-oriented systems development approaches, such as those described in Chapter 2, an

object-oriented project can be viewed as a sequence of smaller projects. As such, you might

treat investments in an object-oriented project much as you would an investment in a call

option in finance. A call option is essentially a contract that gives the right to purchase an

amount of stock for a given price for a specified period of time to the purchaser of the call

option. However, a call option does not create an obligation to buy the stock.

Treating an IT investment as a call option allows management, at a relevant point in

the future, to determine whether additional investment into the evolving system is rea-

sonable. This gives management the flexibility to determine the economic feasibility of a

project to decide whether to continue with the development as planned, to abandon the

project, to expand the scope of the project, to defer future development, or to shrink the

current development effort. In many ways, treating IT investments as call options simply

allows management to delay investment decisions until more information is available.

Once the decision is made to invest (i.e., the call option is exercised) the decision is

considered irreversible. The idea of irreversible decisions is one of the fundamental

assumptions on which OPMs are based. This assumption fits quite well with modern

object-oriented system development approaches, in which, once an iteration has begun, an

increment is completed before another investment decision is made.

Researchers have studied many different OPMs in terms of their applicability to IT invest-

ment.4 However, all OPMs share a common thread: both the direct benefit of the proposed

72 Chapter 3 Project Initiation

2 See, for example, Q. Hu, R. Plant, and D. Hertz, “Software Cost Estimation Using Economic Production Mod-
els,” Journal of MIS 15(1) (Summer 1998), pp. 143–163; and G. Ooi and C. Soh, “Developing an Activity-based
Approach for System Development and Implementation,” ACM Data Base for Advances in Information Systems
34(3) (Summer 2003), pp. 54–71.
3 For more information regarding the use of option pricing models in evaluating economic feasibility of information
systems, see M. Benaroch and R. Kauffman, “A Case for Using Real Options Pricing Analysis to Evaluate Information
Technology Project Investments,” Information Systems Research 10(1) (March 1999), pp. 70–86; M. Benaroch and R.
Kauffman, “Justifying Electronic Banking Network Expansion Using Real Options Analysis,” MIS Quarterly 24(2)
(June 2000), pp. 197-225; Q. Dai, R. Kauffman, and S. March, “Analyzing Investments in Object-Oriented Middle-
ware,” Ninth Workshop on Information Technologies and Systems (December 1999), pp. 45–50; A. Kambil, J. Hender-
son, and H. Mohsenzadeh,“Strategic Management of Information Technology Investments: An Options Perspective,”
in R.D. Banker, R.J. Kauffman, and M.A. Mahmood (eds.), Strategic Information Technology Management: Perspectives
on Organizational Growth and Competitive Advantage, Idea Group, 1993; A. Taudes,“Software Growth Options,” Jour-
nal of MIS 15(1), (Summer 1998), pp. 165–185; A. Taudes, M. Feurstein, and A. Mild, “Options Analysis of Software
Platform Decisions: A Case Study,” MIS Quarterly 24(2) (June 2000), pp. 227–243.
4 Two of the more important OPMs used for evaluating IT investments are the binomial OPM and the Black-
Scholes OPM. For more information on these models see J.C. Hull, Options, Futures, and Other Derivative Secu-
rities (Englewood Cliffs, NJ: Prentice-Hall, 1993).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

project and the indirect value (option value) must be computed to determine economic feasi-

bility of an IT investment using an OPM. The direct benefit can be computed using the tradi-

tional NPV while the value of the option can be computed using one of the OPMs in the

literature. Given that the minimum expected value of an option is always zero, the minimum

estimated value for investing using an OPM will be the same as the value given by the tradi-

tional approach. However, when the expected value of the option (e.g., future iterations or pro-

jects) exceeds zero, an OPM will give an estimated value greater than the traditional approach.

The actual calculation of the value of an option is quite complex and, as such, is beyond the

scope of this book. However, given how well the OPMs fit the object-oriented systems devel-

opment approaches, it seems reasonable that OPMs should be considered as alternatives to

evaluating IT investments in object-oriented systems.

Organizational Feasibility

The final technique used for feasibility analysis is to assess the organizational feasibility of

the system, how well the system ultimately will be accepted by its users and incorporated

into the ongoing operations of the organization. There are many organizational factors that

can have an impact on the project, and seasoned developers know that organizational fea-

sibility can be the most difficult feasibility dimension to assess. In essence, an organiza-

tional feasibility analysis attempts to answer the question: “If we build it, will they come?”

One way to assess the organizational feasibility of the project is to understand how well

the goals of the project align with business objectives. Strategic alignment is the fit between

the project and business strategy—the greater the alignment, the less risky the project will

be from an organizational feasibility perspective. For example, if the Marketing Depart-

ment has decided to become more customer focused, then a CRM project that produces

integrated customer information would have strong strategic alignment with Marketing’s

goal. Many IT projects fail when the IT department initiates them because there is little or

no alignment with business unit or organizational strategies.

A second way to assess organizational feasibility is to conduct a stakeholder analysis.5 A

stakeholder is a person, group, or organization that can affect (or will be affected by) a new

system. In general, the most important stakeholders in the introduction of a new system are

the project champion, system users, and organizational management (see Figure 3-11), but

systems sometimes affect other stakeholders as well. For example, the IS department can be a

stakeholder of a system because IS jobs or roles may be changed significantly after its imple-

mentation. One key stakeholder outside of the champion, users, and management in

Microsoft’s project that embedded Internet Explorer as a standard part of Windows was the

U.S. Department of Justice.

The champion is a high-level non-IS executive who is usually but not always the person

who created the system request. The champion supports the project by providing time,

resources (e.g., money), and political support within the organization by communicating the

importance of the system to other organizational decision makers. More than one champion

is preferable because if the champion leaves the organization, the support could leave as well.

While champions provide day-to-day support for the system, organizational manage-

ment also needs to support the project. Such management support conveys to the rest of

the organization the belief that the system will make a valuable contribution and that nec-

essary resources will be made available. Ideally, management should encourage people in

the organization to use the system and to accept the many changes that the system will

likely create.

Feasibility Analysis 73

5 A good book on stakeholder analysis that presents a series of stakeholder analysis techniques is R. O. Mason
and I.I. Mittroff, Challenging Strategic Planning Assumptions: Theory, Cases, and Techniques, New York, NY: John
Wiley & Sons, 1981.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

74 Chapter 3 Project Initiation

Champion A champion: • Make a presentation about the objectives of the
• Initiates the project project and the proposed benefits to those executives
• Promotes the project who will benefit directly from the system
• Allocates his or her time to project • Create a prototype of the system to demonstrate its
• Provides resources potential value

Organizational Organizational managers: • Make a presentation to management about the
Management • Know about the project objectives of the project and the proposed benefits

• Budget enough money for the project • Market the benefits of the system using memos and
• Encourage users to accept and use the system organizational newsletters

• Encourage the champion to talk about the project
with his or her peers

System Users Users: • Assign users official roles on the project team
• Make decisions that influence the project • Assign users specific tasks to perform with clear
• Perform hands-on activities for the project deadlines
• Ultimately determine whether the project is • Ask for feedback from users regularly (e.g., at

successful by using or not using the system weekly meetings)

Role Techniques for improvement

FIGURE 3-11 Some Important Stakeholders for Organizational Feasibility

A third important set of stakeholders is the system users who ultimately will use the

system once it has been installed in the organization. Too often, the project team meets

with users at the beginning of a project and then disappears until after the system is cre-

ated. In this situation, rarely does the final product meet the expectations and needs of

those who are supposed to use it because needs change and users become savvier as the

project progresses. User participation should be promoted throughout the development

process to make sure that the final system will be accepted and used by getting users actively

involved in the development of the system (e.g., performing tasks, providing feedback, and

making decisions).

The final feasibility study helps organizations make wiser investments regarding IS

because it forces project teams to consider technical, economic, and organizational factors

that can affect their projects. It protects IT professionals from criticism by keeping the

business units educated about decisions and positioned as the leaders in the decision-

making process. Remember—the feasibility study should be revised several times during

the project at points where the project team makes critical decisions about the system

(e.g., before the design begins). It can be used to support and explain the critical choices

that are made throughout the SDLC.

Applying the Concepts at CD Selections

The steering committee met and placed the Internet Order project high on its list of pro-

jects. A senior systems analyst, Alec Adams, was assigned to help Margaret conduct a feasi-

bility analysis because of his familiarity with CD Selections’ sales and distribution systems.

He also was an avid user of the Web and had been offering suggestions for the improve-

ment of CD Selections’ Web site.

Alec and Margaret worked closely together over the next few weeks on the feasibility

analysis. Figure 3-12 presents the executive summary page of the feasibility analysis; the

report itself was about ten pages long, and it provided additional detail and supporting

documentation.

As shown in Figure 3-12, the project is somewhat risky from a technical perspective.

CD Selections has minimal experience with the proposed application and the technology

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Feasibility Analysis 75

Internet Order Feasibility Analysis Executive Summary

Margaret Mooney and Alec Adams created the following feasibility analysis for the CD Selections Internet Order System Project. The System
Proposal is attached, along with the detailed feasibility study. The highlights of the feasibility analysis are:

Technical Feasibility

The Internet Order System is feasible technically, although there is some risk.

CD Selections’ risk regarding familiarity with Internet order applications is high

• The Marketing Department has little experience with Internet-based marketing and sales.
• The IT Department has strong knowledge of the company’s existing order systems; however, it has not worked with Web-enabled

order systems.
• Hundreds of retailers that have Internet Order applications exist in the marketplace.

CD Selections’ risk regarding familiarity with the technology is medium

• The IT Department has relied on external consultants and an Information Service Provider to develop its existing Web environment.
• The IT Department has gradually learned about Web systems by maintaining the current Web site.
• Development tools and products for commercial Web application development are available in the marketplace, although the IT depart-

ment has little experience with them.
• Consultants are readily available to provide help in this area.

The project size is considered medium risk

• The project team likely will include less than ten people.
• Business user involvement will be required.
• The project timeframe cannot exceed a year because of the Christmas holiday season implementation deadline, and it should be much

shorter.

The compatibility with CD Selections’ existing technical infrastructure should be good

• The current Order System is a client-server system built using open standards. An interface with the Web should be possible.
• Retail stores already place and maintain orders electronically.
• An Internet infrastructure already is in place at retail stores and at the corporate headquarters.
• The ISP should be able to scale their services to include a new Order System.

Economic Feasibility

A cost–benefit analysis was performed; see attached spreadsheet for details. A conservative approach shows that the Internet Order System
has a good chance of adding to the bottom line of the company significantly.

ROI over 3 years: 229 percent
Total benefit after three years: $3.5 million (adjusted for present value)
Break-even occurs: after 1.7 years

Intangible Costs and Benefits

• Improved customer satisfaction

• Greater brand recognition

Organizational Feasibility

From an organizational perspective, this project has low risk. The objective of the system, which is to increase sales, is aligned well with the
senior management’s goal of increasing sales for the company. The move to the Internet also aligns with Marketing’s goal to become more
savvy in Internet marketing and sales.

The project has a project champion, Margaret Mooney, Vice President of Marketing. Margaret is well positioned to sponsor this project and to
educate the rest of the senior management team when necessary. To date, much of senior management is aware of and supports the initiative.

The users of the system, Internet consumers, are expected to appreciate the benefits of CD Selections’ Web presence. And, management
in the retail stores should be willing to accept the system, given the possibility of increased sales at the store level.

Additional Comments:

• The Marketing Department views this as a strategic system. This Internet system will add value to our current business model, and it also
will serve as a proof of concept for future Internet endeavors.

• We should consider hiring a consultant with expertise in similar applications to assist with the project.
• We will need to hire new staff to operate the new system, from both the technical and business operations aspects.

FIGURE 3-12 Feasibility Analysis for CD Selections

TEMPLATE

can be found at
www.wiley.com
/college/dennis

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

because the ISP had been managing most of the Web site technology to date. One solu-

tion may be to hire a consultant with e-commerce experience to work with the IT depart-

ment and to offer guidance. Further, the new system would have to exchange order

information with the company’s brick-and-mortar order system. Currently individual

retail stores submit orders electronically, so receiving orders and exchanging information

with the Internet systems should be possible.

The economic feasibility analysis includes refined assumptions that Margaret made in

the system request. Figure 3-13 shows the summary spreadsheet that led to the conclusions

on the feasibility analysis. Development costs are expected to be about $250,000. This is a

very rough estimate, as Alec has had to make some assumptions about the amount of time

it will take to design and program the system. These estimates will be revised after a

detailed workplan has been developed and as the project proceeds.6 Traditionally, operat-

ing costs include the costs of the computer operations. In this case, CD Selections has had

to include the costs of business staff, because they are creating a new business unit, result-

ing in a total of about $450,000 each year. Margaret and Alec have decided to use a conser-

vative estimate for revenues although they note the potential for higher returns. This shows

that the project can still add significant business value, even if the underlying assumptions

prove to be overly optimistic. The spreadsheet was projected over three years, and the ROI

and break-even point were included.

The organizational feasibility is presented in Figure 3-12. There is a strong champion,

well placed in the organization to support the project. The project originated in the busi-

ness or functional side of the company, not the IS department, and Margaret has carefully

built up support for the project among the senior management team.

This is an unusual system in that the ultimate end users are the consumers external to

CD Selections. Margaret and Alec have not done any specific market research to see how

well potential customers will react to the CD Selections system, so this is a risk.

An additional stakeholder in the project is the management team responsible for the

operations of the traditional stores, and the store managers. They should be quite sup-

portive given the added service that they now can offer. Margaret and Alec need to make

sure that they are included in the development of the system so that they can appropriately

incorporate it into their business processes.

76 Chapter 3 Project Initiation

6 Some of the salary information may seem high to you. Most companies use a “full cost” model for estimating
salary cost in which all benefits (e.g., health insurance, retirement, payroll taxes) are included in salaries when
estimating costs.

Think about the idea that you developed in “Your Turn 3-2”
to improve your university or college course enrollment.

Questions:

1. List three things that influence the technical feasibil-
ity of the system.

2. List three things that influence the economic feasi-
bility of the system.

3. List three things that influence the organizational
feasibility of the system.

4. How can you learn more about the issues that
affect the three kinds of feasibility?

3-3 Create a Feasibility AnalysisYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Feasibility Analysis 77

Increased sales from new customers 0 750,000 772,500

Increased sales from existing customers 0 1,875,000 1,931,250

Reduction in customer complaint calls 0 50,000 50,000

Total Benefits: 0 2,675,000 2,753,750

PV of Benefits: 0 2,521,444 2,520,071 5,041,515

PV of All Benefits: 0 2,521,444 5,041,515

Labor: Analysis and Design 42,000 0 0

Labor: Implementation 120,000 0 0

Consultant Fees 50,000 0 0

Training 5,000 0 0

Office Space and Equipment 2,000 0 0

Software 10,000 0 0

Hardware 25,000 0 0

Total Development Costs: 254,000 0 0

Labor: Webmaster 85,000 87,550 90,177

Labor: Network Technician 60,000 61,800 63,654

Labor: Computer Operations 50,000 51,500 53,045

Labor: Business Manager 60,000 61,800 63,654

Labor: Assistant Manager 45,000 46,350 47,741

Labor: 3 Staff 90,000 92,700 95,481

Software upgrades 1,000 1,000 1,000

Software licenses 3,000 1,000 1,000

Hardware upgrades 5,000 3,000 3,000

User training 2,000 1,000 1,000

Communications charges 20,000 20,000 20,000

Marketing expenses 25,000 25,000 25,000

Total Operational Costs: 446,000 452,700 464,751

Total Costs: 700,000 452,700 464,751

PV of Costs: 679,612 426,713 425,313 1,531,638

PV of all Costs: 679,612 1,106,325 1,531,638

Total Project Costs Less Benefits: (700,000) 2,222,300 2,288,999

Yearly NPV: (679,612) 2,094,731 2,094,758 3,509,878

Cumulative NPV: (679,612) 1,415,119 3,509,878

Return on Investment: 229.16% (3,509,878/1,531,638)

Break-even Point: 1.32 years (break-even occurs in year 2;

[2,094,731 – 1,415,119] / 2,094,731 = 0.32)

Intangible Benefits: Greater brand recognition

Improved customer satisfaction

2003 2004 2005 Total

FIGURE 3-13 Economic Feasibility Analysis for CD Selections

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

PROJECT SELECTION

Once the feasibility analysis has been completed, it is submitted back to the approval com-

mittee along with a revised system request. The committee then decides whether to

approve the project, decline the project, or table it until additional information is available.

At the project level, the committee considers the value of the project by examining the busi-

ness need (found in the system request) and the risks of building the system (presented in

the feasibility analysis).

Before approving the project, however, the committee also considers the project from

an organizational perspective; it has to keep in mind the company’s entire portfolio of pro-

jects. This way of managing projects is called portfolio management. Portfolio management

takes into consideration the different kinds of projects that exist in an organization—large

and small, high risk and low risk, strategic and tactical (see Figure 3-14 for the different

ways of classifying projects). A good project portfolio will have the most appropriate mix

of projects for the organization’s needs. The committee acts as portfolio manager with the

goal of maximizing the cost/benefit performance and other important factors of the pro-

jects in their portfolio. For example, a organization may want to keep high-risk projects to

less than 20 percent of its total project portfolio.

The approval committee must be selective about where to allocate resources because

the organization has limited funds. This involves trade-offs in which the organization must

give up something in return for something else to keep its portfolio well balanced. If there

are three potentially high-payoff projects, yet all have very high risk, then maybe only one

of the projects will be selected. Also, there are times when a system at the project level

makes good business sense, but it does not at the organization level. Thus, a project may

show a very strong ROI and support important business needs for a part of the company;

however, it is not selected. This could happen for many reasons—because there is no

money in the budget for another system, the organization is about to go through some kind

of change (e.g., a merger, an implementation of a company-wide system like an ERP sys-

tem), projects that meet the same business requirements already are underway, or the sys-

tem does not align well with current or future corporate strategy.

Applying the Concepts at CD Selections

The approval committee met and reviewed the Internet Order System project along with

two other projects—one that called for the implementation of corporate Intranet and

78 Chapter 3 Project Initiation

Size What is the size? How many people are needed to work on the
project?

Cost How much will the project cost the organization?

Purpose What is the purpose of the project? Is it meant to improve the
technical infrastructure? Support a current business strategy?
Improve operations? Demonstrate a new innovation?

Length How long will the project take before completion? How much
time will go by before value is delivered to the business?

Risk How likely is it that the project will succeed or fail?

Scope How much of the organization is affected by the system? A
department? A division? The entire corporation?

Return on investment How much money does the organization expect to receive in
return for the amount the project costs?

FIGURE 3-14

Ways to Classify

Projects

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

another that proposed in-store kiosks that would provide customers with information

about the CDs that the store carried. Unfortunately, the budget would only allow for one

project to be approved, so the committee carefully examined the costs, expected benefits,

risks, and strategic alignment of all three projects. Currently, a primary focus of upper

management is increasing sales in the retail stores, and the Internet system and kiosk pro-

ject best aligned with that goal. Given that both projects had equal risk, but that the Inter-

net Order project expected a much greater return, the committee decided to fund the

Internet Order System.

SUMMARY

Project Initiation

Project initiation is the point at which an organization creates and assesses the original

goals and expectations for a new system. The first step in the process is to identify the busi-

ness value for the system by developing a system request that provides basic information

Summary 79

It seems hard to believe that an approval committee would
not select a project that meets real business needs, has a
high potential ROI, and has a positive feasibility analysis.

Think of a company you have worked for or know about.
Describe a scenario in which a project may be very attrac-
tive at the project level, but not at the organization level.

3-4 To Select or Not To SelectYOUR

TURN

At Marriott, we don’t have IT projects—we have business
initiatives and strategies that are enabled by IT. As a result,
the only time a traditional “IT project” occurs is when we
have an infrastructure upgrade that will lower costs or
leverage better functioning technology. In this case, IT has
to make a business case for the upgrade and prove its
value to the company.

The way IT is involved in business projects in the
organization is twofold. First, senior IT positions are filled
by people with good business understanding. Second,
these people are placed on key business committees and
forums where the real business happens, such as finding
ways to satisfy guests. Because IT has a seat at the table,
we are able to spot opportunities to support business
strategy. We look for ways in which IT can enable or bet-
ter support business initiatives as they arise.

Therefore, business projects are proposed, and IT is
one component of them. These projects are then evaluated

the same as any other business proposal, such as a new
resort—by examining the return on investment and other
financial measures.

At the organizational level, I think of projects as
must-do’s, should-do’s, and nice-to-do’s. The “must do’s”
are required to achieve core business strategy, such as
guest preference. The “should do’s” help grow the busi-
ness and enhance the functionality of the enterprise.
These can be somewhat untested, but good drivers of
growth. The “nice-to-do’s” are more experimental and
look farther out into the future.

The organization’s project portfolio should have a
mix of all three kinds of projects, with a much greater pro-
portion devoted to the “must-do’s.”

—Carl Wilson

3-E Interview with Carl Wilson, CIO, Marriott CorporationCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

80 Chapter 3 Project Initiation

Hygeia Travel Health is a Toronto-based health insurance
company whose clients are the insurers of foreign tourists
to the United States and Canada. Its project selection
process is relatively straightforward. The project evalua-
tion committee, consisting of six senior executives, splits
into two groups. One group includes the CIO, along with
the heads of operations and research and development,
and it analyzes the costs of every project. The other group
consists of the two chief marketing officers and the head
of business development, and they analyze the expected
benefits. The groups are permanent, and to stay objective,
they don’t discuss a project until both sides have evalu-
ated it. The results are then shared, both on a spreadsheet
and in conversation. Projects are then approved, passed
over, or tabled for future consideration.

Last year, the marketing department proposed pur-
chasing a claims database filled with detailed information
on the costs of treating different conditions at different facil-
ities. Hygeia was to use this information to estimate how
much money insurance providers were likely to owe on a
given claim if a patient was treated at a certain hospital as
opposed to any other. For example, a 45-year-old man suf-
fering a heart attack may accrue $5,000 in treatment costs
at hospital A, but only $4,000 at hospital B. This information

would allow Hygeia to recommend the cheaper hospital to
its customer. That would save the customer money and help
differentiate Hygeia from its competitors.

The benefits team used the same three-meeting
process to discuss all the possible benefits of implement-
ing the claims database. Members of the team talked to
customers and made a projection using Hygeia’s past
experience and expectations about future business trends.
The verdict: The benefits team projected a revenue
increase of $210,000. Client retention would rise by 2 per-
cent. And overall, profits would increase by 0.25 percent.

The costs team, meanwhile, came up with large esti-
mates: $250,000 annually to purchase the database and
an additional $71,000 worth of internal time to make the
information usable. Put it all together and it was a finan-
cial loss of $111,000 in the first year.

The project still could have been good for market-
ing—maybe even good enough to make the loss accept-
able. But some of Hygeia’s clients were also in the claims
information business and therefore potential competitors.
This, combined with the financial loss, was enough to
make the company reject the project.

Source: “Two Teams Are Better Than One” CIO Magazine, July 15,

2001 by Ben Worthen.

3-F A Project That Does Not Get SelectedCONCEPTS

IN ACTION

In April 1999, one of Capital Blue Cross’s healthcare
insurance plans had been in the field for three years but
hadn’t performed as well as expected. The ratio of premi-
ums to claims payments wasn’t meeting historic norms. In
order to revamp the product features or pricing to boost
performance, the company needed to understand why it
was underperforming. The stakeholders came to the dis-
cussion already knowing they needed better extraction
and analysis of usage data in order to understand product
shortcomings and recommend improvements.

After listening to input from the user teams, the stake-
holders proposed three options. One was to persevere
with the current manual method of pulling data from flat
files via ad hoc reports and retyping it into spreadsheets.

The second option was to write a program to dynam-
ically mine the needed data from Capital’s customer
information control system (CICS). While the system was
processing claims, for instance, the program would pull

out up-to-the-minute data at a given point in time for
users to analyze.

The third alternative was to develop a decision-sup-
port system to allow users to make relational queries from
a data mart containing a replication of the relevant claims
and customer data.

Each of these alternatives was evaluated on cost,
benefits, risks, and intangibles.

Question:

1. What are three costs, benefits, risks, and intangibles
associated with each project?

2. Based on your answer to question 1, which project
would you choose?

Source: “Capital Blue Cross,” CIO Magazine, February 15, 2000, by

Richard Pastore.

3-5 Project SelectionYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

about the proposed system. Next the analysts perform a feasibility analysis to determine the

technical, economic, and organizational feasibility of the system, and if appropriate, the

system is approved, and the development project begins.

System Request

The business value for an information system is identified and then described using a system

request. This form contains the project’s sponsor, business need, business requirements, and

business value of the information system, along with any other issues or constraints that are

important to the project. The document is submitted to an approval committee who deter-

mines whether the project would be a wise investment of the organization’s time and resources.

Feasibility Analysis

A feasibility analysis is then used to provide more detail about the risks associated with the

proposed system, and it includes technical, economic, and organizational feasibilities. The

technical feasibility focuses on whether the system can be built by examining the risks asso-

ciated with the users’ and analysts’ familiarity with the application, familiarity with the

technology, and project size. The economic feasibility addresses whether the system should

be built. It includes a cost–benefit analysis of development costs, operational costs, tangi-

ble benefits, and intangible costs and benefits. Finally, the organizational feasibility assesses

how well the system will be accepted by its users and incorporated into the ongoing oper-

ations of the organization. The strategic alignment of the project and a stakeholder analy-

sis can be used to assess this feasibility dimension.

Project Selection

Once the feasibility analysis has been completed, it is submitted back to the approval com-

mittee along with a revised system request. The committee then decides whether to

approve the project, decline the project, or table it until additional information is available.

The project selection process takes into account all of the projects in the organization using

portfolio management. The approval committee weighs many factors and makes trade-offs

before a project is selected.

Key Terms 81

Approval committee

Break-even point

Business need

Business requirement

Business value

Call option

Cash flow method

Champion

Compatibility

Cost–benefit analysis

Development cost

Economic feasibility

Emerging technology

Familiarity with the application

Familiarity with the technology

Feasibility analysis

Feasibility study

First mover

Functionality

Intangible benefits

Intangible costs

Intangible value

Net present value (NPV)

Operational cost

Option pricing models (OPMs)

Organizational feasibility

Organizational management

Portfolio management

Project

Project initiation

Project size

Project sponsor

Return on/investment (ROI)

Risk

Special issues

Stakeholder

Stakeholder analysis

Strategic alignment

System request

System users

Tangible benefits

Tangible expenses

Tangible value

Technical feasibility

Technical risk analysis

Trade-offs

KEY TERMS

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

82 Chapter 3 Project Initiation

1. Give three examples of business needs for a system.

2. What is the purpose of an approval committee? Who

is usually on this committee?

3. Why should the system request be created by a busi-

nessperson as opposed to an IS professional?

4. What is the difference between intangible value and

tangible value? Give three examples of each.

5. What are the purposes of the system request and the

feasibility analysis? How are they used in the project

selection process?

6. Describe two special issues that may be important to

list on a system request.

7. Describe the three techniques for feasibility analysis.

8. What factors are use to determine project size?

9. Describe a “risky” project in terms of technical feasibility.

Describe a project that would not be considered “risky.”

10. What are the steps for assessing economic feasibility?

Describe each step.

11. List two intangible benefits. Describe how these bene-

fits can be quantified.

12. List two tangible benefits and two operational costs for

a system. How would you determine the values that

should be assigned to each item?

13. Explain the net present value and return on invest-

ment for a cost–benefit analysis. Why would these cal-

culations be used?

14. What is the break-even point for the project? How is it

calculated?

15. What is stakeholder analysis? Discuss three stakehold-

ers that would be relevant for most projects.

QUESTIONS

A. Locate a news article in an IT trade magazine (e.g.,

Computerworld) about an organization that is imple-

menting a new computer system. Describe the tangible

and intangible value that the organization likely will

realize from the new system.

B. Car dealers have realized how profitable it can be to

sell automobiles using the Web. Pretend you work for

a local car dealership that is part of a large chain such

as CarMax. Create a system request you might use to

develop a Web-based sales system. Remember to list

special issues that are relevant to the project.

C. Suppose that you are interested in buying yourself a

new computer. Create a cost–benefit analysis that

illustrates the return on investment that you would

receive from making this purchase. Computer-related

Web sites (e.g., Dell Computers, Compaq Computers)

should have real tangible costs that you can include in

your analysis. Project your numbers out to include a

three-year period of time and provide the net present

value of the final total.

D. Consider the Amazon.com Web site. The management

of the company decided to extend their Web-based

system to include products other than books (e.g.,

wine, specialty gifts). How would you have assessed

the feasibility of this venture when the idea first came

up? How “risky” would you have considered the pro-

ject that implemented this idea? Why?

E. Interview someone who works in a large organization

and ask him or her to describe the approval process

that exists for approving new development projects.

What do they think about the process? What are the

problems? What are the benefits?

F. Reread the “Your Turn 3-1” box (Identify Tangible

and Intangible Value). Create a list of the stakehold-

ers that should be considered in a stakeholder analy-

sis of this project.

EXERCISES

1. The Amberssen Specialty Company is a chain of twelve

retail stores that sell a variety of imported gift items,

gourmet chocolates, cheeses, and wines in the Toronto

area. Amberssen has an IS staff of three people who

have created a simple but effective information system

of networked point-of-sale registers at the stores, and a

centralized accounting system at the company headquar-

ters. Harry Hilman, the head of Amberssen’s IS group,

has just received the following memo from Bill Amberssen,

Sales Director (and son of Amberssen’s founder).

MINICASES

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Harry—it’s time Amberssen Specialty launched

itself on the Internet. Many of our competitors are

already there, selling to customers without the expense

of a retail storefront, and we should be there too. I pro-

ject that we could double or triple our annual revenues

by selling our products on the Internet. I’d like to have

this ready by Thanksgiving, in time for the prime hol-

iday gift-shopping season. Bill

After pondering this memo for several days, Harry

scheduled a meeting with Bill so that he could clarify

Bill’s vision of this venture. Using the standard content of

a system request as your guide, prepare a list of questions

that Harry needs to have answered about this project.

2. The Decker Company maintains a fleet of ten service

trucks and crews that provide a variety of plumbing,

heating, and cooling repair services to residential cus-

tomers. Currently, it takes on average about six hours

before a service team responds to a service request. Each

truck and crew averages twelve service calls per week, and

the average revenue earned per service call is $150. Each

truck is in service fifty weeks per year. Due to the diffi-

culty in scheduling and routing, there is considerable

slack time for each truck and crew during a typical week.

In an effort to more efficiently schedule the trucks

and crews and improve their productivity, Decker man-

agement is evaluating the purchase of a prewritten rout-

ing and scheduling software package. The benefits of

the system will include reduced response time to service

requests and more productive service teams, but man-

agement is having trouble quantifying these benefits.

One approach is to make an estimate of how much

service response time will decrease with the new sys-

tem, which then can be used to project the increase in

the number of service calls made each week. For exam-

ple, if the system permits the average service response

time to fall to four hours, management believes that

each truck will be able to make sixteen service calls per

week on average—an increase of four calls per week.

With each truck making four additional calls per week

and the average revenue per call at $150, the revenue

increase per truck per week is $600 (4 × $150). With ten

trucks in service fifty weeks per year, the average annual

revenue increase will be $300,000 ($600 × 10 × 50).

Decker Company management is unsure whether

the new system will enable response time to fall to

four hours on average, or will be some other number.

Therefore, management has developed the following

range of outcomes that may be possible outcomes of

the new system, along with probability estimates of

each outcome occurring.

New Response Time # Calls/Truck/Week Likelihood

2 hours 20 20%

3 hours 18 30%

4 hours 16 50%

Given these figures, prepare a spreadsheet model that

computes the expected value of the annual revenues to

be produced by this new system.

Minicases 83

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

R
isk

A
ssessm

ent
Standards

Staffing
Plan

W
orkplan

Feasibility
A

nalysis
System

R

equest

PART ONE

Planning Phase

The Planning Phase is the fundamental process of

understanding why an information system should be

built, and determining how the project team will

build it. The deliverables are combined into a system

request which is presented to the project sponsor

and approval committee at the end of this phase.

They decide whether it is advisable to proceed with

the system.

CHAPTER 3

Project Initiation

CHAPTER 4

Project

Management

C
op

yr
ig

ht
ed

 M
at

er
ia

l

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

57

This chapter describes Project Initiation, the point at which an organization creates and

assesses the original goals and expectations for a new system. The first step in the process

is to identify a project that will deliver value to the business and to create a system request

that provides basic information about the proposed system. Next the analysts perform a

feasibility analysis to determine the technical, economic, and organizational feasibility of

the system, and if appropriate, the system is selected, and the development project begins.

OBJECTIVES

■ Understand the importance of linking the information system to business needs.
■ Be able to create a system request.
■ Understand how to assess technical, economic, and organizational feasibility.
■ Be able to perform a feasibility analysis.
■ Understand how projects are selected in some organizations.

CHAPTER OUTLINE

INTRODUCTION

The first step in any new development project is for someone—a manager, staff member,

sales representative, or systems analyst—to see an opportunity to improve the business.

New systems start first and foremost from some business need or opportunity. Many ideas

for new systems or improvements to existing ones arise from the application of a new tech-

nology, but an understanding of technology is usually secondary to a solid understanding

of the business and its objectives.

This may sound like common sense, but unfortunately, many projects are started with-

out a clear understanding of how the system will improve the business. The IS field is filled

with thousands of buzzwords, fads, and trends (e.g., customer relationship management

[CRM], mobile computing, data mining). The promise of these innovations can appear so

attractive that organizations begin projects even if they are not sure what value they offer,

Introduction

Project Identification

System Request

Applying the Concepts at CD Selections

Feasibility Analysis

Technical Feasibility

Economic Feasibility

Organizational Feasibility

Applying the Concepts at CD Selections

Project Selection

Applying the Concepts at CD Selections

Summary

C H A P T E R 3

Project Initiation

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

because they believe that the technologies are somehow important in their own right. A

1996 survey by the Standish Group found that 42 percent of all corporate IS projects were

abandoned before completion; a similar 1996 study by the General Accounting Office

found 53 percent of all U.S. government IS projects were abandoned. Most times, problems

can be traced back to the very beginning of the SDLC where too little attention was given

to the identifying business value and understanding the risks associated with the project.

Does this mean that technical people should not recommend new systems projects?

Absolutely not. In fact, the ideal situation is for both IT people (i.e., the experts in systems) and

the business people (i.e., the experts in business) to work closely to find ways for technology

to support business needs. In this way, organizations can leverage the exciting technologies that

are available while ensuring that projects are based upon real business objectives, such as

increasing sales, improving customer service, and decreasing operating expenses. Ultimately,

information systems need to affect the organization’s bottom line (in a positive way!).

In general, a project is a set of activities with a starting point and an ending point

meant to create a system that brings value to the business. Project initiation begins when

someone (or some group) in the organization (called the project sponsor) identifies some

business value that can be gained from using information technology. The proposed pro-

ject is described briefly using a technique called the system request, which is submitted to

an approval committee for consideration. The approval committee reviews the system

request and makes an initial determination, based on the information provided, of whether

to investigate the proposal or not. If so, the next step is the feasibility analysis.

The feasibility analysis plays an important role in deciding whether to proceed with an

IS development project. It examines the technical, economic, and organizational pros and

cons of developing the system, and it gives the organization a slightly more detailed picture

of the advantages of investing in the system as well as any obstacles that could arise. In most

cases, the project sponsor works together with an analyst (or analyst team) to develop the

feasibility analysis for the approval committee.

Once the feasibility analysis has been completed, it is submitted back to the approval com-

mittee along with a revised system request. The committee then decides whether to approve

the project, decline the project, or table it until additional information is available. Projects are

selected by weighing risks and return, and by making trade-offs at the organizational level.

58 Chapter 3 Project Initiation

A CIO needs to have a global view when identifying
and selecting projects for her organization. I would get
lost in the trees if I were to manage on a project-by-
project basis. Given this, I categorize my projects
according to my three roles as a CIO, and the mix of
my project portfolio changes depending on the current
business environment.

My primary role is to keep the business running. That
means every day when each person comes to work, they
can perform his or her job efficiently. I measure this using
various service level, cost, and productivity measures.
Projects that keep the business running could have a high
priority if the business were in the middle of a merger, or
a low priority if things were running smoothly, and it were
“business as usual.”

My second role is to push innovation that creates
value for the business. I manage this by looking at our
lines of business and asking which lines of business create
the most value for the company. These are the areas for
which I should be providing the most value. For example,
if we had a highly innovative marketing strategy, I would
push for innovation there. If operations were running
smoothly, I would push less for innovation in that area.

My third role is strategic, to look beyond today and
find new opportunities for both IT and the business of
providing energy. This may include investigating process
systems, such as automated meter reading or looking into
the possibilities of wireless technologies.

—Lyn McDermid

3-A Interview with Lyn McDermid, CIO, Dominion Virginia PowerCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

PROJECT IDENTIFICATION

A project is identified when someone in the organization identifies a business need to build

a system. This could occur within a business unit or IT, by a steering committee charged

with identifying business opportunities, or evolve from a recommendation made by exter-

nal consultants. Examples of business needs include supporting a new marketing cam-

paign, reaching out to a new type of customer, or improving interactions with suppliers.

Sometimes, needs arise from some kind of “pain” within the organization, such as a drop

in market share, poor customer service levels, or increased competition. Other times, new

business initiatives and strategies are created, and a system is required to enable them.

Business needs also can surface when the organization identifies unique and compet-

itive ways of using IT. Many organizations keep an eye on emerging technology, which is

technology that is still being developed and not yet viable for widespread business use. For

example, if companies stay abreast of technology like the Internet, smart cards, and scent

technology in their earliest stages, they can develop business strategies that leverage the

capabilities of these technologies and introduce them into the marketplace as a first mover.

Ideally, they can take advantage of this first-mover advantage by making money and con-

tinuing to innovate while competitors trail behind.

The project sponsor is someone who recognizes the strong business need for a system

and has an interest in seeing the system succeed. He or she will work throughout the SDLC

to make sure that the project is moving in the right direction from the perspective of the

business. The project sponsor serves as the primary point of contact for the system. Usu-

ally the sponsor of the project is from a business function, such as Marketing, Accounting,

or Finance; however, members of the IT area also can sponsor or cosponsor a project.

The size or scope of the project determines the kind of sponsor that is needed. A

small, departmental system may only require sponsorship from a single manager; how-

ever, a large, organizational initiative may need support from the entire senior manage-

ment team, and even the CEO. If a project is purely technical in nature (e.g.,

improvements to the existing IT infrastructure; research into the viability of an emerging

Project Identification 59

Dominion Virginia Power is one of the nation’s ten
largest investor-owned electric utilities. The company
delivers power to more than two million homes and
businesses in Virginia and North Carolina. In 1997, the
company overhauled some of its core processes and
technology. The goal was to improve customer service
and cut operations costs by developing a new workflow
and geographic information system. When the project
was finished, service engineers who used to sift through
thousands of paper maps could pinpoint the locations of
electricity poles with computerized searches. The pro-
ject helped the utility improve management of all its
facilities, records, maps, scheduling, and human
resources. That, in turn, helped increase employee pro-
ductivity, improve customer response times, and reduce
the costs of operating crews.

Questions:

1. What kinds of things does Dominion Virginia Power
do that requires it to know power pole locations?
How often does it do these things? Who benefits if
the company can locate power poles faster?

2. Based on your answers to question 1, describe three
tangible benefits that the company can receive from
its new computer system. How can these be quanti-
fied?

3. Based on your answers to question 1, describe three
intangible benefits that the company can receive
from its new computer system. How can these be
quantified?

Source: Computerworld (November 11, 1997).

3-1 Identify Tangible and Intangible ValueYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

technology), then sponsorship from IT is appropriate. When projects have great impor-

tance to the business, yet are technically complex, joint sponsorship by both the business

and IT may be necessary.

The business need drives the high-level business requirements for the system. Require-

ments are what the information system will do, or what functionality it will contain. They

need to be explained at a high level so that the approval committee and, ultimately, the pro-

ject team understand what the business expects from the final product. Business require-

ments are what features and capabilities the information system will have to include, such

as the ability to collect customer orders online or the ability for suppliers to receive inven-

tory information as orders are placed and sales are made.

The project sponsor also should have an idea of the business value to be gained from

the system, both in tangible and intangible ways. Tangible value can be quantified and mea-

sured easily (e.g., 2 percent reduction in operating costs). An intangible value results from

an intuitive belief that the system provides important, but hard-to-measure benefits to the

organization (e.g., improved customer service, a better competitive position).

Once the project sponsor identifies a project that meets an important business need,

and he or she can identify the system’s business requirements and value, it is time to for-

mally initiate the project. In most organizations, project initiation begins with a technique

called a system request.

System Request

A system request is a document that describes the business reasons for building a system

and the value that the system is expected to provide. The project sponsor usually com-

pletes this form as part of a formal system project selection process within the organiza-

tion. Most system requests include five elements: project sponsor, business need, business

requirements, business value, and special issues (see Figure 3-1). The sponsor describes

the person who will serve as the primary contact for the project, and the business need

presents the reasons prompting the project. The business requirements of the project refer

to the business capabilities that the system will need to have, and the business value

describes the benefits that the organization should expect from the system. Special issues

are included on the document as a catchall for other information that should be consid-

ered in assessing the project. For example, the project may need to be completed by a spe-

cific deadline. Project teams need to be aware of any special circumstances that could

affect the outcome of the system.

The completed system request is submitted to the approval committee for consideration.

This approval committee could be a company steering committee that meets regularly to

make information systems decisions, a senior executive who has control of organizational

resources, or any other decision-making body that governs the use of business investments.

The committee reviews the system request and makes an initial determination, based on the

information provided, of whether to investigate the proposal or not. If so, the next step is to

conduct a feasibility analysis.

Applying the Concepts at CD Selections

Throughout the book, we will apply the concepts in each chapter to a fictitious company

called CD Selections. For example, in this section, we will illustrate the creation of a system

request. CD Selections is a chain of fifty music stores located in California, with headquar-

ters in Los Angeles. Annual sales last year were $50 million, and they have been growing at

about 3 percent to 5 percent per year for the past few years.

60 Chapter 3 Project Initiation

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Background Margaret Mooney, Vice President of Marketing, has recently become both

excited by and concerned with the rise of Internet sites selling CDs. The Internet has great

potential, but Margaret wants to use it in the right way. Rushing into e-commerce without

considering things like its effect on existing brick-and-mortar stores and the implications

on existing systems at CD Selections could cause more harm than good.

CD Selections currently has a Web site that provides basic information about the com-

pany and about each of its stores (e.g., map, operating hours, phone number). The page

was developed by an Internet consulting firm and is hosted by a prominent local Internet

Service Provider (ISP) in Los Angeles. The IT department at CD Selections has become

experienced with Internet technology as it has worked with the ISP to maintain the site;

however, it still has a lot to learn when it comes to conducting business over the Web.

System Request At CD Selections, new IT projects are reviewed and approved by a pro-

ject steering committee that meets quarterly. The committee has representatives from IT as

well as from the major areas of the business. For Margaret, the first step was to prepare a

system request for the committee.

Project Identification 61

Project Sponsor The person who initiates the Several members of the Finance
project and who serves as the department
primary point of contact for the Vice President of Marketing
project on the business side. IT Manager

Steering committee
CIO
CEO

Business Need The business-related reason for Increase sales
initiating the system. Improve market share

Improve access to information
Improve customer service
Decrease product defects
Streamline supply acquisition
Processes

Business Requirements The business capabilities that the Provide onIine access to information
system will provide. Capture customer demographic

information
Include product search capabilities
Produce management reports
Include online user support

Business Value The benefits that the system will 3 percent increase in sales
create for the organization. 1 percent increase in market share

Reduction in headcount by 5 FTEs*
$200,000 cost savings from

decreased supply costs
$150,000 savings from removal of

existing system

Special Issues or Issues that are relevant to the Government-mandated deadline for
Constraints implementation of the system May 30

and committee make decisions System needed in time for the
about the project. Christmas holiday season

Top-level security clearance needed
by project team to work with data

* = Full-time equivalent

FIGURE 3-1

Elements of the System

Request Form

Element Description Examples

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Figure 3-2 shows the system request she prepared. The sponsor is Margaret, and the

business needs are to increase sales and to better service retail customers. Notice that the

need does not focus on the technology, such as the need “to upgrade our Web page.” The

focus is on the business aspects: sales and customer service.

For now, the business requirements are described at a very high level of detail. In this

case, Margaret’s vision for the requirements includes the ability to help brick-and-mortar

stores reach out to new customers. Specifically, customers should be able to search for

products over the Internet, locate a retail store that contains the product, put a product on

“hold” for later store pickup, and order products that are not currently being stocked.

The business value describes how the requirements will affect the business. Margaret

found identifying intangible business value to be fairly straightforward in this case. The

Internet is a “hot” area, so she expects the Internet to improve customer recognition and sat-

isfaction. Estimating tangible value is more difficult. She expects that Internet ordering will

increase sales in the retail stores, but by how much?

Margaret decides to have her marketing group do some market research to learn how

many retail customers do not complete purchases because the store does not carry the item

they are looking for. They learn that stores lose approximately 5 percent of total sales from

“out-of-stocks and nonstocks.” This number gives Margaret some idea of how much sales

could increase from the existing customer base (i.e., about $50,000 per store), but it does

not indicate how many new customers the system will generate.

Estimating how much revenue CD Selections should anticipate from new Internet cus-

tomers was not simple. One approach was to use some of CD Selections’ standard models

for predicting sales of new stores. Retail stores average about $1 million in sales per year

(after they have been open a year or two), depending upon location factors such as city

population, average incomes, proximity to universities, and so on. Margaret estimated that

adding the new Internet site would have similar effects of adding a new store. This would

suggest ongoing revenues of $1 million, give or take several hundred thousand dollars, after

the Web site had been operating for a few years.

Together, the sales from existing customer ($2.5 million) and new customers ($1 mil-

lion) totaled approximately $3.5 million. Margaret created conservative and optimistic

62 Chapter 3 Project Initiation

At Sprint, network projects originate from two vantage
points—IT and the business units. IT projects usually
address infrastructure and support needs. The business-
unit projects typically begin after a business need is iden-
tified locally, and a business group informally
collaborates with IT regarding how a solution can be
delivered to meet customer expectations.

Once an idea is developed, a more formal request
process begins, and an analysis team is assigned to investi-
gate and validate the opportunity. This team includes mem-
bers from the user community and IT, and they scope out
at a high level what the project will do; create estimates for
technology, training, and development costs; and create a

business case. This business case contains the economic
value-add and the net present value of the project.

Of course, not all projects undergo this rigorous
process. The larger the project, the more time is allocated
to the analysis team. It is important to remain flexible and
not let the process consume the organization. At the
beginning of each budgetary year, specific capital expen-
ditures are allocated for operational improvements and
maintenance. Moreover, this money is set aside to fund
quick projects that deliver immediate value without going
through the traditional approval process.

—Don Hallacy

3-B Interview with Don Hallacy, President, Technology Services, Sprint CorporationCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

estimates by reducing and increasing this figure by 25 percent. This created a possible

range of values from $2,625,000 to $4,375,000. Margaret is conservative, so she decided

to include the lower number as her sales projection. See Figure 3-2 for the completed

system request.

FEASIBILITY ANALYSIS

Once the need for the system and its business requirements have been defined, it is time

to create a more detailed business case to better understand the opportunities and limita-

tions associated with the proposed project. Feasibility analysis guides the organization in

determining whether to proceed with a project. Feasibility analysis also identifies the

Feasibility Analysis 63

System Request—Internet order project

Project sponsor: Margaret Mooney, Vice President of Marketing

Business Need: This project has been initiated to reach new Internet customers and
to better serve existing customers using Internet sales support.

Business Requirements:

Using the Web, customers should be able to search for products and identify the brick-
and-mortar stores that have them in stock. They should be able to put items on hold at a
store location or place an order for items that are not carried or not in stock. The func-
tionality that the system should have is listed below:

• Search through the CD Selections’ inventory of products

• Identify the retail stores that have the product in stock

• Put a product on hold at a retail store and schedule a time to pick up the product

• Place an order for products not currently in stock or not carried by CD Selections

• Receive confirmation that an order can be placed and when it will be in stock

Business Value:

We expect that CD Selections will increase sales by reducing lost sales due to out-of-
stock or nonstocked items and by reaching out to new customers through its Internet
presence. We expect the improved services will reduce customer complaints, primarily
because 50 percent of all customer complaints stem from out of stocks or nonstocked
items. Also, CD Selections should benefit from improved customer satisfaction and
increased brand recognition due to its Internet presence.

Conservative estimates of tangible value to the company includes:

• $750,000 in sales from new customers

• $1,875,000 in sales from existing customers

• $50,000 yearly reduction in customer service calls

Special Issues or Constraints:

• The Marketing Department views this as a strategic system. This Internet system will
add value to our current business model, and it also will serve as a proof of concept
for future Internet endeavors. For example, in the future, CD Selections may want to
sell products directly over the Internet.

• The system should be in place for the holiday shopping season next year.
FIGURE 3-2

System Request for CD

Selections

TEMPLATE

can be found at
www.wiley.com
/college/dennis

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

important risks associated with the project that must be addressed if the project is

approved. As with the system request, each organization has its own process and format

for the feasibility analysis, but most include three techniques: technical feasibility, eco-

nomic feasibility, and organizational feasibility. The results of these techniques are com-

bined into a Feasibility Study deliverable that is given to the approval committee at the end

of Project Initiation. See Figure 3-3.

Although we will discuss feasibility analysis now within the context of Project Initia-

tion, most project teams will revise their feasibility study throughout the SDLC and revisit

its contents at various checkpoints during the project. If at any point the project’s risks and

limitations outweigh its benefits, the project team may decide to cancel the project or make

necessary improvements.

64 Chapter 3 Project Initiation

Think about your own university or college and choose
an idea that could improve student satisfaction with the
course enrollment process. Currently can students enroll
for classes from anywhere? How long does it take? Are
directions simple to follow? Is online help available?

Next, think about how technology can help support
your idea. Would you need completely new technology?
Can the current system be changed?

Question:

1. Create a system request that you could give to the
administration that explains the sponsor, business
need, business requirements, and potential value of
the project. Include any constraints or issues that
should be considered.

3-2 Create a System RequestYOUR

TURN

Technical Feasibility: Can We Build It?

• Familiarity with Application: Less familiarity generates more risk

• Familiarity with Technology: Less familiarity generates more risk

• Project Size: Large projects have more risk

• Compatibility: The harder it is to integrate the system with the company’s
existing technology, the higher the risk

Economic Feasibility: Should We Build It?

• Development costs

• Annual operating costs

• Annual benefits (cost savings and revenues)

• Intangible costs and benefits

Organizational Feasibility: If We Build It, Will They Come?

• Project champion(s)

• Senior management

• Users

• Other stakeholders

• Is the project strategically aligned with the business?

FIGURE 3-3

Feasibility Analysis

Assessment Factors

TEMPLATE

can be found at
www.wiley.com
/college/dennis

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Technical Feasibility

The first technique in the feasibility analysis is to assess the technical feasibility of the pro-

ject, the extent to which the system can be successfully designed, developed, and installed

by the IT group. Technical feasibility analysis is in essence a technical risk analysis that

strives to answer the question: “Can we build it?”1

There are many risks that can endanger the successful completion of the project. First
and foremost is the users’ and analysts’ familiarity with the application. When analysts are
unfamiliar with the business application area, they have a greater chance of misunder-
standing the users or missing opportunities for improvement. The risks increase dramati-
cally when the users themselves are less familiar with an application, such as with the
development of a system to support a new business innovation (e.g., Microsoft starting up
a new Internet dating service). In general, the development of new systems is riskier than
extensions to an existing system because existing systems tend to be better understood.

Familiarity with the technology is another important source of technical risk. When a
system will use technology that has not been used before within the organization, there is a
greater chance that problems will occur and delays will be incurred because of the need to
learn how to use the technology. Risk increases dramatically when the technology itself is
new (e.g., a new Java development toolkit).

Project size is an important consideration, whether measured as the number of people
on the development team, the length of time it will take to complete the project, or the
number of distinct features in the system. Larger projects present more risk, both because
they are more complicated to manage and because there is a greater chance that some
important system requirements will be overlooked or misunderstood. The extent to which
the project is highly integrated with other systems (which is typical of large systems) can
cause problems because complexity is increased when many systems must work together.

Finally, project teams need to consider the compatibility of the new system with the tech-
nology that already exists in the organization. Systems rarely are built in a vacuum—they are
built in organizations that have numerous systems already in place. New technology and appli-
cations need to be able to integrate with the existing environment for many reasons. They may
rely on data from existing systems, they may produce data that feed other applications, and
they may have to use the company’s existing communications infrastructure. A new CRM sys-
tem, for example, has little, value if it does not use customer data found across the organiza-
tion, in existing sales systems, marketing applications, and customer service systems.

The assessment of a project’s technical feasibility is not cut-and-dried because in many
cases, some interpretation of the underlying conditions is needed (e.g., how large does a pro-
ject need to grow before it becomes less feasible?). One approach is to compare the project
under consideration with prior projects undertaken by the organization. Another option is
to consult with experienced IT professionals in the organization or external IT consultants;
often they will be able to judge whether a project is feasible from a technical perspective.

Economic Feasibility

The second element of a feasibility analysis is to perform an economic feasibility analysis (also
called a cost–benefit analysis) that identifies the financial risk associated with the project. This
attempts to answer the question: “Should we build the system?” Economic feasibility is deter-
mined by identifying costs and benefits associated with the system, assigning values to them,
and then calculating the cash flow and return on investment for the project. The more expen-
sive the project, the more rigorous and detailed the analysis. Figure 3-4 lists the steps to per-
form a cost–benefit analysis; each step will be described in the upcoming sections.

Feasibility Analysis 65

1 We use the words “build it” in the broadest sense. Organizations can also choose to buy a commercial software pack-
age and install it, in which case, the question might be: “Can we select the right package and successfully install it?”

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Identify Costs and Benefits The first task when developing an economic feasibility

analysis is to identify the kinds of costs and benefits the system will have and list them along

the left-hand column of a spreadsheet. Figure 3-5 lists examples of costs and benefits that

may be included.

66 Chapter 3 Project Initiation

1. Identify Costs and Benefits List the tangible costs and benefits for the project.
Include both one-time and recurring costs.

2. Assign Values to Costs and Benefits Work with business users and IT professionals to
create numbers for each of the costs and benefits.
Even intangibles should be valued if at all possi-
ble.

3. Determine Cash Flow Project what the costs and benefits will be over a
period of time, usually three to five years. Apply a
growth rate to the numbers, if necessary.

4. Determine Net Present Value Calculate what the value of future costs and bene-
fits are if measured by today’s standards. You will
need to select a rate of growth to apply the NPV
formula.

5. Determine Return on Investment Calculate how much money the organization will
receive in return for the investment it will make
using the ROI formula.

6. Calculate Break-Even Point Find the first year in which the system has greater
benefits than costs. Apply the break-even formula
using figures from that year. This will help you
understand how long it will take before the sys-
tem creates real value for the organization.

7. Graph Break-Even Point Plot the yearly costs and benefits on a line graph.
The point at which the lines cross is the break-
even point.

FIGURE 3-4

Steps to Conduct

Economic Feasibility

FIGURE 3-5

Example Costs and

Benefits for Economic

Feasibility

Development Team Salaries Software Upgrades

Consultant Fees Software Licensing Fees

Development Training Hardware Repairs

Hardware and Software Hardware Upgrades

Vendor Installation Operational Team Salaries

Office Space and Equipment Communications Charges

Data Conversion Costs User Training

Increased Sales Increased Market Share

Reductions in Staff Increased Brand Recognition

Reductions in Inventory Higher Quality Products

Reductions in IT Costs Improved Customer Service

Better Supplier Prices Better Supplier Relations

Development Costs Operational Costs

Tangible Benefits Intangible Benefits

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

The costs and benefits can be broken down into four categories (1) development costs,
(2) operational costs, (3) tangible benefits, and (4) intangibles. Development costs are those
tangible expenses that are incurred during the construction of the system, such as salaries
for the project team, hardware and software expenses, consultant fees, training, and office
space and equipment. Development costs are usually thought of as one-time costs. Opera-
tional costs are those tangible costs that are required to operate the system, such the salaries
for operations staff, software licensing fees, equipment upgrades, and communications
charges. Operational costs are usually thought of as ongoing costs.

Revenues and cost savings are those tangible benefits that the system enables the organi-
zation to collect or tangible expenses that the system enables the organization to avoid. Tangi-
ble benefits may include increased sales, reductions in staff, and reductions in inventory.

Of course, a project also can affect the organization’s bottom line by reaping intangi-
ble benefits or incurring intangible costs. Intangible costs and benefits are more difficult to
incorporate into the economic feasibility because they are based on intuition and belief
rather than “hard numbers.” Nonetheless, they should be listed in the spreadsheet along
with the tangible items.

Assign Values to Costs and Benefits Once the types of costs and benefits have been iden-

tified, you will need to assign specific dollar values to them. This may seem impossible—how

can someone quantify costs and benefits that haven’t happened yet? And how can those pre-

dictions be realistic? Although this task is very difficult, you have to do the best you can to

come up with reasonable numbers for all of the costs and benefits. Only then can the approval

committee make an educated decision about whether or not to move ahead with the project.

The best strategy for estimating costs and benefits is to rely on the people who have the

best understanding of them. For example, costs and benefits that are related to the technol-

ogy or the project itself can be provided by the company’s IT group or external consultants,

and business users can develop the numbers associated with the business (e.g., sales projec-

tions, order levels). You also can consider past projects, industry reports, and vendor infor-

mation, although these approaches probably will be a bit less accurate. Likely, all of the

estimates will be revised as the project proceeds.

What about the intangible costs and benefits? Sometimes, it is acceptable to list intangible

benefits, such as improved customer service, without assigning a dollar value; whereas, other

times estimates have to made regarding how much an intangible benefit is “worth.”We suggest

Feasibility Analysis 67

I conducted a case study at Carlson Hospitality, a global
leader in hospitality services, encompassing more than
1,300 hotel, resort, restaurant, and cruise ship operations in
79 countries. One of its brands, Radisson Hotels & Resorts,
researched guest stay information and guest satisfaction sur-
veys. The company was able to quantify how much of a
guest’s lifetime value can be attributed to his or her percep-
tion of the stay experience. As a result, Radisson knows how
much of the collective future value of the enterprise is at
stake given the perceived quality of stay experience. Using
this model, Radisson can confidently show that a 10 percent

increase in customer satisfaction among the 10 percent of
highest quality customers, will capture one-point market
share for the brand. Each point in market share for the Radis-
son brand is worth $20 million in additional revenue.

—Barbara Wixom

Question:

1. How can a project team use this information to help
determine the economic feasibility of a system?

3-C Intangible Value at Carlson HospitalityCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

that you quantify intangible costs or benefits if at all possible. If you do not, how will you know

if they have been realized? Suppose that a system is supposed to improve customer service.

This is intangible, but let’s assume that the greater customer service will decrease the number

of customer complaints by 10 percent each year over three years and that $200,000 is spent on

phone charges and phone operators who handle complaint calls. Suddenly we have some very

tangible numbers with which to set goals and measure the original intangible benefit.

Figure 3-6 shows costs and benefits along with assigned dollar values. Notice that the

customer service intangible benefit has been quantified based on fewer customer com-

plaint phone calls. The intangible benefit of being able to offer services that competitors

currently offer was not quantified, but it was listed so that the approval committee will

consider the benefit when assessing the system’s economic feasibility.

Determine Cash Flow A formal cost–benefit analysis usually contains costs and benefits over

a selected number of years (usually three to five years) to show cash flow over time (see Figure 3-

7). When using this cash flow method, the years are listed across the top of the spreadsheet to rep-

resent the time period for analysis, and numeric values are entered in the appropriate cells within

the spreadsheet’s body. Sometimes fixed amounts are entered into the columns. For example, Fig-

ure 3-7 lists the same amount for customer complaint calls and inventory costs for all five years.

Usually amounts are augmented by some rate of growth to adjust for inflation or business

68 Chapter 3 Project Initiation

Benefitsa

Increased sales 500,000

Improved customer serviceb 70,000

Reduced inventory costs 68,000

Total benefits 638,000

Development costs

2 servers @ $125,000 250,000

Printer 100,000

Software licenses 34,825

Server software 10,945

Development labor 1,236,525

Total development costs 1,632,295

Operational costs

Hardware 54,000

Software 20,000

Operational labor 111,788

Total operational costs 185,788

Total costs 1,818,083

a An important yet intangible benefit will be the ability to offer ser-

vices that our competitors currently offer.

b Customer service numbers have been based on reduced costs for

customer complaint phone calls.

FIGURE 3-6

Assign Values to Costs

and Benefits

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Feasibility Analysis 69

FIGURE 3-7 Cost–Benefit Analysis

Increased sales 500,000 530,000 561,800 595,508 631,238

Reduction in customer complaint calls 70,000 70,000 70,000 70,000 70,000

Reduced inventory costs 68,000 68,000 68,000 68,000 68,000

Total Benefits: 638,000 668,000 699,800 733,508 769,238

PV of Benefits: 619,417 629,654 640,416 651,712 663,552 3,204,752

PV of All Benefits: 619,417 1,249,072 1,889,488 2,541,200 3,204,752

2 Servers @ $125,000 250,000 0 0 0 0

Printer 100,000 0 0 0 0

Software licenses 34,825 0 0 0 0

Server software 10,945 0 0 0 0

Development labor 1,236,525 0 0 0 0

Total Development Costs: 1,632,295 0 0 0 0

Hardware 54,000 81,261 81,261 81,261 81,261

Software 20,000 20,000 20,000 20,000 20,000

Operational labor 111,788 116,260 120,910 125,746 130,776

Total Operational Costs: 185,788 217,521 222,171 227,007 232,037

Total Costs: 1,818,083 217,521 222,171 227,007 232,037

PV of Costs: 1,765,129 205,034 203,318 201,693 200,157 2,575,331

PV of All Costs: 1,765,129 1,970,163 2,173,481 2,375,174 2,575,331

Total Project Benefits—Costs: (1,180,083) 450,479 477,629 506,501 537,201

Yearly NPV: (1,145,712) 424,620 437,098 450,019 463,395 629,421

Cumulative NPV: (1,145,712) (721,091) (283,993) 166,026 629,421

Return on Investment: 24.44% (629,421/2,575,331)

Break-even Point: 3.63 years (break-even occurs in year 4; [450,019 – 166,026] / 450,019 = 0.63)

Intangible Benefits: This service is currently provided by competitors
Improved customer satisfaction

2003 2004 2005 2006 2007 Total

improvements, as shown by the 6 percent increase that is added to the sales numbers in the sam-

ple spreadsheet. Finally, totals are added to determine what the overall benefits will be, and the

higher the overall total, the more feasible the solution is in terms of its economic feasibility.

Determine Net Present Value and Return on Investment There are several problems

with the cash flow method because it does not consider the time value of money (i.e., a dol-

lar today is not worth a dollar tomorrow), and it does not show the overall “bang for the

buck” that the organization is receiving from its investment. Therefore, some project teams

add additional calculations to the spreadsheet to provide the approval committee with a

more accurate picture of the project’s worth.

Net present value (NPV) is used to compare the present value of future cash flows with

the investment outlay required to implement the project. Consider the table in Figure 3-8

that shows the future worth of a dollar investment today, given different numbers of years

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

and different rates of change. If you have a friend who owes you a dollar today, but instead

she gives you a dollar three years from now—you’ve been had! Given a 10 percent increase

in value, you’ll be receiving the equivalent of 75 cents in today’s terms.

NPV can be calculated in many different ways, some of which are extremely complex.

See Figure 3-9 for a basic calculation that can be used in your cash flow analysis to get more

relevant values. In Figure 3-7, the present value of the costs and benefits are calculated first

(i.e., they are shown at a discounted rate). Then NPV is calculated, and it shows the dis-

counted rate of the combined costs and benefits.

The return on investment (ROI) is a calculation that is listed somewhere on the spread-

sheet that measures the amount of money an organization receives in return for the money

it spends—a high ROI results when benefits far outweigh costs. ROI is determined by tak-

ing the total benefits less the costs of the system and dividing that number by the total costs

of the system (see Figure 3-9). ROI can be determined per year, or for the entire project

over a period of time. One drawback of ROI is that it only considers the end points of the

investment, not the cash flow in between, so it should not be used as the sole indicator of

a project’s worth. Find the ROI figure on the spreadsheet in Figure 3-7.

70 Chapter 3 Project Initiation

1 0.943 0.909 0.870

2 0.890 0.826 0.756

3 0.840 0.751 0.572

4 0.792 0.683 0.497

This table shows how much a dollar today is worth 1–4 years from now in

today’s terms across different interest rates.

Number of years 6% 10% 15%

FIGURE 3-8

The Value of a Future

Dollar Today

Present Value (PV) The amount of an investment today Amount
compared to that same amount in the future,
taking into account inflation and time.

(1 + interest rate)n

n = number of years in future

Net Present Value (NPV) The present value of benefit less the present PV Benefits – PV Costs
value of costs.

Return on Investment (ROI) The amount of revenues or cost savings results Total benefits – Total costs
from a given investment.

Total costs

Break-Even Point The point in time at which the costs of the Yearly NPV* – Cumulative NPV
project equal the value it has delivered.

Yearly NPV*

*Use the Yearly NPV amount from the first year in which
the project has a positive cash flow.

Add the above amount to the year in which the project
has a positive cash flow.

Calculation Definition Formula

FIGURE 3-9 Financial Calculations Used For Cost–Benefit Analysis

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Feasibility Analysis 71

In 1996, IDC conducted a study of sixty-two companies
that had implemented data warehousing. They found
that the implementations generated an average three-
year return on investment of 401 percent. The interesting
part is that while forty-five companies reported results
between 3 percent and 1,838 percent, the range varied
from—1,857 percent to as high as 16,000 percent!

Questions:

1. What kinds of reasons would you give for the vary-
ing degrees of return on investment?

2. How would you interpret these results if you were a
manager thinking about investing in data warehous-
ing for your company?

3-D Return on InvestmentCONCEPTS

IN ACTION

Break-even Point
1 2 3 54

0

500,000

1,000,000

1,500,000

2,000,000

D
o
ll

ar
s

2,500,000

3,500,000

Years

3,000,000
Costs

Benefits

FIGURE 3-10

Break-even Graph

Determine Break-Even Point If the project team needs to perform a rigorous

cost–benefit analysis, they may need to include information about the length of time

before the project will break-even, or when the returns will match the amount

invested in the project. The greater the time it takes to break-even, the riskier the pro-

ject. The break-even point is determined by looking at the cash flow over time and

identifying the year in which the benefits are larger than the costs (see Figure 3-7).

Then, the yearly and cumulative NPV for that year are divided by the yearly NPV to

determine how far into the year the break-even will occur. See Figure 3-9 for the

break-even calculation.

The break-even point also can be depicted graphically as shown in Figure 3-10. The

cumulative present value of the costs and benefits for each year are plotted on a line graph,

and the point at which the lines cross is the break-even point.

Alternatives to Traditional Cost–Benefit Analysis There have been concerns raised

as to the appropriateness of using traditional cost–benefit analysis using NPV and ROI

to determine economic feasibility of an IT project. One of the major problems of using

traditional cost–benefit analysis to determine the economic feasibility of an IT invest-

ment is that traditional cost–benefit analysis is based on the assumption that the

investor must either invest now or not invest at all. However, in most IT investment

decisions, the decision to invest is not a now-or-never decision. In most situations, an

information system is already in place. As such, the decision to replace or upgrade the

current information system can usually be delayed. There have been different proposals

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

made to overcome some of the weaknesses in traditional cost-benefit analysis.2 In this

section, we describe the primary alternative that has been proposed for object-oriented

systems: option pricing models (OPMs).3

At this point in time, OPMs have had limited use in economic feasibility analysis for IT

investment decisions in industry. In fact, there is some controversy as to whether an instru-

ment created for a traded asset (stock) can be used in evaluating IT investment opportuni-

ties. However, the preliminary research results demonstrate that their use in IT investment

evaluations may be warranted. OPMs have shown promise in evaluating the potential future

value of an investment in IT. In many cases in which traditional cost–benefit analysis of

investments in IT have predicted that the investment would be a failure, OPMs have shown

that they may indeed be feasible.

With object-oriented systems, where classes are designed not only for the current

application, but also for use in future development efforts, an investment in developing a

class or a set of classes may pay “dividends” well beyond the original system development

effort. Furthermore, with the iterative and incremental development emphasis in the

object-oriented systems development approaches, such as those described in Chapter 2, an

object-oriented project can be viewed as a sequence of smaller projects. As such, you might

treat investments in an object-oriented project much as you would an investment in a call

option in finance. A call option is essentially a contract that gives the right to purchase an

amount of stock for a given price for a specified period of time to the purchaser of the call

option. However, a call option does not create an obligation to buy the stock.

Treating an IT investment as a call option allows management, at a relevant point in

the future, to determine whether additional investment into the evolving system is rea-

sonable. This gives management the flexibility to determine the economic feasibility of a

project to decide whether to continue with the development as planned, to abandon the

project, to expand the scope of the project, to defer future development, or to shrink the

current development effort. In many ways, treating IT investments as call options simply

allows management to delay investment decisions until more information is available.

Once the decision is made to invest (i.e., the call option is exercised) the decision is

considered irreversible. The idea of irreversible decisions is one of the fundamental

assumptions on which OPMs are based. This assumption fits quite well with modern

object-oriented system development approaches, in which, once an iteration has begun, an

increment is completed before another investment decision is made.

Researchers have studied many different OPMs in terms of their applicability to IT invest-

ment.4 However, all OPMs share a common thread: both the direct benefit of the proposed

72 Chapter 3 Project Initiation

2 See, for example, Q. Hu, R. Plant, and D. Hertz, “Software Cost Estimation Using Economic Production Mod-
els,” Journal of MIS 15(1) (Summer 1998), pp. 143–163; and G. Ooi and C. Soh, “Developing an Activity-based
Approach for System Development and Implementation,” ACM Data Base for Advances in Information Systems
34(3) (Summer 2003), pp. 54–71.
3 For more information regarding the use of option pricing models in evaluating economic feasibility of information
systems, see M. Benaroch and R. Kauffman, “A Case for Using Real Options Pricing Analysis to Evaluate Information
Technology Project Investments,” Information Systems Research 10(1) (March 1999), pp. 70–86; M. Benaroch and R.
Kauffman, “Justifying Electronic Banking Network Expansion Using Real Options Analysis,” MIS Quarterly 24(2)
(June 2000), pp. 197-225; Q. Dai, R. Kauffman, and S. March, “Analyzing Investments in Object-Oriented Middle-
ware,” Ninth Workshop on Information Technologies and Systems (December 1999), pp. 45–50; A. Kambil, J. Hender-
son, and H. Mohsenzadeh,“Strategic Management of Information Technology Investments: An Options Perspective,”
in R.D. Banker, R.J. Kauffman, and M.A. Mahmood (eds.), Strategic Information Technology Management: Perspectives
on Organizational Growth and Competitive Advantage, Idea Group, 1993; A. Taudes,“Software Growth Options,” Jour-
nal of MIS 15(1), (Summer 1998), pp. 165–185; A. Taudes, M. Feurstein, and A. Mild, “Options Analysis of Software
Platform Decisions: A Case Study,” MIS Quarterly 24(2) (June 2000), pp. 227–243.
4 Two of the more important OPMs used for evaluating IT investments are the binomial OPM and the Black-
Scholes OPM. For more information on these models see J.C. Hull, Options, Futures, and Other Derivative Secu-
rities (Englewood Cliffs, NJ: Prentice-Hall, 1993).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

project and the indirect value (option value) must be computed to determine economic feasi-

bility of an IT investment using an OPM. The direct benefit can be computed using the tradi-

tional NPV while the value of the option can be computed using one of the OPMs in the

literature. Given that the minimum expected value of an option is always zero, the minimum

estimated value for investing using an OPM will be the same as the value given by the tradi-

tional approach. However, when the expected value of the option (e.g., future iterations or pro-

jects) exceeds zero, an OPM will give an estimated value greater than the traditional approach.

The actual calculation of the value of an option is quite complex and, as such, is beyond the

scope of this book. However, given how well the OPMs fit the object-oriented systems devel-

opment approaches, it seems reasonable that OPMs should be considered as alternatives to

evaluating IT investments in object-oriented systems.

Organizational Feasibility

The final technique used for feasibility analysis is to assess the organizational feasibility of

the system, how well the system ultimately will be accepted by its users and incorporated

into the ongoing operations of the organization. There are many organizational factors that

can have an impact on the project, and seasoned developers know that organizational fea-

sibility can be the most difficult feasibility dimension to assess. In essence, an organiza-

tional feasibility analysis attempts to answer the question: “If we build it, will they come?”

One way to assess the organizational feasibility of the project is to understand how well

the goals of the project align with business objectives. Strategic alignment is the fit between

the project and business strategy—the greater the alignment, the less risky the project will

be from an organizational feasibility perspective. For example, if the Marketing Depart-

ment has decided to become more customer focused, then a CRM project that produces

integrated customer information would have strong strategic alignment with Marketing’s

goal. Many IT projects fail when the IT department initiates them because there is little or

no alignment with business unit or organizational strategies.

A second way to assess organizational feasibility is to conduct a stakeholder analysis.5 A

stakeholder is a person, group, or organization that can affect (or will be affected by) a new

system. In general, the most important stakeholders in the introduction of a new system are

the project champion, system users, and organizational management (see Figure 3-11), but

systems sometimes affect other stakeholders as well. For example, the IS department can be a

stakeholder of a system because IS jobs or roles may be changed significantly after its imple-

mentation. One key stakeholder outside of the champion, users, and management in

Microsoft’s project that embedded Internet Explorer as a standard part of Windows was the

U.S. Department of Justice.

The champion is a high-level non-IS executive who is usually but not always the person

who created the system request. The champion supports the project by providing time,

resources (e.g., money), and political support within the organization by communicating the

importance of the system to other organizational decision makers. More than one champion

is preferable because if the champion leaves the organization, the support could leave as well.

While champions provide day-to-day support for the system, organizational manage-

ment also needs to support the project. Such management support conveys to the rest of

the organization the belief that the system will make a valuable contribution and that nec-

essary resources will be made available. Ideally, management should encourage people in

the organization to use the system and to accept the many changes that the system will

likely create.

Feasibility Analysis 73

5 A good book on stakeholder analysis that presents a series of stakeholder analysis techniques is R. O. Mason
and I.I. Mittroff, Challenging Strategic Planning Assumptions: Theory, Cases, and Techniques, New York, NY: John
Wiley & Sons, 1981.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

74 Chapter 3 Project Initiation

Champion A champion: • Make a presentation about the objectives of the
• Initiates the project project and the proposed benefits to those executives
• Promotes the project who will benefit directly from the system
• Allocates his or her time to project • Create a prototype of the system to demonstrate its
• Provides resources potential value

Organizational Organizational managers: • Make a presentation to management about the
Management • Know about the project objectives of the project and the proposed benefits

• Budget enough money for the project • Market the benefits of the system using memos and
• Encourage users to accept and use the system organizational newsletters

• Encourage the champion to talk about the project
with his or her peers

System Users Users: • Assign users official roles on the project team
• Make decisions that influence the project • Assign users specific tasks to perform with clear
• Perform hands-on activities for the project deadlines
• Ultimately determine whether the project is • Ask for feedback from users regularly (e.g., at

successful by using or not using the system weekly meetings)

Role Techniques for improvement

FIGURE 3-11 Some Important Stakeholders for Organizational Feasibility

A third important set of stakeholders is the system users who ultimately will use the

system once it has been installed in the organization. Too often, the project team meets

with users at the beginning of a project and then disappears until after the system is cre-

ated. In this situation, rarely does the final product meet the expectations and needs of

those who are supposed to use it because needs change and users become savvier as the

project progresses. User participation should be promoted throughout the development

process to make sure that the final system will be accepted and used by getting users actively

involved in the development of the system (e.g., performing tasks, providing feedback, and

making decisions).

The final feasibility study helps organizations make wiser investments regarding IS

because it forces project teams to consider technical, economic, and organizational factors

that can affect their projects. It protects IT professionals from criticism by keeping the

business units educated about decisions and positioned as the leaders in the decision-

making process. Remember—the feasibility study should be revised several times during

the project at points where the project team makes critical decisions about the system

(e.g., before the design begins). It can be used to support and explain the critical choices

that are made throughout the SDLC.

Applying the Concepts at CD Selections

The steering committee met and placed the Internet Order project high on its list of pro-

jects. A senior systems analyst, Alec Adams, was assigned to help Margaret conduct a feasi-

bility analysis because of his familiarity with CD Selections’ sales and distribution systems.

He also was an avid user of the Web and had been offering suggestions for the improve-

ment of CD Selections’ Web site.

Alec and Margaret worked closely together over the next few weeks on the feasibility

analysis. Figure 3-12 presents the executive summary page of the feasibility analysis; the

report itself was about ten pages long, and it provided additional detail and supporting

documentation.

As shown in Figure 3-12, the project is somewhat risky from a technical perspective.

CD Selections has minimal experience with the proposed application and the technology

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Feasibility Analysis 75

Internet Order Feasibility Analysis Executive Summary

Margaret Mooney and Alec Adams created the following feasibility analysis for the CD Selections Internet Order System Project. The System
Proposal is attached, along with the detailed feasibility study. The highlights of the feasibility analysis are:

Technical Feasibility

The Internet Order System is feasible technically, although there is some risk.

CD Selections’ risk regarding familiarity with Internet order applications is high

• The Marketing Department has little experience with Internet-based marketing and sales.
• The IT Department has strong knowledge of the company’s existing order systems; however, it has not worked with Web-enabled

order systems.
• Hundreds of retailers that have Internet Order applications exist in the marketplace.

CD Selections’ risk regarding familiarity with the technology is medium

• The IT Department has relied on external consultants and an Information Service Provider to develop its existing Web environment.
• The IT Department has gradually learned about Web systems by maintaining the current Web site.
• Development tools and products for commercial Web application development are available in the marketplace, although the IT depart-

ment has little experience with them.
• Consultants are readily available to provide help in this area.

The project size is considered medium risk

• The project team likely will include less than ten people.
• Business user involvement will be required.
• The project timeframe cannot exceed a year because of the Christmas holiday season implementation deadline, and it should be much

shorter.

The compatibility with CD Selections’ existing technical infrastructure should be good

• The current Order System is a client-server system built using open standards. An interface with the Web should be possible.
• Retail stores already place and maintain orders electronically.
• An Internet infrastructure already is in place at retail stores and at the corporate headquarters.
• The ISP should be able to scale their services to include a new Order System.

Economic Feasibility

A cost–benefit analysis was performed; see attached spreadsheet for details. A conservative approach shows that the Internet Order System
has a good chance of adding to the bottom line of the company significantly.

ROI over 3 years: 229 percent
Total benefit after three years: $3.5 million (adjusted for present value)
Break-even occurs: after 1.7 years

Intangible Costs and Benefits

• Improved customer satisfaction

• Greater brand recognition

Organizational Feasibility

From an organizational perspective, this project has low risk. The objective of the system, which is to increase sales, is aligned well with the
senior management’s goal of increasing sales for the company. The move to the Internet also aligns with Marketing’s goal to become more
savvy in Internet marketing and sales.

The project has a project champion, Margaret Mooney, Vice President of Marketing. Margaret is well positioned to sponsor this project and to
educate the rest of the senior management team when necessary. To date, much of senior management is aware of and supports the initiative.

The users of the system, Internet consumers, are expected to appreciate the benefits of CD Selections’ Web presence. And, management
in the retail stores should be willing to accept the system, given the possibility of increased sales at the store level.

Additional Comments:

• The Marketing Department views this as a strategic system. This Internet system will add value to our current business model, and it also
will serve as a proof of concept for future Internet endeavors.

• We should consider hiring a consultant with expertise in similar applications to assist with the project.
• We will need to hire new staff to operate the new system, from both the technical and business operations aspects.

FIGURE 3-12 Feasibility Analysis for CD Selections

TEMPLATE

can be found at
www.wiley.com
/college/dennis

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

because the ISP had been managing most of the Web site technology to date. One solu-

tion may be to hire a consultant with e-commerce experience to work with the IT depart-

ment and to offer guidance. Further, the new system would have to exchange order

information with the company’s brick-and-mortar order system. Currently individual

retail stores submit orders electronically, so receiving orders and exchanging information

with the Internet systems should be possible.

The economic feasibility analysis includes refined assumptions that Margaret made in

the system request. Figure 3-13 shows the summary spreadsheet that led to the conclusions

on the feasibility analysis. Development costs are expected to be about $250,000. This is a

very rough estimate, as Alec has had to make some assumptions about the amount of time

it will take to design and program the system. These estimates will be revised after a

detailed workplan has been developed and as the project proceeds.6 Traditionally, operat-

ing costs include the costs of the computer operations. In this case, CD Selections has had

to include the costs of business staff, because they are creating a new business unit, result-

ing in a total of about $450,000 each year. Margaret and Alec have decided to use a conser-

vative estimate for revenues although they note the potential for higher returns. This shows

that the project can still add significant business value, even if the underlying assumptions

prove to be overly optimistic. The spreadsheet was projected over three years, and the ROI

and break-even point were included.

The organizational feasibility is presented in Figure 3-12. There is a strong champion,

well placed in the organization to support the project. The project originated in the busi-

ness or functional side of the company, not the IS department, and Margaret has carefully

built up support for the project among the senior management team.

This is an unusual system in that the ultimate end users are the consumers external to

CD Selections. Margaret and Alec have not done any specific market research to see how

well potential customers will react to the CD Selections system, so this is a risk.

An additional stakeholder in the project is the management team responsible for the

operations of the traditional stores, and the store managers. They should be quite sup-

portive given the added service that they now can offer. Margaret and Alec need to make

sure that they are included in the development of the system so that they can appropriately

incorporate it into their business processes.

76 Chapter 3 Project Initiation

6 Some of the salary information may seem high to you. Most companies use a “full cost” model for estimating
salary cost in which all benefits (e.g., health insurance, retirement, payroll taxes) are included in salaries when
estimating costs.

Think about the idea that you developed in “Your Turn 3-2”
to improve your university or college course enrollment.

Questions:

1. List three things that influence the technical feasibil-
ity of the system.

2. List three things that influence the economic feasi-
bility of the system.

3. List three things that influence the organizational
feasibility of the system.

4. How can you learn more about the issues that
affect the three kinds of feasibility?

3-3 Create a Feasibility AnalysisYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Feasibility Analysis 77

Increased sales from new customers 0 750,000 772,500

Increased sales from existing customers 0 1,875,000 1,931,250

Reduction in customer complaint calls 0 50,000 50,000

Total Benefits: 0 2,675,000 2,753,750

PV of Benefits: 0 2,521,444 2,520,071 5,041,515

PV of All Benefits: 0 2,521,444 5,041,515

Labor: Analysis and Design 42,000 0 0

Labor: Implementation 120,000 0 0

Consultant Fees 50,000 0 0

Training 5,000 0 0

Office Space and Equipment 2,000 0 0

Software 10,000 0 0

Hardware 25,000 0 0

Total Development Costs: 254,000 0 0

Labor: Webmaster 85,000 87,550 90,177

Labor: Network Technician 60,000 61,800 63,654

Labor: Computer Operations 50,000 51,500 53,045

Labor: Business Manager 60,000 61,800 63,654

Labor: Assistant Manager 45,000 46,350 47,741

Labor: 3 Staff 90,000 92,700 95,481

Software upgrades 1,000 1,000 1,000

Software licenses 3,000 1,000 1,000

Hardware upgrades 5,000 3,000 3,000

User training 2,000 1,000 1,000

Communications charges 20,000 20,000 20,000

Marketing expenses 25,000 25,000 25,000

Total Operational Costs: 446,000 452,700 464,751

Total Costs: 700,000 452,700 464,751

PV of Costs: 679,612 426,713 425,313 1,531,638

PV of all Costs: 679,612 1,106,325 1,531,638

Total Project Costs Less Benefits: (700,000) 2,222,300 2,288,999

Yearly NPV: (679,612) 2,094,731 2,094,758 3,509,878

Cumulative NPV: (679,612) 1,415,119 3,509,878

Return on Investment: 229.16% (3,509,878/1,531,638)

Break-even Point: 1.32 years (break-even occurs in year 2;

[2,094,731 – 1,415,119] / 2,094,731 = 0.32)

Intangible Benefits: Greater brand recognition

Improved customer satisfaction

2003 2004 2005 Total

FIGURE 3-13 Economic Feasibility Analysis for CD Selections

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

PROJECT SELECTION

Once the feasibility analysis has been completed, it is submitted back to the approval com-

mittee along with a revised system request. The committee then decides whether to

approve the project, decline the project, or table it until additional information is available.

At the project level, the committee considers the value of the project by examining the busi-

ness need (found in the system request) and the risks of building the system (presented in

the feasibility analysis).

Before approving the project, however, the committee also considers the project from

an organizational perspective; it has to keep in mind the company’s entire portfolio of pro-

jects. This way of managing projects is called portfolio management. Portfolio management

takes into consideration the different kinds of projects that exist in an organization—large

and small, high risk and low risk, strategic and tactical (see Figure 3-14 for the different

ways of classifying projects). A good project portfolio will have the most appropriate mix

of projects for the organization’s needs. The committee acts as portfolio manager with the

goal of maximizing the cost/benefit performance and other important factors of the pro-

jects in their portfolio. For example, a organization may want to keep high-risk projects to

less than 20 percent of its total project portfolio.

The approval committee must be selective about where to allocate resources because

the organization has limited funds. This involves trade-offs in which the organization must

give up something in return for something else to keep its portfolio well balanced. If there

are three potentially high-payoff projects, yet all have very high risk, then maybe only one

of the projects will be selected. Also, there are times when a system at the project level

makes good business sense, but it does not at the organization level. Thus, a project may

show a very strong ROI and support important business needs for a part of the company;

however, it is not selected. This could happen for many reasons—because there is no

money in the budget for another system, the organization is about to go through some kind

of change (e.g., a merger, an implementation of a company-wide system like an ERP sys-

tem), projects that meet the same business requirements already are underway, or the sys-

tem does not align well with current or future corporate strategy.

Applying the Concepts at CD Selections

The approval committee met and reviewed the Internet Order System project along with

two other projects—one that called for the implementation of corporate Intranet and

78 Chapter 3 Project Initiation

Size What is the size? How many people are needed to work on the
project?

Cost How much will the project cost the organization?

Purpose What is the purpose of the project? Is it meant to improve the
technical infrastructure? Support a current business strategy?
Improve operations? Demonstrate a new innovation?

Length How long will the project take before completion? How much
time will go by before value is delivered to the business?

Risk How likely is it that the project will succeed or fail?

Scope How much of the organization is affected by the system? A
department? A division? The entire corporation?

Return on investment How much money does the organization expect to receive in
return for the amount the project costs?

FIGURE 3-14

Ways to Classify

Projects

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

another that proposed in-store kiosks that would provide customers with information

about the CDs that the store carried. Unfortunately, the budget would only allow for one

project to be approved, so the committee carefully examined the costs, expected benefits,

risks, and strategic alignment of all three projects. Currently, a primary focus of upper

management is increasing sales in the retail stores, and the Internet system and kiosk pro-

ject best aligned with that goal. Given that both projects had equal risk, but that the Inter-

net Order project expected a much greater return, the committee decided to fund the

Internet Order System.

SUMMARY

Project Initiation

Project initiation is the point at which an organization creates and assesses the original

goals and expectations for a new system. The first step in the process is to identify the busi-

ness value for the system by developing a system request that provides basic information

Summary 79

It seems hard to believe that an approval committee would
not select a project that meets real business needs, has a
high potential ROI, and has a positive feasibility analysis.

Think of a company you have worked for or know about.
Describe a scenario in which a project may be very attrac-
tive at the project level, but not at the organization level.

3-4 To Select or Not To SelectYOUR

TURN

At Marriott, we don’t have IT projects—we have business
initiatives and strategies that are enabled by IT. As a result,
the only time a traditional “IT project” occurs is when we
have an infrastructure upgrade that will lower costs or
leverage better functioning technology. In this case, IT has
to make a business case for the upgrade and prove its
value to the company.

The way IT is involved in business projects in the
organization is twofold. First, senior IT positions are filled
by people with good business understanding. Second,
these people are placed on key business committees and
forums where the real business happens, such as finding
ways to satisfy guests. Because IT has a seat at the table,
we are able to spot opportunities to support business
strategy. We look for ways in which IT can enable or bet-
ter support business initiatives as they arise.

Therefore, business projects are proposed, and IT is
one component of them. These projects are then evaluated

the same as any other business proposal, such as a new
resort—by examining the return on investment and other
financial measures.

At the organizational level, I think of projects as
must-do’s, should-do’s, and nice-to-do’s. The “must do’s”
are required to achieve core business strategy, such as
guest preference. The “should do’s” help grow the busi-
ness and enhance the functionality of the enterprise.
These can be somewhat untested, but good drivers of
growth. The “nice-to-do’s” are more experimental and
look farther out into the future.

The organization’s project portfolio should have a
mix of all three kinds of projects, with a much greater pro-
portion devoted to the “must-do’s.”

—Carl Wilson

3-E Interview with Carl Wilson, CIO, Marriott CorporationCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

80 Chapter 3 Project Initiation

Hygeia Travel Health is a Toronto-based health insurance
company whose clients are the insurers of foreign tourists
to the United States and Canada. Its project selection
process is relatively straightforward. The project evalua-
tion committee, consisting of six senior executives, splits
into two groups. One group includes the CIO, along with
the heads of operations and research and development,
and it analyzes the costs of every project. The other group
consists of the two chief marketing officers and the head
of business development, and they analyze the expected
benefits. The groups are permanent, and to stay objective,
they don’t discuss a project until both sides have evalu-
ated it. The results are then shared, both on a spreadsheet
and in conversation. Projects are then approved, passed
over, or tabled for future consideration.

Last year, the marketing department proposed pur-
chasing a claims database filled with detailed information
on the costs of treating different conditions at different facil-
ities. Hygeia was to use this information to estimate how
much money insurance providers were likely to owe on a
given claim if a patient was treated at a certain hospital as
opposed to any other. For example, a 45-year-old man suf-
fering a heart attack may accrue $5,000 in treatment costs
at hospital A, but only $4,000 at hospital B. This information

would allow Hygeia to recommend the cheaper hospital to
its customer. That would save the customer money and help
differentiate Hygeia from its competitors.

The benefits team used the same three-meeting
process to discuss all the possible benefits of implement-
ing the claims database. Members of the team talked to
customers and made a projection using Hygeia’s past
experience and expectations about future business trends.
The verdict: The benefits team projected a revenue
increase of $210,000. Client retention would rise by 2 per-
cent. And overall, profits would increase by 0.25 percent.

The costs team, meanwhile, came up with large esti-
mates: $250,000 annually to purchase the database and
an additional $71,000 worth of internal time to make the
information usable. Put it all together and it was a finan-
cial loss of $111,000 in the first year.

The project still could have been good for market-
ing—maybe even good enough to make the loss accept-
able. But some of Hygeia’s clients were also in the claims
information business and therefore potential competitors.
This, combined with the financial loss, was enough to
make the company reject the project.

Source: “Two Teams Are Better Than One” CIO Magazine, July 15,

2001 by Ben Worthen.

3-F A Project That Does Not Get SelectedCONCEPTS

IN ACTION

In April 1999, one of Capital Blue Cross’s healthcare
insurance plans had been in the field for three years but
hadn’t performed as well as expected. The ratio of premi-
ums to claims payments wasn’t meeting historic norms. In
order to revamp the product features or pricing to boost
performance, the company needed to understand why it
was underperforming. The stakeholders came to the dis-
cussion already knowing they needed better extraction
and analysis of usage data in order to understand product
shortcomings and recommend improvements.

After listening to input from the user teams, the stake-
holders proposed three options. One was to persevere
with the current manual method of pulling data from flat
files via ad hoc reports and retyping it into spreadsheets.

The second option was to write a program to dynam-
ically mine the needed data from Capital’s customer
information control system (CICS). While the system was
processing claims, for instance, the program would pull

out up-to-the-minute data at a given point in time for
users to analyze.

The third alternative was to develop a decision-sup-
port system to allow users to make relational queries from
a data mart containing a replication of the relevant claims
and customer data.

Each of these alternatives was evaluated on cost,
benefits, risks, and intangibles.

Question:

1. What are three costs, benefits, risks, and intangibles
associated with each project?

2. Based on your answer to question 1, which project
would you choose?

Source: “Capital Blue Cross,” CIO Magazine, February 15, 2000, by

Richard Pastore.

3-5 Project SelectionYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

about the proposed system. Next the analysts perform a feasibility analysis to determine the

technical, economic, and organizational feasibility of the system, and if appropriate, the

system is approved, and the development project begins.

System Request

The business value for an information system is identified and then described using a system

request. This form contains the project’s sponsor, business need, business requirements, and

business value of the information system, along with any other issues or constraints that are

important to the project. The document is submitted to an approval committee who deter-

mines whether the project would be a wise investment of the organization’s time and resources.

Feasibility Analysis

A feasibility analysis is then used to provide more detail about the risks associated with the

proposed system, and it includes technical, economic, and organizational feasibilities. The

technical feasibility focuses on whether the system can be built by examining the risks asso-

ciated with the users’ and analysts’ familiarity with the application, familiarity with the

technology, and project size. The economic feasibility addresses whether the system should

be built. It includes a cost–benefit analysis of development costs, operational costs, tangi-

ble benefits, and intangible costs and benefits. Finally, the organizational feasibility assesses

how well the system will be accepted by its users and incorporated into the ongoing oper-

ations of the organization. The strategic alignment of the project and a stakeholder analy-

sis can be used to assess this feasibility dimension.

Project Selection

Once the feasibility analysis has been completed, it is submitted back to the approval com-

mittee along with a revised system request. The committee then decides whether to

approve the project, decline the project, or table it until additional information is available.

The project selection process takes into account all of the projects in the organization using

portfolio management. The approval committee weighs many factors and makes trade-offs

before a project is selected.

Key Terms 81

Approval committee

Break-even point

Business need

Business requirement

Business value

Call option

Cash flow method

Champion

Compatibility

Cost–benefit analysis

Development cost

Economic feasibility

Emerging technology

Familiarity with the application

Familiarity with the technology

Feasibility analysis

Feasibility study

First mover

Functionality

Intangible benefits

Intangible costs

Intangible value

Net present value (NPV)

Operational cost

Option pricing models (OPMs)

Organizational feasibility

Organizational management

Portfolio management

Project

Project initiation

Project size

Project sponsor

Return on/investment (ROI)

Risk

Special issues

Stakeholder

Stakeholder analysis

Strategic alignment

System request

System users

Tangible benefits

Tangible expenses

Tangible value

Technical feasibility

Technical risk analysis

Trade-offs

KEY TERMS

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

82 Chapter 3 Project Initiation

1. Give three examples of business needs for a system.

2. What is the purpose of an approval committee? Who

is usually on this committee?

3. Why should the system request be created by a busi-

nessperson as opposed to an IS professional?

4. What is the difference between intangible value and

tangible value? Give three examples of each.

5. What are the purposes of the system request and the

feasibility analysis? How are they used in the project

selection process?

6. Describe two special issues that may be important to

list on a system request.

7. Describe the three techniques for feasibility analysis.

8. What factors are use to determine project size?

9. Describe a “risky” project in terms of technical feasibility.

Describe a project that would not be considered “risky.”

10. What are the steps for assessing economic feasibility?

Describe each step.

11. List two intangible benefits. Describe how these bene-

fits can be quantified.

12. List two tangible benefits and two operational costs for

a system. How would you determine the values that

should be assigned to each item?

13. Explain the net present value and return on invest-

ment for a cost–benefit analysis. Why would these cal-

culations be used?

14. What is the break-even point for the project? How is it

calculated?

15. What is stakeholder analysis? Discuss three stakehold-

ers that would be relevant for most projects.

QUESTIONS

A. Locate a news article in an IT trade magazine (e.g.,

Computerworld) about an organization that is imple-

menting a new computer system. Describe the tangible

and intangible value that the organization likely will

realize from the new system.

B. Car dealers have realized how profitable it can be to

sell automobiles using the Web. Pretend you work for

a local car dealership that is part of a large chain such

as CarMax. Create a system request you might use to

develop a Web-based sales system. Remember to list

special issues that are relevant to the project.

C. Suppose that you are interested in buying yourself a

new computer. Create a cost–benefit analysis that

illustrates the return on investment that you would

receive from making this purchase. Computer-related

Web sites (e.g., Dell Computers, Compaq Computers)

should have real tangible costs that you can include in

your analysis. Project your numbers out to include a

three-year period of time and provide the net present

value of the final total.

D. Consider the Amazon.com Web site. The management

of the company decided to extend their Web-based

system to include products other than books (e.g.,

wine, specialty gifts). How would you have assessed

the feasibility of this venture when the idea first came

up? How “risky” would you have considered the pro-

ject that implemented this idea? Why?

E. Interview someone who works in a large organization

and ask him or her to describe the approval process

that exists for approving new development projects.

What do they think about the process? What are the

problems? What are the benefits?

F. Reread the “Your Turn 3-1” box (Identify Tangible

and Intangible Value). Create a list of the stakehold-

ers that should be considered in a stakeholder analy-

sis of this project.

EXERCISES

1. The Amberssen Specialty Company is a chain of twelve

retail stores that sell a variety of imported gift items,

gourmet chocolates, cheeses, and wines in the Toronto

area. Amberssen has an IS staff of three people who

have created a simple but effective information system

of networked point-of-sale registers at the stores, and a

centralized accounting system at the company headquar-

ters. Harry Hilman, the head of Amberssen’s IS group,

has just received the following memo from Bill Amberssen,

Sales Director (and son of Amberssen’s founder).

MINICASES

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Harry—it’s time Amberssen Specialty launched

itself on the Internet. Many of our competitors are

already there, selling to customers without the expense

of a retail storefront, and we should be there too. I pro-

ject that we could double or triple our annual revenues

by selling our products on the Internet. I’d like to have

this ready by Thanksgiving, in time for the prime hol-

iday gift-shopping season. Bill

After pondering this memo for several days, Harry

scheduled a meeting with Bill so that he could clarify

Bill’s vision of this venture. Using the standard content of

a system request as your guide, prepare a list of questions

that Harry needs to have answered about this project.

2. The Decker Company maintains a fleet of ten service

trucks and crews that provide a variety of plumbing,

heating, and cooling repair services to residential cus-

tomers. Currently, it takes on average about six hours

before a service team responds to a service request. Each

truck and crew averages twelve service calls per week, and

the average revenue earned per service call is $150. Each

truck is in service fifty weeks per year. Due to the diffi-

culty in scheduling and routing, there is considerable

slack time for each truck and crew during a typical week.

In an effort to more efficiently schedule the trucks

and crews and improve their productivity, Decker man-

agement is evaluating the purchase of a prewritten rout-

ing and scheduling software package. The benefits of

the system will include reduced response time to service

requests and more productive service teams, but man-

agement is having trouble quantifying these benefits.

One approach is to make an estimate of how much

service response time will decrease with the new sys-

tem, which then can be used to project the increase in

the number of service calls made each week. For exam-

ple, if the system permits the average service response

time to fall to four hours, management believes that

each truck will be able to make sixteen service calls per

week on average—an increase of four calls per week.

With each truck making four additional calls per week

and the average revenue per call at $150, the revenue

increase per truck per week is $600 (4 × $150). With ten

trucks in service fifty weeks per year, the average annual

revenue increase will be $300,000 ($600 × 10 × 50).

Decker Company management is unsure whether

the new system will enable response time to fall to

four hours on average, or will be some other number.

Therefore, management has developed the following

range of outcomes that may be possible outcomes of

the new system, along with probability estimates of

each outcome occurring.

New Response Time # Calls/Truck/Week Likelihood

2 hours 20 20%

3 hours 18 30%

4 hours 16 50%

Given these figures, prepare a spreadsheet model that

computes the expected value of the annual revenues to

be produced by this new system.

Minicases 83

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

This chapter describes the important steps of project management, which begins in the

Planning Phase and continues throughout the systems development life cycle (SDLC).

First, the project manager estimates the size of the project and identifies the tasks that need

to be performed. Next, he or she staffs the project and puts several activities in place to help

coordinate project activities. These steps produce important project management deliver-

ables, including the workplan, staffing plan, and standards list.

OBJECTIVES

■ Become familiar with estimation.
■ Be able to create a project workplan.
■ Understand why project teams use timeboxing.
■ Become familiar with how to staff a project.
■ Understand how computer-aided software engineering, standards, and documentation

improve the efficiency of a project.
■ Understand how to reduce risk on a project.

CHAPTER OUTLINE

Introduction

Identifying Project Size

Function Point Approach

Creating and Managing the Workplan

Identifying Tasks

The Project Workplan

Gantt Chart

PERT Chart

Refining Estimates

Scope Management

Timeboxing

Evolutionary Work Breakdown

Structures and Iterative Workplans

Staffing the Project

Staffing Plan

Motivation

Handling Conflict

Coordinating Project Activities

CASE Tools

Standards

Documentation

Managing Risk

Applying the Concepts at CD Selections

Staffing the Project

Coordinating Project Activities

Summary

C H A P T E R 4

Project Management

84

C
op

yr
ig

ht
ed

 M
at

er
ia

l

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

INTRODUCTION

Think about major projects that occur in people’s lives, such as throwing a big party like a

wedding or graduation celebration. Months are spent in advance identifying and perform-

ing all of the tasks that need to get done, such as sending out invitations and selecting a

menu, and time and money are carefully allocated among them. Along the way, decisions

are recorded, problems are addressed, and changes are made. The increasing popularity of

the party planner, a person whose sole job is to coordinate a party, suggests how tough this

job can be. In the end, the success of any party has a lot to do with the effort that went into

planning along the way. System development projects can be much more complicated than

the projects we encounter in our personal lives—usually, more people are involved (e.g.,

the organization), the costs are higher, and more tasks need to be completed. Therefore,

you should not be surprised to learn that “party planners” exist for information system

projects—they are called project managers.

Project management is the process of planning and controlling the development of a

system within a specified time frame at a minimum cost with the right functionality.1 A

project manager has the primary responsibility for managing the hundreds of tasks and

roles that need to be carefully coordinated. Nowadays, project management is an actual

profession, and analysts spend years working on projects prior to tackling the management

of them. In a 1999 Computerworld survey, more than half of 103 companies polled said

they now offer formal project management training for IT project teams. There also is a

variety of project management software available like Microsoft Project, Plan View, and

PMOffice that support project management activities.

Although training and software are available to help project managers, unreasonable

demands set by project sponsors and business managers can make project management

very difficult. Too often, the approach of the holiday season, the chance at winning a pro-

posal with a low bid, or a funding opportunity pressures project managers to promise sys-

tems long before they are able to deliver them. These overly optimistic timetables are

thought to be one of the biggest problems that projects face; instead of pushing a project

forward faster, they result in delays.

Thus, a critical success factor for project management is to start with a realistic assessment

of the work that needs to be accomplished and then manage the project according to that

assessment. This can be achieved by carefully following the four steps that are presented in this

chapter: identifying the project size, creating and managing the workplan, staffing the project,

and coordinating project activities. The project manager ultimately creates a workplan, staffing

plan, and standards list, which are used and refined throughout the entire SDLC.

Introduction 85

1 A set of good books on project management for object-oriented projects are Grady Booch, Object Solutions: Man-
aging the Object-Oriented Project (Menlo Park, CA: Addison-Wesley, 1996); Murray R. Cantor, Object-Oriented
Project Management with UML (New York, NY: John Wiley & Sons, 1998); Alistair Cockburn, Surviving Object-Ori-
ented Projects: A Manager’s Guide (Reading, MA: Addison-Wesley, 1998); and Walker Royce, Software Project Man-
agement: A Unified Framework (Reading, MA: Addison-Wesley, 1998). Also, the Project Management Institute
(www.pmi.org) and the Information Systems Special Interest Group of the Project Management Institute
(www.pmi-issig.org) have valuable resources on project management in information systems.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

IDENTIFYING PROJECT SIZE

The science (or art) of project management is in making trade-offs among three important

concepts: the size of the system (in terms of what it does), the time to complete the project

(when the project will be finished), and the cost of the project. Think of these three things

as interdependent levers that the project manager controls throughout the SDLC. When-

ever one lever is pulled, the other two levers are affected in some way. For example, if a pro-

ject manager needs to readjust a deadline to an earlier date, then the only solution is to

decrease the size of the system (by eliminating some of its functions) or to increase costs

by adding more people or having them work overtime. Often, a project manager will have

to work with the project sponsor to change the goals of the project, such as developing a

system with less functionality or extending the deadline for the final system, so that the

project has reasonable goals that can be met.

Therefore, in the beginning of the project, the manager needs to estimate each of these

levers and then continuously assess how to roll out the project in a way that meets the orga-

nization’s needs. Estimation2 is the process of assigning projected values for time and effort,

and it can be performed manually or with the help of an estimation software package like

Costar or Construx—there are over fifty available on the market. The estimates developed

at the start of a project are usually based on a range of possible values (e.g., the design phase

will take three to four months) and gradually become more specific as the project moves

forward (e.g., the design phase will be completed on March 22).

The numbers used to calculate these estimates can come from several sources. They

can be provided with the methodology that is used, taken from projects with similar tasks

and technologies, or provided by experienced developers. Generally speaking, the numbers

should be conservative. A good practice is to keep track of the actual time and effort val-

ues during the SDLC so that numbers can be refined along the way, and the next project

86 Chapter 4 Project Management

2 A good book for further reading on software estimation is that by Capers Jones, Estimating Software Costs, New
York: McGraw-Hill, 1989.

I was once on a project to develop a system that should
have taken a year to build. Instead, the business need
demanded that the system be ready within five
months—impossible!

On the first day of the project, the project manager
drew a triangle on a white board to illustrate some trade-
offs that he expected to occur over the course of the pro-
ject. The corners of the triangle were labeled Functionality,
Time, and Money. The manager explained,”We have too
little time. We have an unlimited budget. We will not be
measured by the bells and whistles that this system con-
tains. So over the next several weeks, I want you as devel-
opers to keep this triangle in mind and do everything it
takes to meet this five-month deadline.”

At the end of the five months, the project was deliv-
ered on time; however, the project was incredibly over

budget, and the final product was “thrown away” after it
was used because it was unfit for regular usage. Remark-
ably, the business users felt that the project was very suc-
cessful because it met the very specific business needs for
which it was built. They believed that the trade-offs that
were made were worthwhile.

—Barbara Wixom

Questions:

1. What are the risks in stressing only one corner of
the triangle?

2. How would you have managed this project? Can
you think of another approach that might have been
more effective?

4-A Trade-offsCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

can benefit from real data. One of the greatest strengths of systems consulting firms is the

past experience that they offer to a project; they have estimates and methodologies that

have been developed and honed over time and applied to hundreds of projects.

There are two basic ways to estimate the time required to build a system. The simplest

method uses the amount of time spent in the planning phase to predict the time required

for the entire project. The idea is that a simple project will require little planning and a

complex project will require more planning, so using the amount of time spent in the plan-

ning phase is a reasonable way to estimate overall project time requirements.

With this approach, you take the time spent in (or estimated for) the planning phase and

use industry standard percentages (or percentages from the organization’s own experiences) to

calculate estimates for the other SDLC phases. Industry standards suggest that a “typical” busi-

ness application system spends 15 percent of its effort in the planning phase, 20 percent in the

analysis phase, 35 percent in the design phase, and 30 percent in the implementation phase.

This would suggest that if a project takes four months in the planning phase, then the rest of

the project likely will take a total of 22.66 person-months (4 ÷ 0.15 = 22.66). These same indus-

try percentages are then used to estimate the amount of time in each phase (Figure 4-1). The

obvious limitation of this approach is that it can be difficult to take into account the specifics

of your individual project, which may be simpler or more difficult than the “typical” project.

Function Point Approach3

The second approach to estimation, sometimes called the function point approach, uses a

more complex—and, it is hoped, more reliable—three-step process (Figure 4-2). First, the

project manager estimates the size of the project in terms of the number of lines of code

the new system will require. This size estimate is then converted into the amount of effort

required to develop the system in terms of the number of person-months. The estimated

effort is then converted into an estimated schedule time in terms of the number of months

from start to finish.

Step 1: Estimate System Size The first step is to estimate the size of a project using func-

tion points, a concept developed in 1979 by Allen Albrecht of IBM. A function point is a

measure of program size that is based on the system’s number and complexity of inputs,

outputs, queries, files, and program interfaces.

Introduction 87

Typical industry 15% 20% 35% 30%
standards for
business
applications

Estimates based Actual: Estimated: Estimated: Estimated:
on actual figures 4 person- 5.33 person- 9.33 person- 8 person-
for first stages months months months months
of SDLC

SDLC = systems development life cycle.

Planning Analysis Design Implementation

FIGURE 4-1

Estimating Project Time

Using the Planning

Phase Approach

3 A set of good books that focus on function points are J. Brian Dreger, Function Point Analysis (Englewood Cliffs,
NJ: Prentice Hall, 1989) and C. R. Symons, Software Sizing and Estimating: MK II FPA (New York, NY, John Wiley
& Sons, 1991). Additional information on function point analysis and can be found at www.ifpug.org. We intro-
duce a variation on function points, use case points, in Chapter 6.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

To calculate the function points for a project, com-

ponents are listed on a worksheet to represent the

major elements of the system. For example, data-entry

screens are kinds of inputs, reports are outputs, and

database queries are kinds of queries (see Figure 4-3).

The project manager records the total number of each

component that the system will include, and then he or

she breaks down the number to show the number of

components that have low, medium, and high com-

plexity. In Figure 4-3, there are nineteen outputs that

need to be developed for the system, four of which have

low complexity, ten that have medium complexity, and

five that are very complex. After each line is filled in, a

total number of points are calculated per line by multi-

plying each number by a complexity index. The line

totals are added up to determine the total unadjusted

function points (TUFP) for the project.

The complexity of the overall system is greater than the sum of its parts. Things like

the familiarity of the project team with the business area and the technology that will

be used to implement the project also may influence how complex a project will be. A

project that is very complex for a team with little experience might have little complex-

ity for a team with lots of experience. To create a more realistic size for the project, a

number of additional system factors, such as end-user efficiency, reusability, and data

communications are assessed in terms of their effect on the project’s complexity (see

Figure 4-3). These assessments are totaled and placed into a formula to calculate an

adjusted project complexity (APC) score. The TUFP value is multiplied by the APC value

to determine the ultimate size of the project in terms of total adjusted function

points(TAFP). This number should give the project manager a reasonable idea as to how

big the project will be.

Sometimes a shortcut is used to determine the complexity of the project. Instead of

calculating the complexity for the 14 factors listed in Figure 4-3, project managers choose

to assign an APC value that ranges from 0.65 for very simple systems to 1.00 for “normal”

systems to as much as 1.35 for complex systems and multiply the value to the TUFP score.

For example, a very simple system that has 200 unadjusted function points would have a

size of 130 adjusted function points (200 × 0.65 = 130). However, if the system with 200

unadjusted function points were very complex, its function point size would be 270 (200 ×

1.35 = 270).

In the Planning Phase, the exact nature of the system has not yet been determined, so

it is impossible to know exactly how many inputs, outputs, and so forth will be in the sys-

tem. It is up to the project manager to make an intelligent guess. Some people feel that

using function points early on in a project is not practical for this reason. We believe func-

tion points can be a useful tool for understanding a project’s size at any point in the SDLC.

Later in the project, once more is known about the system, the project manager will revise

the estimates using this better knowledge to produce more accurate results.

Once you have estimated the number of function points, you need to convert the

number of function points into the lines of code that will be required to build the system.

The number of lines of code depends on the programming language you choose to use.

Figure 4-4 presents a very rough conversion guide for some popular languages.

88 Chapter 4 Project Management

(months)

(person-months)

Estimate effort required

Estimate time required

(function points and
lines of code)

Estimate system size

FIGURE 4-2
Estimating Project Time

Using the Function

Point Approach

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Introduction 89

Description

System Components:

Inputs

Outputs

Queries

Files

Program Interfaces

23

101

39

150

25

338

1 × 6

5 × 7

3 × 6

0 × 15

2 × 10

2 × 4

10 × 5

0 × 4

15 × 10

0 × 7

3 × 3

4 × 4

7 × 3

0 × 7

1 × 5

6

19

10

15

3

Total Unadjusted Function Points (TUFP):

Total
Number

Low

Complexity

Medium High Total

Overall System:

Data communications

Heavy use configuration

Transaction rate

End-user efficiency

Complex processing

Installation ease

Multiple sites

Performance

Distributed functions

Online data entry

Online update

Reusability

Operational ease

Extensibility

(0 = no effect on processing complexity; 3 = great effect on processing complexity)

Total Processing Complexity (PC):

3

0

0

0

0

0

0

0

2

2

0

0

0

0

7

Adjusted Processing Complexity (APC):

0.65 + (0.01 x 7) = 0.72

Total Adjusted Function Points (TAFP):

0.72 (APC) x 338 (TUFP) = 243 (TAFP)

FIGURE 4-3
Function

Point-Estimation

Worksheet

TEMPLATE

can be found at
www.wiley.com
/college/dennis

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

90 Chapter 4 Project Management

Nielsen Media used function point analysis (FPA) for
an upgrade to the Global Sample Management System
(GSMS) for Nielsen Media/NetRatings, which keeps
track of the Internet rating sample, a group of 40,000
homes nationwide that volunteer to participate in
ongoing ratings.

In late fall of 1998, Nielsen Media did a FP count
based on the current GSMS. (FPA is always easier and
more accurate when there is an existing system.) Nielsen
Media had its counters—three quality assurance staff—do
their FPA, and then input their count into KnowledgePlan,
a productivity modeling tool. In early 1999, seven pro-
grammers began writing code for the system, which they
were expected to complete in ten months. As November
approached, the project was adding staff to try to meet the
deadline. When it became evident that the deadline

would not be met, a new FP count was conducted. The
GSMS had grown to 900 FPs. Besides the original 500
plus 20 percent, there were 300 FPs attributable to fea-
tures and functions that had crept into the project.

How did that happen? The way it always does: The
developers and users had added a button here, a new fea-
ture there, and soon the project was much larger than it
was originally. But Nielsen Media had put a stake in the
ground at the beginning from which they could measure
growth along the way.

The best practice is to run the FPA and productivity
model at the project’s launch and again when there is a
full list of functional requirements. Then do another
analysis anytime there is a major modification in the func-
tional definition of the project.

Source:”Ratings Game,” CIO Magazine, October 2000, by Bill Roberts.

4-B Function Points at NielsenCONCEPTS

IN ACTION

C 130

COBOL 110

Java 55

C++ 50

Turbo Pascal 50

Visual Basic 30

PowerBuilder 15

HTML 15

Packages (e.g., Access, Excel) 10–40

HTML = hypertext mark-up language.

Source: Capers Jones, Software Productivity Research, http://www.spr.com

Approximate Number of Lines
Language of Code per Function Point

FIGURE 4-4

Converting from

Function Points to Lines

of Code

For example, the system in Figure 4-3 has 243 function points. If you were to develop

the system in COBOL, it would typically require approximately 26,730 lines of code to

write it. Conversely, if you were to use Visual Basic, it typically would take 7,290 lines of

code. If you could develop the system using a package such as Excel or Access, it would take

between 2,430 and 9,720 lines of code. There is a great range for packages, because differ-

ent packages enable you to do different things, and not all systems can be built using cer-

tain packages. Sometimes you end up writing lots of extra code to do some simple function

because the package does not have the capabilities you need.

There is also a very important message from the data in this figure. Since there is a

direct relationship between lines of code and the amount of effort and time required to

develop a system, the choice of development language has a significant impact on the time

and cost of projects.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Step 2: Estimate Effort Required Once an understanding is reached about the size of

the system, the next step is to estimate the effort that is required to build it. Effort is a

function of the system size combined with production rates (how much work someone

can complete in a given time). Much research has been done on software production

rates. One of the most popular algorithms, the COCOMO model,4 was designed by Barry

W. Boehm to convert a lines-of-code estimate into a person-month estimate. There are

different versions of the COCOMO model that vary based on the complexity of the soft-

ware, the size of the system, the experience of the developers, and the type of software

you are developing (e.g., business application software such as the registration system at

Introduction 91

4 The original COCOMO model is presented by Barry W. Boehm in Software Engineering Economics (Englewood
Cliffs, NJ: Prentice-Hall, 1981). Since then, much additional research has been done. The latest version of
COCOMO, COCOMO II, is described in B.W. Boehm, C. Abts, A.W. Brown, S. Chulani, B.K. Clark, E. Horowitz,
R. Madachy, D. Reifer, and B. Steece, Software Cost Estimation with COCOMO II (Upper Saddle River, NJ: Pren-
tice Hall PTR, 2000). For the latest updates on COCOMO, see http://sunset.usc.edu/COCOMOII/cocomo.html.

Refer to the project size and lines of code that you cal-
culated in “Your Turn 4-1.”

Questions:

1. Determine the effort of your project in person-
months by effort multiplying your lines of code (in
thousands) by 1.4.

2. Calculate the schedule time in months for your pro-
ject using the formula, 3.0 × person-months1/3.

3. Based on your numbers, how much time will it take
to complete the project if you are the developer?

4-2 Calculate Effort and Schedule TimeYOUR

TURN

Imagine that job hunting has been going so well that you
need to develop a system to support your efforts. The sys-
tem should allow you to input information about the
companies with which you interview, the interviews and
office visits that you have scheduled, and the offers that
you receive. It should be able to produce reports, such as
a company contact list, an interview schedule, and an
office visit schedule, as well as produce thank-you letters
to be brought into a word processor to customize. You
also need the system to answer queries, such as the num-
ber of interviews by city and your average offer amount.

Questions:

1. Determine the number of inputs, outputs, inter-
faces, files, and queries that this system requires.
For each element, determine if the complexity is

low, medium, or high. Record this information on a
worksheet similar to the one in Figure 4-3.

2. Calculate the total function points for each line on
your worksheet by multiplying the number of each
element with the appropriate complexity score.

3. Sum up the total unadjusted function points.

4. Suppose the system will be built by you using
Visual Basic (VB). Given your VB skills, multiply the
TUFP score by the APC score that best estimates
how complex the system will be for you to develop
(0.65 = simple, 1 = average, 1.35 = complex), and
calculate a TAFP value.

5. Using the table in Figure 4-4, determine the number
of lines of code that correspond to VB. Multiply this
number with the TAFP to find the total lines of code
that your system will require.

4-1 Calculate System SizeYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

your university; commercial software such as Word; or system software such as Win-

dows). For small to moderate-size business software projects (i.e., 100,000 lines of code

and ten or fewer programmers), the model is quite simple:

effort (in person-months) = 1.4 × thousands of lines of code

For example, let’s suppose that we were going to develop a business software system

requiring 10,000 lines of code. This project would typically take 14 person-months to com-

plete. If the system in Figure 4-3 were developed in COBOL (which equates to 26,730 lines of

code), it would require about 37.42 person-months of effort.

Step3: Estimate Time Required Once the effort is understood, the optimal schedule for

the project can be estimated. Historical data or estimation software can be used as aids, or

one rule of thumb is to determine schedule using the following equation:

schedule time (months) = 3.0 × person-months1/3

This equation is widely used, although the specific numbers vary (e.g., some estimators

may use 3.5 or 2.5 instead of 3.0). The equation suggests that a project that has an effort of

14 person-months should be scheduled to take a little more than 7 months to complete.

Continuing the Figure 4-3 example, the 37.42 person-months would require a little over 10

months. It is important to note that this estimate is for the analysis, design, and implemen-

tation phases; it does not include the planning phase.

CREATING AND MANAGING THE WORKPLAN

Once a project manager has a general idea of the size and approximate schedule for the pro-

ject, he or she creates a workplan, which is a dynamic schedule that records and keeps track of

all of the tasks that need to be accomplished over the course of the project. The workplan lists

each task, along with important information about it, such as when it needs to be completed,

the person assigned to do the work, and any deliverables that will result (Figure 4-5). The level

of detail and the amount of information captured by the workplan depend on the needs of the

project (and the detail usually increases as the project progresses). Usually, the workplan is the

main component of the project management software that we mentioned earlier.

92 Chapter 4 Project Management

Name of the task Perform economic feasibility

Start date Jan 05, 2003

Completion date Jan 19, 2003

Person assigned to the task Project sponsor; Mary Smith

Deliverable(s) Cost–benefit analysis

Completion status Open

Priority High

Resources that are needed Spreadsheet software

Estimated time 16 hours

Actual time 14.5 hours

Workplan Information Example

FIGURE 4-5

Workplan Information

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

To create a workplan, the project manager first identifies the tasks that need to be

accomplished and determines how long they will take. Then the tasks are organized within

a workplan and presented graphically using Gantt and PERT charts. All of these techniques

help a project manager understand and manage the project’s progress over time, and they

are described in detail in the next sections.

Identify Tasks

The overall objectives for the system should be listed on the system request, and it is the

project manager’s job to identify all of the tasks that need to be accomplished to meet those

objectives. This sounds like a daunting task—how can someone know everything that

needs to be done to build a system that has never been built before?

One approach for identifying tasks is to get a list of tasks that has already been devel-

oped and to modify it. There are standard lists of tasks, or methodologies, that are avail-

able for use as a starting point. As we stated in Chapter 1, a methodology is a formalized

approach to implementing the SDLC (i.e., it is a list of steps and deliverables). A project

manager can take an existing methodology, select the steps and deliverables that apply to

the current project, and add them to the workplan. If an existing methodology is not

available within the organization, methodologies can be purchased from consultants or

vendors, or books like this textbook can serve as guidance. Using an existing methodology

is the most popular way to create a workplan because most organizations have a method-

ology that they use for projects.

If a project manager prefers to begin from scratch, he or she can use a structured, top-

down approach whereby high-level tasks are first defined and then these are broken down

into subtasks. For example, Figure 4-6 shows a list of high-level tasks that are needed to

implement a new IT training class. Some of the main steps in the process include identify-

ing vendors, creating and administering a survey, and building new classrooms. Each step

is then broken down in turn and numbered in a hierarchical fashion. There are eight sub-

tasks (i.e., 7.1–7.8) for creating and administering a survey, and there are three subtasks

(7.2.1–7.2.3) that comprise the review initial survey task. A list of tasks hierarchically num-

bered in this way is called a work breakdown structure (WBS), and it is the backbone of the

project workplan.

The number of tasks and level of detail depend on the complexity and size of the pro-

ject. The larger the project, the more important it becomes to define tasks at a low level of

detail so that essential steps are not overlooked.

There are two basic approaches to organizing a work breakdown structure: by

SDLC phase or by product. For example, if a firm decided that it needed to develop a

Web site, the firm could create a work breakdown structure based on the SDLC phases:

planning, analysis, design, and implementation. In this case, a typical task that would

take place during planning would be feasibility analysis. This task would be broken

down into the different types of feasibility analysis: technical, economic, and organiza-

tional. Each of these would be further broken down into a set of subtasks. Alternatively,

the firm could organize the workplan along the lines of the different products to be

developed. For example, in the case of a Web site, the products could include applets,

application servers, database servers, the various sets of Web pages to be designed, a site

map, and so on. Then these would be further decomposed into the different tasks asso-

ciated with the phases of the SDLC. As described previously, Figure 4-6 depicts the tasks

necessary for creating a new IT training class. Either way, once the overall structure is

determined, tasks are identified and included in the work breakdown structure of the

workplan. We return to the topic of work breakdown structures and their use in itera-

tive planning later in this chapter.

Creating and Managing the Workplan 93

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

The Project Workplan

The project workplan is the mechanism that is used to manage the tasks that are listed in the

work breakdown structure. It is the project manager’s primary tool for managing the project.

Using it, the project manager can tell if the project is ahead or behind schedule, how well the

project was estimated, and what changes need to be made to meet the project deadline.

Basically, the workplan is a table that lists all of the tasks in the work breakdown struc-

ture along with important task information, such as the people who are assigned to perform

the tasks, the actual hours that the tasks took, and the variances between estimated and actual

completion times (see Figure 4-6). At a minimum, the information should include the dura-

tion of the task, the current statuses of the tasks (i.e., open, complete), and the task depen-

dencies, which occur when one task cannot be performed until another task is completed. For

example, Figure 4-6 shows that incorporating changes to the survey (task 7.4) takes a week to

perform, but it cannot occur until after the survey is reviewed (task 7.2) and pilot tested (task

7.3). Key milestones, or important dates, are also identified on the workplan. Presentations to

the approval committee, the start of end-user training, a company retreat, and the due date

of the system prototype are the types of milestones that may be important to track.

Gantt Chart

A Gantt chart is a horizontal bar chart that shows the same task information as the project

workplan, but in a graphical way. Sometimes a picture really is worth a thousand words, and

the Gantt chart can communicate the high-level status of a project much faster and easier

94 Chapter 4 Project Management

1 Identify vendors 2 Complete

2 Review training materials 6 1 Complete

3 Compare vendors 2 2 In Progress

4 Negotiate with vendors 3 3 Open

5 Develop communications information 4 1 In Progress

6 Disseminate information 2 5 Open

7 Create and administer survey 4 6 Open

7.1 Create initial survey 1 Open

7.2 Review initial survey 1 7.1 Open

7.2.1 Review by Director of IT Training 1 Open

7.2.2 Review by Project Sponsor 1 Open

7.2.3 Review by Representative Trainee 1 Open

7.3 Pilot test initial survey 1 7.1 Open

7.4 Incorporate survey changes 1 7.2, 7.3 Open

7.5 Create distribution list 0.5 Open

7.6 Send survey to distribution list 0.5 7.4, 7.5 Open

7.7 Send follow-up message 0.5 7.6 Open

7.8 Collect completed surveys 1 7.6 Open

8 Analyze results and choose vendor 2 4, 7 Open

9 Build new classrooms 11 1 In Progress

10 Develop course options 3 8, 9 Open

FIGURE 4-6

Work Breakdown

Structure

Task Duration
Number Task Name (in weeks) Dependency Status

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

than the workplan. Creating a Gantt chart is simple and can be done using a spreadsheet

package, graphics software (e.g., Microsoft VISIO), or a project management package.

First, tasks are listed as rows in the chart, and time is listed across the top in increments

based on the needs of the projects (see Figure 4-7). A short project may be divided into hours

or days; whereas, a medium-sized project may be represented using weeks or months. Hori-

zontal bars are drawn to represent the duration of each task; the bar’s beginning and end mark

exactly when the task will begin and end. As people work on tasks, the appropriate bars are filled

in proportionately to how much of the task is finished. Too many tasks on a Gantt chart can

become confusing, so it’s best to limit the number of tasks to around twenty to thirty. If there

are more tasks, break them down into subtasks and create Gantt charts for each level of detail.

There are many things a project manager can see by looking quickly at a Gantt chart.

In addition to seeing how long tasks are and how far along they are, the project manager

also can tell which tasks are sequential, which tasks occur at the same time, and which tasks

Creating and Managing the Workplan 95

ID

1

2

3

4

5

Identify
vendors

Review
training
materials

Compare
vendors

Negotiate
with
vendors

Develop
communications
information

Disseminate
information

Create and
administer
survey

Analyze results
and choose

Build new
classroom

Develop
course
options

Budget
Meeting

Software
Installation

6

7

8

9

10

11

12

2 wks Wed
1/1/03

Wed
1/1/03

Wed
2/12/03

Wed
2/26/03

Wed
1/15/03

Wed
2/12/03

Wed
2/26/03

Wed
3/26/03

Wed
1/15/03

Wed
4/9/03

Wed
1/15/03

Tue
4/1/03

6 wks
Barbara

Barbara

Barbara

Alan

Alan

Alan

Alan

Alan

David

D

2 wks

3 wks

4 wks

2 wks

4 wks

2 wks

11 wks

3 wks

2

3

1

5

6

4, 7

1

8, 9

1 day

1 day

Task
Name

Duration Start

Tue
1/14/03

Tue
2/11/03

Tue
2/25/03

Tue
3/18/03

Tue
2/11/03

Tue
2/25/03

Tue
3/25/03

Tue
4/8/03

Tue
4/1/03

Tue
4/29/03

Wed
1/15/03

Tue
4/1/03

Finish
12/29 1/5 1/12

1/15

4/1

1/19 1/26 2/2 2/9 2/16 2/23 3/2 3/9 3/16 3/23 3/30 4/6 4/13 4/20 4/27
Prede

January February March April M

FIGURE 4-7 Gantt Chart

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

overlap in some way. He or she can get a quick view of tasks that are ahead of schedule and

behind schedule by drawing a vertical line on today’s date. If a bar is not filled in and is to

the left of the line, that task is behind schedule.

There are a few special notations that can be placed on a Gantt chart. Project mile-

stones are shown using upside-down triangles or diamonds. Arrows are drawn between

the task bars to show task dependencies. Sometimes, the names of people assigned to

each task are listed next to the task bars to show what human resources have been allo-

cated to each task.

PERT Chart

A second graphical way to look at the project workplan information is the PERT chart,

which lays out the project tasks in a flowchart (see Figure 4-8). PERT, which stands for Pro-

gram Evaluation and Review Technique, is a network analysis technique that can be used

when the individual task time estimates are fairly uncertain. Instead of simply putting a

point estimate for the duration estimate, PERT uses three time estimates: optimistic, most

likely, and a pessimistic. It then combines the three estimates into a single weighted aver-

age estimate using the following formula:

PERT weighted average =

optimistic estimate + (4 × most likely estimate) + pessimistic estimate

6

The PERT chart is drawn as a node and arc type of graph that shows the time esti-

mates in the nodes and the task dependencies on the arcs. Each node represents an indi-

vidual task, and a line connecting two nodes represents the dependency between two

96 Chapter 4 Project Management

Identify vendors

1

Wed 1/1/03

2 wks

Tue 1/14/03

Build new classroom

9

Wed 1/15/03

11 wks

Tue 4/1/03

Compare vendors

3

Wed 2/12/03

2 wks

Tue 2/25/03

Negotiate with vendors

4

Wed 2/26/03

3 wks

Tue 3/18/03

Review training materials

2

Wed 1/1/03

6 wks

Tue 2/11/03

Develop communications
Information

5

Wed 1/15/03

4 wks

Tue 2/11/03

Budget Meeting

11

Wed 1/15/03

1 day

Wed 1/15/03

Software Installation

12

Tue 4/1/03

1 day

Tue 4/1/03

Disseminate Information

6

Wed 2/12/03

2 wks

Tue 2/25/03

Create and administer
survey

7

Wed 2/26/03

4 wks

Tue 3/25/03

Analyze results and
choose vendor

8

Wed 3/26/03

2 wks

Tue 4/8/03

Develop course options

10

Wed 4/9/03

3 wks

Tue 4/29/03

FIGURE 4-8 PERT Chart

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

tasks. Usually partially completed tasks are displayed with a diagonal line through the

node, and completed tasks contain crossed lines.

PERT charts are the best way to communicate task dependencies because they lay out

the tasks in the order in which they need to be completed. The Critical Path Method

(CPM) simply allows the identification of the critical path in the network. The critical

path is the longest path from the project inception to completion. The critical path shows

all of the tasks that must be completed on schedule for a project as a whole to finish on

schedule. If any of the tasks on the critical path takes longer than expected, the entire pro-

ject will fall behind. Each task on the critical path is a critical task. CPM can be used with

or without PERT.

The benefit of using project management software packages like Microsoft Project is

that the workplan can be input once, and then the software can display the information in

many different formats. You can toggle between the workplan, a Gantt chart, and a PERT

chart depending on your project management needs.

Refining Estimates

The estimates that are produced during the planning phase will need to be refined as the

project progresses. This does not mean that estimates were poorly done at the start of the

project, but that it is virtually impossible to develop an exact assessment of the project’s

schedule before the analysis and design phases are conducted. A project manager should

expect to be satisfied with broad ranges of estimates that become more and more specific

as the project’s product becomes better defined.

In many respects, estimating what an IS development project will cost, how long it will

take, and what the final system will actually do follows a hurricane model. When storms and

hurricanes first appear in the Atlantic or Pacific, forecasters watch their behavior and, on

the basis of minimal information about them (but armed with lots of data on previous

storms), attempt to predict when and where the storms will hit and what damage they will

do when they arrive. As storms move closer to North America, forecasters refine their

tracks and develop better predictions about where and when they are most likely to hit and

their force when they do. The predictions become more and more accurate as the storms

approach a coast, until they finally arrive.

In the Planning Phase when a system is first requested, the project sponsor and project

manager attempt to predict how long the SDLC will take, how much it will cost, and what

it will ultimately do when it is delivered (i.e., its functionality). However, the estimates are

based on very little knowledge of the system. As the system moves into the Analysis Phase,

more information is gathered, the system concept is developed, and the estimates become

even more accurate and precise. As the system moves closer to completion, the accuracy

and precision increase until the final system is delivered (Figure 4-9).

According to one of the leading experts in software development,5 a well-done project

plan (prepared at the end of the planning phase) has a 100 percent margin of error for pro-

ject cost and a 25 percent margin of error for schedule time. In other words, if a carefully

done project plan estimates that a project will cost $100,000 and take twenty weeks, the

project will actually cost between $0 and $200,000 and take between fifteen and twenty-five

weeks. Figure 4-10 presents typical margins of error for other stages in the project. It is

important to note that these margins of error apply only to well-done plans; a plan devel-

oped without much care has a much greater margin of error.

Creating and Managing the Workplan 97

5 Barry W. Boehm and colleagues, “Cost Models for Future Software Life Cycle Processes: COCOMO 2.0,” in J. D.
Arthur and S. M. Henry (editors), Annals of Software Engineering: Special Volume on Software Process and Product
Measurement, Amsterdam: J. C. Baltzer AG Science Publishers, 1995.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

98 Chapter 4 Project Management

Planning phase System request 400 60

Project plan 100 25

Analysis phase System proposal 50 15

Design phase System specifications 25 10

Source: Barry W. Boehm and colleagues, “Cost Models for Future Software Life Cycle Processes: COCOMO 2.0,”

in J. D. Arthur and S. M. Henry (editors) Annals of Software Engineering Special Volume on Software Process and

Product Measurement, Amsterdam: J. C. Baltzer AG Science Publishers, 1995.

Typical Margins of Error for
Well-Done Estimates

Phase Deliverable Cost (%) Schedule Time (%)

FIGURE 4-10

Margins of Error in Cost

and Time Estimates

Planning phase
(project plan)

Size of circle
indicates

estimated cost

Estimated
schedule time

Analysis phase
(system proposal)

Design phase
(system specification)

Implementation phase
(system installation)

P
ro

je
ct

 s
ch

ed
u
le

 t
im

e
(T

im
e

n
ee

d
ed

 t
o
 c

o
m

p
le

te
 p

ro
je

ct
)

Stage at which estimate is made

FIGURE 4-9
Hurricane Model

What happens if you overshoot an estimate (e.g., the Analysis Phase ends up lasting

two weeks longer than expected)? There are number of ways to adjust future estimates. If

the project team finishes a step ahead of schedule, most project managers shift the dead-

lines sooner by the same amount but do not adjust the promised completion date. The

challenge, however, occurs when the project team is late in meeting a scheduled date. Three

possible responses to missed schedule dates are presented in Figure 4-11. We recommend

that if an estimate proves too optimistic early in the project, do not expect to make up for

lost time—very few projects end up doing this. Instead, change your future estimates to

include an increase similar to the one that was experienced. For example, if the first phase

was completed 10 percent over schedule, increase the rest of your estimates by 10 percent.

Scope Management

You may assume that your project will be safe from scheduling problems because you care-

fully estimated and planned your project up front. However, the most common reason for

schedule and cost overruns occurs after the project is underway—scope creep.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Creating and Managing the Workplan 99

Assumptions Actions Level of Risk

If you assume the rest of the project is
simpler than the part that was late
and is also simpler than believed
when the original schedule esti-
mates were made, you can make up
lost time

Do not change schedule. High risk

If you assume the rest of the project is
simpler than the part that was late
and is no more complex than the
original estimate assumed, you can’t
make up the lost time, but you will
not lose time on the rest of the
project.

Increase the entire schedule by the
total amount of time that you are
behind (e.g., if you missed the
scheduled date by two weeks, move
the rest of the schedule dates to two
weeks later). If you included padded
time at the end of the project in the
original schedule, you may not have
to change the promised system
delivery date; you’ll just use up the
padded time.

Moderate risk

If you assume that the rest of the
project is as complex as the part
that was late (your original esti-
mates too optimistic), then all the
scheduled dates in the future
underestimate the real time
required by the same percentage
as the part that was late.

Increase the entire schedule by the
percentage of weeks that you are
behind (e.g., if you are two weeks
late on part of the project that was
supposed to take eight weeks, you
need to increase all remaining
time estimates by 25 percent). If
this moves the new delivery date
beyond what is acceptable to the
project sponsor, the scope of the
project must be reduced.

Low risk

FIGURE 4-11

Possible Actions When

a Schedule Date

Is Missed

Scope creep happens when new requirements are added to the project after the orig-

inal project scope was defined and “frozen.” It can happen for many reasons: users may

suddenly understand the potential of the new system and realize new functionality that

would be useful; developers may discover interesting capabilities to which they become

very attached; a senior manager may decide to let this system support a new strategy that

was developed at a recent board meeting.

Unfortunately, after the project begins, it becomes increasingly difficult to address

changing requirements. The ramifications of change become more extensive, the focus is

removed from original goals, and there is at least some impact on cost and schedule. There-

fore, the project manager plays a critical role in managing this change to keep scope creep

to a minimum.

The keys are to identify the requirements as well as possible in the beginning of the pro-

ject and to apply analysis techniques effectively. For example, if needs are fuzzy at the project’s

onset, a combination of intensive meetings with the users and prototyping could be used so

that users “experience” the requirements and better visualize how the system could support

their needs. In fact, the use of meetings and prototyping has been found to reduce scope creep

to less than 5 percent on a typical project.

Of course, some requirements may be missed no matter what precautions you take,

but several practices can be helpful to control additions to the task list. First, the project

manager should allow only absolutely necessary requirements to be added after the project

begins. Even at that point, members of the project team should carefully assess the ramifi-

cations of the addition and present the assessment back to the users. For example, it may

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

require two more person-months of work to create a newly defined report, which would

throw off the entire project deadline by several weeks. Any change that is implemented

should be carefully tracked so that an audit trail exists to measure the change’s impact.

Sometimes changes cannot be incorporated into the present system even though they

truly would be beneficial. In this case, these additions to scope should be recorded as future

enhancements to the system. The project manager can offer to provide functionality in future

releases of the system, thus getting around telling someone no.

Timeboxing

Another approach to scope management is a technique called timeboxing. Up until now, we

have described projects that are task oriented. In other words, we have described projects

that have a schedule that is driven by the tasks that need to be accomplished, so the greater

number of tasks and requirements, the longer the project will take. Some companies have

little patience for development projects that take a long time, and these companies take a

time-oriented approach that places meeting a deadline above delivering functionality.

Think about your use of word processing software. For 80 percent of the time, you prob-

ably use only 20 percent of the features, such as the spelling checker, boldfacing, and cutting

and pasting. Other features, such as document merging and creation of mailing labels, may

be nice to have, but they are not a part of your day-to-day needs. The same goes for other soft-

ware applications; most users rely on only a small subset of their capabilities. Ironically, most

developers agree that typically 75 percent of a system can be provided relatively quickly, with

the remaining 25 percent of the functionality demanding most of the time.

To resolve this incongruency, a technique called timeboxing has become quite popu-

lar, especially when using rapid application development (RAD) methodologies. This tech-

nique sets a fixed deadline for a project and delivers the system by that deadline no matter

what, even if functionality needs to be reduced. Timeboxing ensures that project teams

don’t get hung up on the final “finishing touches” that can drag out indefinitely, and it sat-

isfies the business by providing a product within a relatively fast time frame.

There are several steps to implement timeboxing on a project (Figure 4-12). First, set the

date of delivery for the proposed goals. The deadline should not be impossible to meet, so it

is best to let the project team determine a realistic due date. Next, build the core of the sys-

tem to be delivered; you will find that timeboxing helps create a sense of urgency and helps

keep the focus on the most important features. Because the schedule is absolutely fixed, func-

tionality that cannot be completed needs to be postponed. It helps if the team prioritizes a list

of features beforehand to keep track of what functionality the users absolutely need. Quality

cannot be compromised, regardless of other constraints, so it is important that the time allo-

cated to activities is not shortened unless the requirements are changed (e.g., don’t reduce the

time allocated to testing without reducing features). At the end of the time period, a high-

quality system is delivered; likely, future iterations will be needed to make changes and

enhancements, and the timeboxing approach can be used once again.

100 Chapter 4 Project Management

1. Set the date for system delivery.

2. Prioritize the functionality that needs to be included in the system.

3. Build the core of the system (the functionality ranked as most important).

4. Postpone functionality that cannot be provided within the time frame.

5. Deliver the system with core functionality.

6. Repeat steps 3 through 5, to add refinements and enhancements.FIGURE 4-12

Steps for Timeboxing

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Evolutionary Work Breakdown Structures and Iterative Workplans

Since object-oriented systems approaches to systems analysis and design support incre-

mental and iterative development, any project planning approach for object-oriented sys-

tems development requires an incremental and iterative process also. In the description of

the enhanced Unified Process in Chapter 2, the development process was organized around

iterations, phases, and workflows. In many ways, a workplan for an incremental and itera-

tive development process is organized in a similar manner. For each iteration, there are dif-

ferent tasks that are executed on each workflow. In our minimized approach (MOOSAD),

each build is analogous to the iterations of the enhanced Unified Process and each step is

similar to the workflows (see Chapter 2). In this section, we describe an incremental and

iterative process using evolutionary work breakdown structures for project planning that

can be used with object-oriented systems development.

According to Royce,6 most approaches to developing conventional WBSs tend to have

three underlying problems:

1. They tend to be focused on the design of the information system being developed. As

such, the creation of the WBS forces the decomposition of the system design and

the tasks associated with creating the design of the system prematurely. Where the

problem domain is well understood, tying the structure of the workplan to the

product to be created makes sense. However, in cases where the problem domain is

not well understood, the analyst must commit to the architecture of the system

being developed before the requirements of the system are fully understood.

2. They tend to force too many levels of detail very early on in the SDLC for large pro-

jects or they tend to allow too few levels of detail for small projects. Since the pri-

mary purposes of a WBS is to allow cost estimation and scheduling to take place,

in conventional approaches to planning, the WBS must be done “correctly and

completely” at the beginning of the SDLC. To say the least, this is a very difficult

task to accomplish with any degree of validity. In such cases, it is no wonder why

Creating and Managing the Workplan 101

DuPont was one of the first companies to use timeboxing.
The practice originated in the company’s fibers division,
which was moving to a highly automated manufacturing
environment. It was necessary to create complex applica-
tion software quickly, and DuPont recognized that it is
better to get a basic version of the system working, learn
from the experience of operating with it, and then design
an enhanced version than it is to wait for a comprehen-
sive system at a later date.

DuPont’s experience implies that:

• The first version must be built quickly.

• The application must be built so that it can be
changed and added to quickly.

DuPont stresses that the timebox methodology works
well for the company and is highly practical. It has
resulted in automation being introduced more rapidly
and effectively. DuPont quotes large cost savings from the
methodology, and variations of timebox techniques have
since been used in many other corporations.

Questions:

1. Why do you think DuPont saves money by using
this technique?

2. Are there situations in which timeboxing would not
be appropriate?

Source: “Within the Timebox, Development Deadlines Really Work,”

PC Week, March 12, 1990, by James Martin.

4-C TimeboxingCONCEPTS

IN ACTION

6 Walker Royce, Software Project Management: A Unified Framework (Reading, MA: Addison-Wesley, 1998).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

cost and schedule estimation for many information systems development projects

tend to be wildly inaccurate.

3. Since they are project specific, they are very difficult to compare across projects. This

leads to ineffective learning across the organization. Without some standard

approach to create WBSs, it is difficult for project managers to learn from previ-

ous projects managed by others. This tends to encourage the “reinventing of

wheels” and allows managers to make the same mistakes that previous managers

have made.

Evolutionary WBSs allow the analyst to address all three of these problems by allowing

the development of an iterative workplan. First, they are organized in a standard manner

across all projects: by workflows, phases, and then tasks. This decouples the structure of an

evolutionary WBS from the structure of the design of the product. This prevents prema-

turely committing to a specific architecture of a new system. Second, evolutionary WBSs

are created in an incremental and iterative manner. The first evolutionary WBS is typically

only done for the aspects of the project understood by the analyst. Later on, as the analyst

understands more about the evolving development process, more details are added to the

WBS. This encourages a more realistic view of both cost and schedule estimation. Third,

since the structure of an evolutionary WBS is not tied to any specific project, evolutionary

WBSs enable the comparison of the current project to earlier projects. This supports learn-

ing from past successes and failures.

In the case of the enhanced Unified Process, the workflows are the major points listed

in the WBS. Next, each workflow is decomposed along the phases of the enhanced Unified

Process. After that, each phase is decomposed along the tasks that are to be completed to

create the deliverables associated with the phase. The tasks listed for each workflow is

dependent upon the level of activity on the workflow during each phase (see Figure 2-9).

For example, typical activities for the inception phase of the requirements workflow would

be to interview stakeholders, develop vision document, and develop use cases, while there

are probably no tasks associated with the inception phase of the operations and support

workflow. The template for the first two levels of an evolutionary WBS for the enhanced

Unified Process would look like Figure 4-13. As each iteration through the development

process is completed, additional tasks are added to the WBS to reflect the current under-

standing of the remaining tasks to be completed (i.e., the WBS evolves along with the

evolving information system). As such, the workplan is developed in an incremental and

iterative manner.

Using our minimized approach (see Figure 2-10), the first evolutionary WBS would

only focus on the planning step, requirements-gathering and use-case development step,

and the first build. After the first build is completed, a new incremental version of the WBS

would be created to take into account the information that flowed from the first build back

to the requirements-determination and use-case development step, which, in turn, flowed

back into the planning step. The new WBS would then address these issues and issues

related to the second build. This iterative planning process would continue until the system

was completed or the project was abandoned. The template for an evolutionary WBS for

our minimized approach is shown in Figure 4-14.

STAFFING THE PROJECT

Staffing the project includes determining how many people should be assigned to the pro-

ject, matching people’s skills with the needs of the project, motivating them to meet the

102 Chapter 4 Project Management

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

project’s objectives, and minimizing the conflict that will occur over time. The deliverable

for this part of project management is a staffing plan, which describes the number and

kinds of people who will work on the project, the overall reporting structure, and the pro-

ject charter, which describes the project’s objectives and rules.

Staffing Plan

The first step to staffing is determining the average number of staff needed for the project.

To calculate this figure, divide the total person-months of effort by the optimal schedule.

Staffing the Project 103

I. Business Modeling

a. Inception

b. Elaboration

c. Construction

d. Transition

e. Production

II. Requirements

a. Inception

b. Elaboration

c. Construction

d. Transition

e. Production

III. Analysis

a. Inception

b. Elaboration

c. Construction

d. Transition

e. Production

IV. Design

a. Inception

b. Elaboration

c. Construction

d. Transition

e. Production

V. Implementation

a. Inception

b. Elaboration

c. Construction

d. Transition

e. Production

VI. Test

a. Inception

b. Elaboration

c. Construction

d. Transition

e. Production

VII. Deployment

a. Inception

b. Elaboration

c. Construction

d. Transition

e. Production

VIII. Configuration and
Change Management

a. Inception

b. Elaboration

c. Construction

d. Transition

e. Production

IX. Project Management

a. Inception

b. Elaboration

c. Construction

d. Transition

e. Production

X. Environment

a. Inception

b. Elaboration

c. Construction

d. Transition

e. Production

XI. Operations and Support

a. Inception

b. Elaboration

c. Construction

d. Transition

e. Production

XII. Infrastructure
Management

a. Inception

b. Elaboration

c. Construction

d. Transition

e. Production

FIGURE 4-13
Evolutionary WBS Tem-

plate for the Enhanced

Unified Process

1. Planning

1.1. First Build

1.2. Second Build

…

1.3. Nth Build

2. Requirements Gathering
and Use Case Development

2.1. First Build

2.2. Second Build

…

2.3. Nth Build

3. Builds

3.1. First Build

3.1.1. Analysis

3.1.2. Design

3.1.3. Implementation

3.2. Second Build

3.2.1. Analysis

3.2.2. Design

3.2.3. Implementation

…

3.3. Nth Build

3.3.1. Analysis

3.3.2. Design

3.3.3. Implementation

4. Installation

FIGURE 4-14
Evolutionary WBS Tem-

plate for the MOOSAD

Approach

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

So to complete a 40 person-month project in 10 months, a team should have an average of

four full-time staff members, although this may change over time as different specialists

enter and leave the team (e.g., business analysts, programmers, technical writers).

Many times, the temptation is to assign more staff to a project to shorten the project’s

length, but this is not a wise move. Adding staff resources does not translate into increased

productivity; staff size and productivity share a disproportionate relationship, mainly

because a large number of staff members is more difficult to coordinate. The more a team

grows, the more difficult it becomes to manage. Imagine how easy it is to work on a two-

person project team: the team members share a single line of communication. But adding

two people increases the number of communication lines to six, and greater increases lead

to more dramatic gains in communication complexity. Figure 4-15 illustrates the impact of

adding team members to a project team.

One way to reduce efficiency losses on teams is to understand the complexity that is cre-

ated in numbers and to build in a reporting structure that tempers its effects. The rule of

thumb is to keep team sizes under eight to ten people; therefore, if more people are needed,

create subteams. In this way, the project manager can keep the communication effective

within small teams, which in turn communicate to a contact at a higher level in the project.

104 Chapter 4 Project Management

Two-person team Four-person team

Eight-person teamSix-person team

FIGURE 4-15
Increasing Complexity

with Larger Teams

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

After the project manager understands how many people are needed for the project,

he or she creates a staffing plan that lists the roles that are required for the project and the

proposed reporting structure for the project. Typically, a project will have one project man-

ager who oversees the overall progress of the development effort, with the core of the team

comprising the various types of analysts described in Chapter 1. A functional lead usually

is assigned to manage a group of analysts, and technical lead oversees the progress of a

group of programmers and more technical staff members.

There are many structures for project teams; Figure 4-16 illustrates one possible con-

figuration of a project team. After the roles are defined and the structure is in place, the

project manager needs to think about which people can fill each role. Often, one person fills

more than one role on a project team.

When you make assignments, remember that people have technical skills and interper-

sonal skills, and both are important on a project. Technical skills are useful when working

with technical tasks (e.g., programming in Java) and in trying to understand the various

roles that technology plays in the particular project (e.g., how a Web server should be con-

figured on the basis of a projected number of hits from customers).

Interpersonal skills, on the other hand, include interpersonal and communication

abilities that are used when dealing with business users, senior management executives, and

other members of the project team. They are particularly critical when performing the

Staffing the Project 105

Functional
lead

Project
manager

ProgrammerAnalyst Analyst Analyst Programmer

Technical
lead

FIGURE 4-16
Possible Reporting

Structure

Now it is time to staff the project that was described in
“Your Turn 4-1.” On the basis of the effort required for the
project (“Your Turn 4-2”), how many people will be
needed on the project? Given this number, select class-
mates who will work with you on your project.

Questions:

1. What roles will be needed to develop the project?
List them and write short descriptions for each of

these roles, almost as if you had to advertise the
positions in a newspaper.

2. Which roles will each classmate perform? Will
some people perform multiple roles?

3. What will the reporting structure be for the project?

4-3 Staffing PlanYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

requirements-determination activities and when addressing organizational feasibility

issues. Each project will require unique technical and interpersonal skills. For example, a

Web-based project may require Internet experience or Java programming knowledge, or a

highly controversial project may need analysts who are particularly adept at managing

political or volatile situations.

Ideally, project roles are filled with people who have the right skills for the job; how-

ever, the people who fit the roles best may not be available; they may be working on other

projects, or they may not exist in the company. Therefore, assigning project team members

really is a combination of finding people with the appropriate skill sets and finding people

who are available. When the skills of the available project team members do not match

what is actually required by the project, the project manager has several options to improve

the situation. First, people can be pulled off other projects, and resources can be shuffled

around. This is the most disruptive approach from the organization’s perspective. Another

approach is to use outside help—such as a consultant or contractor—to train team mem-

bers and start them off on the right foot. Training classes are usually available for both tech-

nical and interpersonal instruction, if time is available. Mentoring may also be an option;

a project team member can be sent to work on another similar project so that he or she can

return with skills to apply to the current job.

Motivation

Assigning people to tasks isn’t enough; project managers need to motivate the people to

make the project a success. Motivation has been found to be the number-one influence on

people’s performance,7 but determining how to motivate the team can be quite difficult.

You may think that good project managers motivate their staff by rewarding them with

money and bonuses, but most project managers agree that this is the last thing that should

be done. The more often you reward team members with money, the more they expect it—

and most times monetary motivation won’t work.

Assuming that team members are paid a fair salary, technical employees on project

teams are much more motivated by recognition, achievement, the work itself, responsi-

bility, advancement, and the chance to learn new skills.8 If you feel like you need to give

some kind of reward for motivational purposes, try a pizza or free dinner, or even a kind

letter or award. They often have much more effective results. Figure 4-17 lists some other

motivational don’ts that you should avoid to ensure that motivation on the project is as

high as possible.

Handling Conflict

The third component of staffing is organizing the project to minimize conflict among group
members. Group cohesiveness (the attraction that members feel to the group and to other
members) contributes more to productivity than do project members’ individual capabili-
ties or experiences.9 Clearly defining the roles on the project and holding team members
accountable for their tasks is a good way to begin mitigating potential conflict on a project.
Some project managers develop a project charter that lists the project’s norms and ground

106 Chapter 4 Project Management

7 Barry W. Boehm, Software Engineering Economics, Englewood Cliffs, NJ: Prentice Hall, 1981. One of the best
books on managing project teams is by Tom DeMarco and Timothy Lister, Peopleware: Productive Projects and
Teams, (New York, NY: Dorset House, 1987).
8 F. H. Hertzberg, “One More Time: How Do You Motivate Employees?” Harvard Business Review, 1968, January–
February.
9 B. Lakhanpal, “Understanding the Factors Influencing the Performance of Software Development Groups: An
Exploratory Group-Level Analysis,” Information and Software Technology, 1993, 35(8):468–473.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

rules. For example, the charter may describe when the project team should be at work, when
staff meetings will be held, how the group will communicate with each other, and the pro-
cedures for updating the workplan as tasks are completed. Figure 4-18 lists additional tech-
niques that can be used at the start of a project to keep conflict to a minimum.

COORDINATING PROJECT ACTIVITIES

Like all project management responsibilities, the act of coordinating project activities con-

tinues throughout the entire project until a system is delivered to the project sponsor and

end users. This step includes putting efficient development practices in place and mitigat-

ing risk. These activities occur over the course of the entire SDLC, but it is at this point in

Coordinating Project Activities 107

Assign unrealistic deadlines Few people will work hard if they realize that a deadline is
impossible to meet.

Ignore good efforts People will work harder if they feel like their work is
appreciated. Often, all it takes is public praise for a job well
done.

Create a low-quality product Few people can be proud of working on a project that is
of low quality.

Give everyone on the project If everyone is given the same reward, then high-quality
a raise people will believe that mediocrity is rewarded—and they

will resent it.

Make an important decision Buy-in is very important. If the project manager needs to
without the team’s input make a decision that greatly affects the members of her

team, she should involve them in the decision-making
process.

Maintain poor working conditions A project team needs a good working environment or
motivation will go down the tubes. This includes lighting,
desk space, technology, privacy from interruptions, and ref-
erence resources.

Source: Adapted Rapid Development, Redmond, WA: Microsoft Press, 1996, by from Steve McConnell.

Don’ts Reasons

FIGURE 4-17

Motivational Don’ts

In 1984, Microsoft planned for the development of
Microsoft Word to take one year. At the time, this was two
months less than the most optimistic estimated deadline
for a project of its size. In reality, it took Microsoft five
years to complete Word. Ultimately, the overly aggressive
schedule for Word slowed its development for a number
of reasons. The project experienced high turnover due to
developer burn-out from unreasonable pressure and work
hours. Code was “finalized” prematurely, and the software
spent much longer in “stabilization” (i.e., fixing bugs) than
was originally expected (i.e., twelve months versus three
months). And, the aggressive scheduling resulted in poor

planning (the delivery date consistently was off by more
than 60 percent for the first four years of the project).

Question:

1. Suppose you take over as project manager in 1986
after the previous project manager has been fired.
Word is now one year overdue. Describe three
things you would do on your first day on the job to
improve the project.

Source: Microsoft Corporation: Office Business Unit, Harvard Business

School Case Study 9-691-033, revised May 31, 1994, Boston: Harvard

Business School, 1994, by Marco Iansiti

4-D Haste Slows MicrosoftCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

the project when the project manager needs to put them in place. Ultimately, these activi-

ties ensure that the project stays on track and that the chance of failure is kept at a mini-

mum. The rest of this section will describe each of these activities in more detail.

CASE Tools

Computer-aided software engineering (CASE) is a category of software that automates all or

part of the development process. Some CASE software packages are primarily used during the

analysis phase to create integrated diagrams of the system and to store information regarding

the system components (often called upper CASE), whereas others are design-phase tools that

create the diagrams and then generate code for database tables and system functionality (often

called lower CASE). Integrated CASE, or I-CASE, contains functionality found in both upper-

CASE and lower-CASE tools in that it supports tasks that happen throughout the SDLC. CASE

comes in a wide assortment of flavors in terms of complexity and functionality, and there are

many good programs available in the marketplace, such as the Visible Analyst Workbench,

Oracle Designer/2000, Rational Rose, and the Logic Works suite.

The benefits to using CASE are numerous. With CASE tools, tasks are much faster to

complete and alter, development information is centralized, and information is illustrated

through diagrams, which typically are easier to understand. Potentially, CASE can reduce

maintenance costs, improve software quality, and enforce discipline, and some project

teams even use CASE to assess the magnitude of changes to the project.

Of course, like anything else, CASE should not be considered a silver bullet for project devel-

opment. The advanced CASE tools are complex applications that require significant training and

experience to achieve real benefits. Often, CASE serves only as a glorified diagramming tool that

supports the practices described in Chapter 6 (functional modeling), Chapter 7 (structural mod-

eling), and Chapter 8 (behavioral modeling). Our experience has shown that CASE is a helpful

way to support the communication and sharing of project diagrams and technical specifica-

tions—as long as it is used by trained developers who have applied CASE on past projects.

108 Chapter 4 Project Management

• Clearly define plans for the project.

• Make sure the team understands how the project is important to the organization.

• Develop detailed operating procedures and communicate these to the team members.

• Develop a project charter.

• Develop schedule commitments ahead of time.

• Forecast other priorities and their possible impact on project.

Source: H. J. Thamhain and D. L. Wilemon, “Conflict Management in Project Life Cycles,” Sloan Manage-

ment Review, Spring 1975.

FIGURE 4-18

Conflict Avoidance

Strategies

Get together with several of your classmates and pretend
that you are all staffed on the project described in “Your
Turn 4-1.” Discuss what would most motivate each of you
to perform well on the project. List three potential sources
of conflict that could surface as you work together.

Question:

1. Develop a project charter that lists five rules that all
team members will need to follow. How might
these rules help avoid potential team conflict?

4-4 Project CharterYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

The central component of any CASE tool is the CASE repository, otherwise known as

the information repository or data dictionary. The CASE repository stores the diagrams

and other project information, such as screen and report designs, and it keeps track of

how the diagrams fit together. For example, most CASE tools will warn you if you place a

field on a screen design that doesn’t exist in your data model. As the project evolves, pro-

ject team members perform their tasks using CASE.

Standards

Members of a project team need to work together, and most project management soft-

ware and CASE tools provide access privileges to everyone working on the system.

When people work together, however, things can get pretty confusing. To make matters

worse, people sometimes get reassigned in the middle of a project. It is important that

their project knowledge does not leave with them and that their replacements can get

up to speed quickly.

One way to make certain that everyone is on the same page by performing tasks in the

same way and following the same procedures is to create standards that the project team

must follow. Standards can range from formal rules for naming files to forms that must be

completed when goals are reached to programming guidelines. See Figure 4-19 for some

examples of the types of standards that a project may create. When a team forms standards

and then follows them, the project can be completed faster because task coordination

becomes less complex.

Standards work best when they are created at the beginning of each major phase of the

project and well communicated to the entire project team. As the team moves forward, new

standards are added when necessary. Some standards (e.g., file-naming conventions, status

reporting) are applied to the entire SDLC, whereas others (e.g., programming guidelines)

are only appropriate for certain tasks.

Documentation

A final technique that project teams put in place during the planning phase is good docu-

mentation, which includes detailed information about the tasks of the SDLC. Often, the doc-

umentation is stored in project binder(s) that contain all the deliverables and all the internal

communication that takes place—the history of the project.

A poor project management practice is waiting until the last minute to create

documentation. This typically leads to an undocumented system that no one under-

stands. In fact, many problems that companies had updating their systems to handle

the year 2000 crisis were the result of the lack of documentation. Good project teams

learn to document the system’s history as it evolves while the details are still fresh in

their memory.

Coordinating Project Activities 109

Select a computer-aided software engineering (CASE)
tool—either one that you will use for class, a program that
you own, or a tool that you can examine over the Web. Cre-
ate a list of the capabilities that are offered by the CASE tool.

Question:

1. Would you classify the CASE as upper CASE, lower
CASE, or integrated CASE (I-CASE)? Why?

4-5 Computer-Aided Software Engineering Tool AnalysisYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

The first step to setting up your documentation is to get some binders and include
dividers with which to separate content according to the major phases of the project. An addi-
tional divider should contain internal communication, such as the minutes from status meet-
ings, written standards, letters to and from the business users, and a dictionary of relevant
business terms. Then, as the project moves forward, place the deliverables from each task into
the project binder with descriptions so that someone outside of the project will be able to
understand it, and keep a table of contents up to date with the content that is added. Docu-
mentation takes time up front, but it is a good investment that will pay off in the long run.

Managing Risk

One final facet of project management is risk management, the process of assessing and address-

ing the risks that are associated with developing a project. Many things can cause risks: weak

personnel, scope creep, poor design, and overly optimistic estimates. The project team must be

aware of potential risks so that problems can be avoided or controlled well ahead of time.

Typically, project teams create a risk assessment, or a document that tracks potential

risks along with an evaluation of the likelihood of the risk and its potential impact on the

project (Figure 4-20). A paragraph or two is also included that explains potential ways that

the risk can be addressed. There are many options: risks could be publicized, avoided, or

110 Chapter 4 Project Management

Documentation standards The date and project name should appear as a header on
all documentation.

All margins should be set to 1 inch.

All deliverables should be added to the project binder and
recorded in its table of contents.

Coding standards All modules of code should include a header that lists the
programmer, last date of update, and a short description of
the purpose of the code.

Indentation should be used to indicate loops, if-then-else
statements, and case statements.

On average, every program should include one line of
comments for every five lines of code.

Procedural standards Record actual task progress in the work plan every Monday
morning by 10 A.M.

Report to project update meeting on Fridays at 3:30 P.M.

All changes to a requirements document must be approved
by the project manager.

Specification requirement standards Name of program to be created

Description of the program’s purpose

Special calculations that need to be computed

Business rules that must be incorporated into the program

Pseudocode

Due date

User interface design standards Labels will appear in boldface text, left-justified, and
followed by a colon.

The tab order of the screen will move from top left to
bottom right.

Accelerator keys will be provided for all updatable fields.

Types of Standards Examples

FIGURE 4-19

A Sampling of Project

Standards

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

even eliminated by dealing with its root cause. For example, imagine that a project team

plans to use new technology but its members have identified a risk in the fact that its mem-

bers do not have the right technical skills. They believe that tasks may take much longer to

perform because of a high learning curve. One plan of attack could be to eliminate the root

cause of the risk—the lack of technical experience by team members—by finding time and

resources that are needed to provide proper training to the team.

Most project managers keep abreast of potential risks, even prioritizing them accord-

ing to their magnitude and importance. Over time, the list of risks will change as some

items are removed and others surface. The best project managers, however, work hard to

keep risks from having an impact on the schedule and costs associated with the project.

Coordinating Project Activities 111

I once started on a small project (four people) in which
the original members of the project team had not set up
any standards for naming electronic files. Two weeks
into the project, I was asked to write a piece of code
that would be referenced by other files that had already
been written. When I finished my piece, I had to go
back to the other files and make changes to reflect my
new work. The only problem was that the lead pro-
grammer decided to name the files using his initials
(e.g., GGl.prg, GG2.prg, GG3.prg)—and there were
over 200 files! I spent two days opening every one of
those files because there was no way to tell what their
contents were.

Needless to say, from then on, the team created a
code for file names that provided basic information
regarding the file’s contents and they kept a log that
recorded the file name, its purpose, the date of last
update, and programmer for every file on the project.

—Barbara Wixom

Question:

1. Think about a program that you have written in the
past. Would another programmer be able to make
changes to it easily? Why or why not?

4-E Poor Naming StandardsCONCEPTS

IN ACTION

Dawn Adams, Senior Manager with Asymetrix Consult-
ing, has renamed the SDLC phases:

1. Pudding (Planning)

2. Silly Putty (Analysis)

3. Concrete (Design)

4. Touch-this-and-you’re-dead-sucker (Implementation)

Adams also uses icons, such as a skull and cross-
bones for the implementation phase. The funny labels
lend a new depth of interest to a set of abstract con-
cepts. But her names have had another benefit. “I had

one participant who adopted the names wholeheart-
edly,” she says, “including my icons. He posted an icon
on his office door for the duration of each of the phases,
and he found it much easier to deal with requests for
changes from the client, who could see the increasing
difficulty of the changes right there on the door.”

Question:

1. What would you do if your project sponsor
demanded that an important change be made dur-
ing the “touch-this-and-you’re-dead-sucker” phase?

Source: Learning Technology, Shorttakes, Wednesday, August 26, 1998, 1(2).

4-F The Real Names of the Systems Development Life Cycle (SDLC) PhasesCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

APPLYING THE CONCEPTS AT CD SELECTIONS

Alec Adams was very excited about managing the Internet Order System project at CD

Selections, but he realized that his project team would have very little time to deliver at least

some parts of the system because the company wanted the application developed in time

for the holiday season. Therefore, he decided that the project should follow a RAD phased-

development methodology, combined with the timeboxing technique. In this way, he could

be sure that some version of the product would be in the hands of the users within several

months, even if the completed system would be delivered at a later date.

As project manager, Alec had to estimate the project’s size, effort, and schedule—some

of his least favorite jobs because of how tough it is to do at the very beginning of the pro-

ject. But he knew that the users would expect at least general ranges for a product delivery

date. He began by attempting to estimate the number of inputs, outputs, queries, files, and

program interfaces in the new system. For the Web part of the system to be used by cus-

tomers, he could think of four main queries (searching by artist, by CD title, by song title,

and by ad hoc criteria), three input screens (selecting a CD, entering information to put a

CD on hold, and a special order screen), four output screens (the home page with general

information, information about CDs, information about the customer’s special order, and

the hold status), three files (CD information, inventory information, and customer orders),

and two program interfaces (one to the company’s special order system and one that com-

municates hold information to the retail store systems). For the part of the system to be used

by CD Selections staff (to maintain the marketing materials), he identified three additional

inputs, three outputs, four queries, one file, and one program interface. He believed most of

these to be of medium complexity. He entered these numbers in a worksheet (Figure 4-21).

Rather than attempt to assess the complexity of the system in detail, Alec chose to use

a value of 1.20 for APC. He reasoned that the system was of medium complexity and that

the project team has little to moderate experience with Internet-base systems. This pro-

duced a TAFP of about 190.

112 Chapter 4 Project Management

Risk Assessment

RISK #1: The development of this system likely will be slowed con-
siderably because project team members have not pro-
grammed in Java prior to this project.

Likelihood of risk: High probability of risk.

Potential impact on the project: This risk likely will increase the time to complete program-
ming tasks by 50 percent.

Ways to address this risk:
It is very important that time and resources are allocated to up-front training in Java for the
programmers who are used for this project. Adequate training will reduce the initial learning
curve for Java when programming begins. Additionally, outside Java expertise should be
brought in for at least some part of the early programming tasks. This person should be used to
provide experiential knowledge to the project team so that JAVA-related issues (of which
novice Java programmers would be unaware) are overcome.

RISK #2: …

FIGURE 4-20

Sample Risk

Assessment

TEMPLATE

can be found at
www.wiley.com
/college/dennis

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Applying the Concepts at CD Selections 113

As Seattle University’s David Umphress has pointed out,
watching most organizations develop systems is like
watching reruns of Gilligan’s Island. At the beginning of
each episode, someone comes up with a cockamamie
scheme to get off the island that seems to work for a while,
but something goes wrong and the castaways find them-
selves right back where they started—stuck on the island.
Similarly, most companies start new projects with grand
ideas that seem to work, only to make a classic mistake
and deliver the project behind schedule, over budget, or
both. Here we summarize four classic mistakes in the plan-
ning and project management aspects of the project and
discuss how to avoid them:

1. Overly optimistic schedule: Wishful thinking can
lead to an overly optimistic schedule that causes
analysis and design to be cut short (missing key
requirements) and puts intense pressure on the pro-
grammers, who produce poor code (full of bugs).

Solution: Don’t inflate time estimates; instead,
explicitly schedule slack time at the end of each
phase to account for the variability in estimates,
using the margins of error from Figure 4-10.

2. Failing to monitor the schedule: If the team does
not regularly report progress, no one knows if the
project is on schedule.

Solution: Require team members to honestly report
progress (or the lack or progress) every week. There is
no penalty for reporting a lack of progress, but there
are immediate sanctions for a misleading report.

3. Failing to update the schedule: When a part of the
schedule falls behind (e.g., information gathering
uses all of the slack in item 1 above plus two weeks),
a project team often thinks it can make up the time
later by working faster. It can’t. This is an early warn-
ing that the entire schedule is too optimistic.

Solution: Immediately revise the schedule and
inform the project sponsor of the new end date or
use timeboxing to reduce functionality or move it
into future versions.

4. Adding people to a late project: When a project
misses a schedule, the temptation is to add more
people to speed it up. This makes the project take
longer because it increases coordination problems
and requires staff to take time to explain what has
already been done.

Solution: Revise the schedule, use timeboxing,
throw away bug-filled code, and add people only to
work on an isolated part of the project.

Source: Adapted from Rapid Development, Redmond, WA: Microsoft

Press, 1996, pp. 29–50, by Steve McConnell.

4-1 Avoiding Classic Planning Mistakes PRACTICAL

TIP

Description

System Components:

Inputs

Outputs

Queries

Files

Program Interfaces

28

35

31

40

24

158

2 × 6

1 × 7

1 × 6

0 × 15

1 × 10

4 × 4

4 × 5

4 × 4

4 × 10

2 × 7

0 × 3

2 × 4

3 × 3

0 × 7

0 × 5

6

7

4

Total Unadjusted Function Points (TUFP):

Total
Number

Low

Complexity

Medium High Total

8

3

Adjusted Project Adjusted Processing Complexity (APC): 1.2

Total Adjusted Function Points (TAFP):

FIGURE 4-21
Function Points for the

Internet Order System

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Converting function points into lines of code was challenging. The project would use a

combination of C (for most programs) and HTML for the Web screens. Alec decided to assume

that about 75 percent of the function points would be C and 25 percent would be HTML, which

produced a total of about 19,200 lines of code [(0.75 × 190 × 130) + (0.25 × 190 × 15)].

Using the COCOMO formula, he found that this translated into about 27 person-

months of effort (1.4 × 19.2). This in turn suggested a schedule time of about nine months

(3.0 × 271/3). After much consideration, Alec decided to pad the estimate by 10 percent (by

adding one extra month).

Once the estimation was underway, Alec began to create an evolutionary work break-

down structure and iterative workplan to identify the tasks that would be needed to com-

plete the system. He used an object-oriented systems analysis and design methodology that

CD Selections had in house. His workplan is based on the steps contained in the in-house

methodology (see Figure 4-22). At this point in time, Alec does not know enough to create

a complete workplan. As such, he has included as much detail as he knows to be correct.

114 Chapter 4 Project Management

1. Planning

1.1. First Build 7 days

1.1.1. Create first version of evolutionary WBS 1 day

1.1.2. Perform feasibility analysis 5 days

1.1.2.1. Perform technical feasibility analysis 1 day

1.1.2.2. Perform economic feasibility analysis 2 days

1.1.2.3. Perform organizational feasibility analysis 2 days

1.1.3. Identify staffing requirements for first build 0.5 days 1.1.1, 1.1.2

1.1.4. Compute first version of cost estimation 0.5 days 1.1.3

1.2. Second Build

…

1.3. Nth Build

2. Requirements Determination and Use Case Development

2.1. First Build

2.1.1. Create requirements definition 8 days

2.1.1.1. Determine requirements to track 1 day

2.1.1.2. Compile requirements as they are elicited 5 days 2.1.1.1

2.1.1.3. Review requirements with sponsor 2 days 2.1.1.2

2.1.2. Elicit requirements 11.5 days

2.1.2.1. Perform document analysis 5 days

2.1.2.2. Conduct interviews 4.5 days

2.1.2.2.1. Interview project sponsor 0.5 days

2.1.2.2.2. Interview inventory system contact 0.5 days 2.1.2.2.1

2.1.2.2.3. Interview special order system contact 0.5 days 2.1.2.2.2

2.1.2.2.4. Interview ISP contact 0.5 days 2.1.2.2.3

2.1.2.2.5. Interview CD Selection Web contact 0.5 days 2.1.2.2.4

2.1.2.2.6. Interview other personnel 2 days 2.1.2.2.5

2.1.2.3. Observe retail store processes 2 days

2.1.3. Analyze current system

2.1.3.1. Draw or reverse engineer functional models

2.1.3.2. Draw or reverse engineer structural models

2.1.3.3. Draw or reverse engineer behavioral models

2.1.4. Identify opportunities for improvements

2.2. Second Build

…

2.3. Nth Build

FIGURE 4-22
Iterative Workplan for

CD Selections

(Continues)

Duration Dependency

TEMPLATE

can be found at
www.wiley.com
/college/dennis

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

For example, Alec feels confident about the estimation of time to create the requirements

definition and to elicit the requirements. However, he does not know whether the analysis

models of the current system can be reverse-engineered using a CASE tool or whether they

will have to be done by hand. Until this determination can be made, any estimation as to

the time required would be simply a guess. As time passes, Alec expects to know much

more about the development process and will add much more detail to the workplan.

Staffing the Project

Alec next turned to the task of how to staff his project. On the basis of his earlier estimates,

it appeared that about three people would be needed to deliver the system by the holidays

(27 person-months over 10 months of calendar time means three people, rounded up).

First, he created a list of the various roles that he needed to fill. He thought he would

need several analysts to work with the analysis and design of the system as well as an

infrastructure analyst to manage the integration of the Internet order system with CD

Applying the Concepts at CD Selections 115

3. Builds

3.1 First Build

3.1.1. Analysis

3.1.1.1. Create functional models

3.1.1.2. Create structural models

3.1.1.3. Create behavioral models

3.1.1.4. Walkthrough analysis models

3.1.2. Design

3.1.2.1. Factor analysis models

3.1.2.2. Identify partitions and collaborations

3.1.2.3. Design problem domain classes and methods

3.1.2.3.1. Optimize class design

3.1.2.3.2. Restructure the design

3.1.2.3.3. Develop contracts and method specification

3.1.2.4. Design object persistence

3.1.2.5. Design user interfaces

3.1.2.6. Design physical architecture

3.1.2.7. Walkthrough design models

3.1.3. Implementation

3.1.3.1. Test system implementation

3.1.3.1.1. Perform unit tests

3.1.3.1.2. Perform integration tests

3.1.3.1.3. Perform system tests

3.1.3.1.4. Perform acceptance tests

3.1.3.2. Finalize system documentation

3.2. Second Build

3.2.1. Analysis

3.2.2. Design

3.2.3. Implementation

…

3.3. Nth Build

3.3.1. Analysis

3.3.2. Design

3.3.3. Implementation

4. Installation

Duration Dependency

FIGURE 4-22
Iterative Workplan for

CD Selections

(Continued)

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Selections’ existing technical environment. Alec also needed people who had good pro-

grammer skills and who could be responsible for ultimately implementing the system.

Ian, Anne, and K.C. are three analysts with strong technical and interpersonal skills

(although Ian is less balanced, having greater technical than interpersonal abilities), and

Alec believed that they were available to bring onto this project. He wasn’t certain if they

had experience with the actual Web technology that would be used on the project, but he

decided to rely on vendor training or an external consultant to build those skills later

when they were needed. Because the project was so small, Alec envisioned all of the team

members reporting to him because he would be serving as the project’s manager.

Alec created a staffing plan that captured this information, and he included a special incen-

tive structure in the plan (Figure 4-23). Meeting the holiday deadline was very important to the

project’s success, so he decided to offer a day off to the team members who contributed to meet-

ing that date. He hoped that this incentive would motivate the team to work very hard. Alec also

planned to budget money for pizza and sodas for times when the team worked long hours.

Before he left for the day, Alec drafted a project charter, to be fine-tuned after the team

got together for its kick-off meeting (i.e., the first time the project team gets together). The

charter listed several norms that Alec wanted to put in place from the start to eliminate any

misunderstanding or problems that could come up otherwise (Figure 4-24).

Coordinating Project Activities

Alec wanted the Internet Order System project to be well coordinated, so he immediately

put several practices in place to support his responsibilities. First, he acquired the CASE

tool used at CD Selections and set up the product so that it could be used for the analysis-

phase tasks. The team members would likely start creating diagrams and defining compo-

nents of the system fairly early on. He pulled out some standards that he uses on all

development projects and made a note to review them with his project team at the kick-off

meeting for the system. He also had his assistant set up binders for the project deliverables

that would start rolling in. Already he was able to include the system request, feasibility

analysis, initial workplan, staffing plan, project charter, standards list, and risk assessment.

116 Chapter 4 Project Management

Project manager Oversees the project to ensure that it meets its Alec
objectives in time and within budget

Infrastructure analyst Ensures the system conforms to infrastructure Ian
standards at CD Selections; ensures that
the CD Selections infrastructure can support
the new system

Systems analyst Designs the information system—with a focus Ian
on interfaces with the distribution system

Systems analyst Designs the information system—with a focus K.C.
on the analysis models and interface design

Systems analyst Designs the information system—with a focus Anne
on the analysis models and system performance

Programmer Codes system K.C.

Programmer Codes system Anne

Reporting structure: All project team members will report to Alec.

Special incentives: If the deadline for the project is met, all team members who contributed to this goal will receive

a free day off, to be taken over the holiday season.

Role Description Assigned To

FIGURE 4-23

Staffing plan for the

Internet Order System

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

SUMMARY

Project Management

Project management is the second major component of the planning phase of the systems

development life cycle (SDLC), and it includes four steps: identifying the project size, cre-

ating and managing the workplan, staffing the project, and coordinating project activities.

Project management is important in ensuring that a system is delivered on time, within

budget, and with the desired functionality.

Identifying Project Size

The project manager estimates the amount of time and effort that will be needed to com-

plete the project. First, the size is estimated by relying on past experiences or industry

standards or by calculating the function points, a measure of program size based on the

number and complexity of inputs, outputs, queries, files, and program interfaces. Next,

the project manager calculates the effort for the project, which is a function of size and

production rates. Algorithms like the COCOMO model can be used to determine the

effort value. Third, the optimal schedule for the project is estimated.

Creating and Managing the Workplan

Once a project manager has a general idea of the size and approximate schedule for the

project, he or she creates a workplan, which is a dynamic schedule that records and keeps

track of all of the tasks that need to be accomplished over the course of the project. To cre-

ate a workplan, the project manager first identifies the work breakdown structure, or the

tasks that need to be accomplished, and then he or she determines how long the tasks will

take. Important information about each task is entered into a workplan.

The workplan information can be presented graphically using Gantt and PERT charts.

In the Gantt chart, horizontal bars are drawn to represent the duration of each task, and as

people work on tasks, the appropriate bars are filled in proportionately to how much of the

task is finished. PERT charts are the best way to communicate task dependencies because

they lay out the tasks as a flowchart in the order in which they need to be completed. The

longest path from the project inception to completion is referred to as the critical path.
Estimating what an IS development project will cost, how long it will take, and what

the final system will actually do follows a hurricane model. The estimates become more
accurate as the project progresses. One threat to the reliability of estimates is scope creep,
which occurs when new requirements are added to the project after the original project
scope was defined and “frozen.” If the final schedule will not deliver the system in a timely
fashion, timeboxing can be used. Timeboxing sets a fixed deadline for a project and deliv-
ers the system by that deadline no matter what, even if functionality must be reduced.

Summary 117

Project objective: The Internet Order System project team will create a working Web-based sys-
tem to sell CDs to CD Selections’ customers in time for the holiday season.

The Internet Order System team members will:

1. Attend a staff meeting each Friday at 2 P.M. to report on the status of assigned tasks.

2. Update the workplan with actual data each Friday by 5 P.M.

3. Discuss all problems with Alec as soon as they are detected.

4. Agree to support each other when help is needed, especially for tasks that could hold back
the progress of the project.

5. Post important changes to the project on the team bulletin board as they are made.

FIGURE 4-24

Project Charter for the

Internet Order System

TEMPLATE

can be found at
www.wiley.com
/college/dennis

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Evolutionary work breakdown structures and iterative workplans better fit the typical
methodologies associated with object-oriented systems development. They allow the pro-
ject manager to provide more realistic estimates for each iteration or build of a system. Fur-
thermore, they allow the workplan to be decoupled from the architecture of the system,
thus allowing projects to be comparable. By supporting comparability among projects,
evolutionary WBSs enable organizational learning to take place.

Staffing the Project

Staffing involves determining how many people should be assigned to the project, assigning
project roles to team members, developing a reporting structure for the team, and matching
people’s skills with the needs of the project. Staffing also includes motivating the team to
meet the project’s objectives and minimizing conflict among team members. Both motiva-
tion and cohesiveness have been found to greatly influence performance of team members
in project situations. Team members are motivated most by such nonmonetary things as
recognition, achievement, and the work itself. Conflict can be minimized by clearly defining
the roles on a project and holding team members accountable for their tasks. Some man-
agers create a project charter that lists the project’s norms and ground rules.

Coordinating Project Activities

Coordinating project activities includes putting efficient development practices in place and
mitigating risk, and these activities occur over the course of the entire SDLC. Three tech-
niques are available to help coordinate activities on a project: computer-aided software engi-
neering (CASE), standards, and documentation. CASE is a category of software that
automates all or part of the development process; standards are formal rules or guidelines
that project teams must follow during the project; and documentation includes detailed
information about the tasks of the SDLC. Often, documentation is stored in project binder(s)
that contain all the deliverables and all the internal communication that takes place—the his-
tory of the project. A risk assessment is used to mitigate risk because it identifies potential
risks and evaluates the likelihood of risk and its potential impact on the project.

118 Chapter 4 Project Management

Adjusted project complexity (APC)

Complexity

Computer-aided software engineering

(CASE)

CASE repository

COCOMO model

Critical path

Critical path method (CPM)

Critical task

Documentation

Effort

Estimation

Evolutionary WBS

Function point

Function point approach

Functional lead

Gantt chart

Group cohesiveness

Hurricane model

Integrated CASE

Iterative workplan

Interpersonal skills

Kick-off meeting

Lower CASE

Methodology

Milestone

Motivation

PERT chart

Program evaluation and

review technique

Project binder

Project charter

Project management

Project management software

Project manager

Reporting structure

Risk assessment

Risk management

Scope creep

Staffing plan

Standards

Task dependency

Technical lead

Technical skills

Timeboxing

Total adjusted function points (TAFP)

Total unadjusted function points (TUFP)

Trade-offs

Upper CASE

Work breakdown structure

Workplan

KEY TERMS

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Exercises 119

1. Why do many projects end up having unreasonable

deadlines? How should a project manager react to

unreasonable demands?

2. What are the trade-offs that project managers must

manage?

3. What are two basic ways to estimate the size of a project?

4. What is a function point, and how is it used?

5. Describe the three steps of the function point approach.

6. What is the formula for calculating the effort for a project?

7. Name two ways to identify the tasks that need to be

accomplished over the course of a project.

8. What is the difference between a methodology and a

workplan? How are the two terms related?

9. Compare and contrast the Gantt chart and the PERT

chart.

10. Describe the hurricane model.

11. What is scope creep, and how can it be managed?

12. What is timeboxing, and why is it used?

13. What are the problems associated with conventional

WBSs?

14. What is an evolutionary WBS? How do they address

the problems associated with conventional WBSs?

15. What is an iterative workplan?

16. Describe the differences between a technical lead and a

functional lead. How are they similar?

17. Describe three technical skills and three interpersonal

skills that would be very important to have on any

project.

18. What are the best ways to motivate a team? What are

the worst ways?

19. List three techniques to reduce conflict.

20. What is the difference between upper CASE (com-

puter-aided software engineering) and lower CASE?

21. Describe three types of standards, and provide exam-

ples of each.

22. What belongs in the project binder? How is the project

binder organized?

23. Create a list of potential risks that could affect the out-

come of a project.

24. Some companies hire consulting firms to develop

the initial project plans and manage the project, but

use their own analysts and programmers to develop

the system. Why do you think some companies

do this?

QUESTIONS

A. Visit a project management Web site, such as the Pro-

ject Management Institute (www.pmi.org). Most

have links to project management software products,

white papers, and research. Examine some of the

links for project management to better understand a

variety of Internet sites that contain information

related to this chapter.

B. Select a specific project management topic like com-

puter-aided software engineering (CASE), project

management software, or timeboxing and search for

information on that topic using the Web. The URL

listed in question A or any search engine (e.g., Google)

can provide a starting point for your efforts.

C. Pretend that the Career Services office at your univer-

sity wants to develop a system that collects student

résumés and makes them available to students and

recruiters over the Web. Students should be able to

input their résumé information into a standard

résumé template. The information then is presented

in a résumé format, and it also is placed in a database

that can be queried using an online search form. You

have been placed in charge of the project. Develop a

plan for estimating the project. How long do you

think it would take for you and three other students to

complete the project? Provide support for the sched-

ule that you propose.

D. Refer to the situation in question C. You have been

told that recruiting season begins a month from today

and that the new system must be used. How would

you approach this situation? Describe what you can

do as the project manager to make sure that your

team does not burn out from unreasonable deadlines

and commitments.

E. Consider the system described in question C. Create

a workplan that lists the tasks that will need to be

completed to meet the project’s objectives. Create a

Gantt chart and a PERT chart in a project manage-

ment tool (e.g., Microsoft Project) or using a spread-

sheet package to graphically show the high level tasks

of the project.

F. Suppose that you are in charge of the project that is

described in question C, and the project will be staffed

by members of your class. Do your classmates have all

of the right skills to implement such a project? If not,

EXERCISES

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

120 Chapter 4 Project Management

1. Emily Pemberton is an IS project manager facing a diffi-

cult situation. Emily works for the First Trust Bank,

which has recently acquired the City National Bank. Prior

to the acquisition, First Trust and City National were bit-

ter rivals, fiercely competing for market share in the

region. Following the acrimonious takeover, numerous

staff were laid off in many banking areas, including IS.

Key individuals were retained from both banks’ IS areas,

however, and were assigned to a new consolidated IS

department. Emily has been made project manager for

the first significant IS project since the takeover, and she

faces the task of integrating staffers from both banks on

her team. The project they are undertaking will be highly

visible within the organization, and the time frame for

the project is somewhat demanding. Emily believes that

the team can meet the project goals successfully, but suc-

cess will require that the team become cohesive quickly

and that potential conflicts are avoided. What strategies

do you suggest that Emily implement in order to help

ensure a successfully functioning project team?

2. Tom, Jan, and Julie are IS majors at Great State Univer-

sity. These students have been assigned a class project

by one of their professors, requiring them to develop a

new Web-based system to collect and update informa-

tion on the IS-program’s alumni. This system will be

used by the IS graduates to enter job and address infor-

mation as they graduate, and then make changes to

that information as they change jobs and/or addresses.

Their professor also has a number of queries that she is

interested in being able to implement. Based on their

preliminary discussions with their professor, the stu-

dents have developed this list of system elements:

Inputs: 1 low complexity, 2 medium complexity,

1 high complexity

Outputs: 4 medium complexity

Queries: 1 low complexity, 4 medium complexity,

2 high complexity

Files: 3 medium complexity

Program Interfaces: 2 medium complexity

Assume that an adjusted program complexity of 1 2 is

appropriate for this project. Calculate the total

adjusted function points for this project.

MINICASES

how will you go about making sure that the proper

skills are available to get the job done?

G. Consider the application that is used at your school to

register for classes. Complete a function point work-

sheet to determine the size of such an application. You

will need to make some assumptions about the applica-

tion’s interfaces and the various factors that affect its

complexity.

H. Read “Your Turn 4-1” near the beginning of this

chapter. Create a risk assessment that lists the poten-

tial risks associated with performing the project,

along with ways to address the risks.

I. Pretend that your instructor has asked you and two

friends to create a Web page to describe the course to

potential students and provide current class informa-

tion (e.g., syllabus, assignments, readings) to current

students. You have been assigned the role of leader, so

you will need to coordinate your activities and those of

your classmates until the project is completed.

Describe how you would apply the project manage-

ment techniques that you have learned in this chapter

in this situation. Include descriptions of how you

would create a workplan, staff the project, and coordi-

nate all activities—yours and those of your classmates.

J. Select two project management software packages and

research them using the Web or trade magazines.

Describe the features of the two packages. If you were

a project manager, which one would you use to help

support your job? Why?

K. Select two estimation software packages and research

them using the Web or trade magazines. Describe the

features of the two packages. If you were a project

manager, which one would you use to help support

your job? Why?

L. In 1997, Oxford Health Plans had a computer prob-

lem that caused the company to overestimate rev-

enue and underestimate medical costs. Problems

were caused by the migration of its claims processing

system from the Pick operating system to a UNIX-

based system that uses Oracle database software and

hardware from Pyramid Technology. As a result,

Oxford’s stock price plummeted, and fixing the sys-

tem became the number-one priority for the com-

pany. Pretend that you have been placed in charge of

managing the repair of the claims processing system.

Obviously, the project team will not be in good spir-

its. How will you motivate team members to meet

the project’s objectives?

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

B
ehavioral
M

odels
Structural

M
odels

Functional
M

odels
R

equirem
ents

D
efinition

A
nalysis
Plan

PART TWO

Analysis Phase

The Analysis Phase answers the questions of who

will use the system, what the system will do, and

where and when it will be used. During this phase,

the project team will learn about the system. The

team then produces the Functional Model (Activity

Diagrams, Use Case Descriptions and Diagram),

Structural Model (CRC Cards and Class and Object

Diagrams), and Behavioral Models (Sequence Dia-

grams, Communication Diagrams, and Behavioral

State Machines).

CHAPTER 5

Requirements

Determination

CHAPTER 6

Functional

Modeling

CHAPTER 7

Structural

Modeling

CHAPTER 8

Behavioral

Modeling

C
op

yr
ig

ht
ed

 M
at

er
ia

l

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

One of the first activities of an analyst is to determine the business requirements for the

system. This chapter begins by presenting the requirements definition, a document that

lists the new system’s capabilities. It then describes how to analyze requirements using busi-

ness process automation, business process improvement, and business process reengineer-

ing techniques, and how to gather requirements using interviews, JAD sessions,

questionnaires, document analysis, and observation.

OBJECTIVES

■ Understand how to create a requirements definition.
■ Become familiar with requirements analysis techniques.
■ Understand when to use each requirements analysis technique.
■ Understand how to gather requirements using interviews, JAD sessions, question-

naires, document analysis, and observation.
■ Understand when to use each requirements-gathering technique.

CHAPTER OUTLINE

INTRODUCTION

The systems development life cycle (SDLC) is the process by which the organization moves

from the current system (often called the as-is system) to the new system (often called the to-

be system). The output of planning, discussed in Chapters 3 and 4, is the system request,

which provides general ideas for the to-be system, defines the project's scope, and provides

Introduction

Requirements Determination

What is a Requirement?

Requirements Definition

Determining Requirements

Creating the Requirements Definition

Requirements Analysis Techniques

Business Process Automation

Business Process Improvement

Business Process Reengineering

Selecting the Appropriate Technique

Requirement-Gathering Techniques

Interviews

Joint Application Development

Questionnaíres

Document Analysis

Observation

Selecting the Appropriate Techniques

Applying the Concepts at CD Selections

Requirements Analysis Techniques

Requirements-Gathering Techniques

Requirements Definition

System Proposal

Summary

C H A P T E R 5

Requirements Determination

123

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

the initial workplan. The analysis phase takes the general ideas in the system request and

refines them into a detailed requirements definition (this chapter), functional models (Chap-

ter 6), structural models (Chapter 7), and behavioral models (Chapter 8) that together form

the system proposal. The system proposal also includes revised project management deliver-

ables, such as the feasibility analysis (Chapter 3) and the workplan (Chapter 4).

The system proposal is presented to the approval committee, who decides if the project

is to continue. This usually happens at a system walkthrough, a meeting at which the concept

for the new system is presented to the users, managers, and key decision makers. The goal of

the walkthrough is to explain the system in moderate detail so that the users, managers, and

key decision makers clearly understand it, can identify needed improvements, and are able to

make a decision about whether the project should continue. If approved, the system proposal

moves into the design phase, and its elements (requirements definition, functional, struc-

tural, and behavioral models) are used as inputs to the steps in design. This further refines

them and defines in much more detail how the system will be built.

The line between analysis and design is very blurry. This is because the deliverables cre-

ated during analysis are really the first step in the design of the new system. Many of the major

design decisions for the new system are found in the analysis deliverables. In fact, a better

name for analysis would really be “analysis and initial design,” but because this is a rather long

name, and because most organizations simply call it analysis, we will too. Nonetheless, it is

important to remember that the deliverables from analysis are really the first step in the

design of the new system.

In many ways, the requirements determination step is the single most critical step of the

entire SDLC, because it is here that the major elements of the system first begin to emerge.

During requirements determination, the system is easy to change because little work has been

done yet. As the system moves through the other phases in the SDLC, it becomes harder and

harder to return to requirements determination and to make major changes because of all of

the rework that is involved. Several studies have shown that more than half of all system fail-

ures are due to problems with the requirements.1 This is why the iterative approaches of many

object-oriented methodologies are so effective—small batches of requirements can be identi-

fied and implemented in incremental stages, allowing the overall system to evolve over time.

In this chapter, we focus on the requirements-determination step of analysis. We begin

by explaining what a requirement is and the overall process of requirements gathering and

requirements analysis. We then present a set of techniques that can be used to analyze and

gather requirements.

REQUIREMENTS DETERMINATION

The purpose of the requirements determination step is to turn the very high-level explanation

of the business requirements stated in the system request into a more precise list of require-

ments than can be used as inputs to the rest of analysis (creating functional, structural, and

behavioral models). This expansion of the requirements ultimately leads to the design phase.

What is a Requirement?

A requirement is simply a statement of what the system must do or what characteristic it

must have. During analysis, requirements are written from the perspective of the busi-

nessperson, and they focus on the “what” of the system. They focus on business user needs,

so they usually are called business requirements (and sometimes user requirements). Later

124 Chapter 5 Requirements Determination

1 For example, see The Scope of Software Development Project Failures by The Standish Group, Dennis MA, 1995.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

in design, business requirements evolve to become more technical, and they describe “how”

the system will be implemented. Requirements in design are written from the developer’s

perspective, and they usually are called system requirements.

Before we continue, we want to stress that there is no black-and-white line dividing a

business requirement and a system requirement—and some companies use the terms

interchangeably. The important thing to remember is that a requirement is a statement of

what the system must do, and requirements will change over time as the project moves

from analysis to design to implementation. Requirements evolve from detailed statements

of the business capabilities that a system should have to detailed statements of the techni-

cal way in which the capabilities will be implemented in the new system.

Requirements can be either functional or nonfunctional in nature. A functional

requirement relates directly to a process the system has to perform or information it needs

to contain. For example, requirements that state that the system must have the ability to

search for available inventory or to report actual and budgeted expenses are functional

requirements. Functional requirements flow directly into the next steps of analysis (func-

tional, structural, and behavioral models) because they define the functions that the system

needs to have.

Nonfunctional requirements refer to behavioral properties that the system must have,

such as performance and usability. The ability to access the system using a Web browser

would be considered a nonfunctional requirement. Nonfunctional requirements may

influence the rest of analysis (functional, structural, and behavioral models) but often do

so only indirectly; nonfunctional requirements are primarily used in design when decisions

are made about the user interface, the hardware and software, and the system’s underlying

physical architecture.

Figure 5-1 lists different kinds of nonfunctional requirements and examples of each

kind. Notice that the nonfunctional requirements describe a variety of characteristics

regarding the system: operational, performance, security, and cultural and political. These

characteristics do not describe business processes or information, but they are very impor-

tant in understanding what the final system should be like. For example, the project team

Requirements Determination 125

One of the most common mistakes by new analysts is to
confuse functional and nonfunctional requirements. Pre-
tend that you received the following list of requirements
for a sales system.

Requirements for Proposed System:
The system should…

1. Be accessible to Web users

2. Include the company standard logo and color
scheme

3. Restrict access to profitability information

4. Include actual and budgeted cost information

5. Provide management reports

6. Include sales information that is updated at least
daily

7. Have 2-second maximum response time for prede-
fined queries, and 10-minute maximum response
time for ad hoc queries

8. Include information from all company subsidiaries

9. Print subsidiary reports in the primary language of
the subsidiary

10. Provide monthly rankings of salesperson perfor-
mance

Questions:

1. Which requirements are functional business
requirements? Provide two additional examples.

2. Which requirements are nonfunctional business
requirements? What kind of nonfunctional require-
ments are they? Provide two additional examples.

5-1 Identifying RequirementsYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

126 Chapter 5 Requirements Determination

Operational The physical and technical environments in ■ The system should be able to fit in a pocket or purse
which the system will operate ■ The system should be able to integrate with the exist-

ing inventory system
■ The system should be able to work on any Web

browser

Performance The speed, capacity, and reliability of the system ■ Any interaction between the user and the system
should not exceed 2 seconds

■ The system should receive updated inventory infor-
mation every 15 minutes

■ The system should be available for use 24 hours per
day, 365 days per year

Security Who has authorized access to the system under ■ Only direct managers can see personnel records
what circumstances of staff

■ Customers can only see their order history during
business hours

Cultural and Political Cultural, political factors and legal requirements ■ The system should be able to distinguish between
that affect the system United States and European currency

■ Company policy says that we only buy computers
from Dell

■ Country managers are permitted to authorize cus-
tomer user interfaces within their units

■ The system shall comply with insurance industry
standards

Source: The Atlantic Systems Guild, http;//www.systemsguild.com

FIGURE 5-1

Nonfunctional Requirements

Nonfunctional
Requirement Description Examples

I once worked on a consulting project in which my man-
ager created a requirements definition without listing non-
functional requirements. The project was then estimated
based on the requirements definition and sold to the client
for $5,000. In my manager’s mind, the system that we
would build for the client would be a very simple stand-
alone system running on current technology. It shouldn’t
take more than a week to analyze, design, and build.

Unfortunately, the client had other ideas. They
wanted the system to be used by many people in three
different departments, and they wanted the ability for any
number of people to work on the system concurrently.
The technology they had in place was antiquated, but

nonetheless they wanted the system to run effectively on
the existing equipment. Because we didn’t set the project
scope properly by including our assumptions about non-
functional requirements in the requirements definition,
we basically had to do whatever they wanted.

The capabilities they wanted took weeks to design
and program. The project ended up taking four months,
and the final project cost was $250,000. Our company
had to pick up the tab for everything except the agreed
upon $5,000. This was by far the most frustrating project
situation I ever experienced.

—Barbara Wixom

5-A What Can Happen If You Ignore Nonfunctional RequirementsCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

needs to know if a system needs to be highly secure, requires subsecond response time, or

has to reach a multilingual customer base. These requirements will impact design decisions

that will be made in design, particularly physical architecture design, so we will revisit them

in detail in Chapter 13. The goal at this point is to identify any major issues.

Requirements Definition

The requirements definition report—usually just called the requirements definition—is a

straightforward text report that simply lists the functional and nonfunctional requirements

in an outline format. Figure 5-2 shows a sample requirements definition for a word pro-

cessing program designed to compete against software, such as Microsoft Word.

The requirements are numbered in a legal or outline format so that each requirement

is clearly identified. The requirements are first grouped into functional and nonfunctional

requirements and then within each of those headings they are further grouped by the type

of nonfunctional requirement or by function.

Requirements Determination 127

 C. Functional Requirements

 1. Printing
 1.1. The user can select which pages to print
 1.2. The user can view a preview of the pages before printing
 1.3. The user can change the margins, paper size (e.g., letter, A4) and orientation
 on the page

 2. Spell Checking
 2.1. The user can check for spelling mistakes; the system can operate in one
 of two modes as selected by the users
 2.1.1. Mode 1 (Manual): The user will activate the spell checker and it will move the
 user to the next misspelled word
 2.1.2. Mode 2 (Automatic): As the user types, the spell checker will flag misspelled
 words so the user immediately see the misspelling
 2.2. The user can add words to the dictionary
 2.3. The user can mark words as not misspelled but not add them to the dictionary

 D. Nonfunctional Requirements

 1. Operational Requirements
 1.1. The system will operate in Windows and Macintosh environments
 1.2. The system will be able to read and write Word documents, RTF, and HTML
 1.3. The system will be able to import Gif, Jpeg, and BMP graphics files

 2. Performance Requirements
 2.1. Response times must be less than 7 seconds
 2.2. The Inventory database must be updated in real time

 3. Security Requirements
 3.1. No special security requirements are anticipated

 4. Cultural and Political Requirements
 4.1. No special cultural and political requirements are anticipated

FIGURE 5-2

Sample Requirements

Definition

TEMPLATE

can be found at
www.wiley.com
/college/dennis

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Sometimes, business requirements are prioritized on the requirements definition.

They can be ranked as having high, medium, or low importance in the new system, or they

can be labeled with the version of the system that will address the requirement (e.g., release

1, release 2, release 3). This practice is particularly important when using object-oriented

methodologies since they deliver requirements in batches by developing incremental ver-

sions of the system.

The most obvious purpose of the requirements definition is to provide the information

needed by the other deliverables in analysis, which include functional, structural, and

behavioral models, and to support activities in the design phase. The most important pur-

pose of the requirements definition, however, is to define the scope of the system. The doc-

ument describes to the analysts exactly what the system needs to end up doing. When

discrepancies arise, the document serves as the place to go for clarification.

Determining Requirements

Determining requirements for the requirements definition is both a business task and an IT

task. In the early days of computing, there was a presumption that the systems analysts, as

experts with computer systems, were in the best position to define how a computer system

should operate. Many systems failed because they did not adequately address the true busi-

ness needs of the users. Gradually, the presumption changed so that the users, as the busi-

ness experts, were seen as being the best position to define how a computer system should

operate. However, many systems failed to deliver performance benefits because users simply

automated an existing inefficient system, and they failed to incorporate new opportunities

offered by technology.

A good analogy is building a house or an apartment. We have all lived in a house or apart-

ment, and most of us have some understanding of what we would like to see in one. However,

if we were asked to design one from scratch, it would be a challenge because we lack appro-

priate design skills and technical engineering skills. Likewise, an architect acting alone would

probably miss some of our unique requirements.

Therefore, the most effective approach is to have both businesspeople and analysts

working together to determine business requirements. Sometimes, however, users don’t

know exactly what they want, and analysts need to help them discover their needs. Three

kinds of techniques have become popular to help analysts do this: business process

automation (BPA), business process improvement (BPI), and business process reengineer-

ing (BPR). These techniques are tools that analysts can use when they need to guide the

users in explaining what is wanted from a system.
The three kinds of techniques work similarly. They help users critically examine the

current state of systems and processes (the as-is system), identify exactly what needs to
change, and develop a concept for a new system (the to-be system). A different amount of
change is associated with each technique; BPA creates a small amount of change, BPI cre-
ates a moderate amount of change, and BPR creates significant change that affects much of
the organization. All three will be described in greater detail later in the chapter.

Although BPA, BPI, and BPR enable the analyst to help users create a vision for the
new system, they are not sufficient for extracting information about the detailed business
requirements that are needed to build it. Therefore, analysts use a portfolio of require-
ment-gathering techniques to acquire information from users. The analyst has many
gathering techniques from which to choose: interviews, questionnaires, observation,
joint application development (JAD), and document analysis. The information gathered
using these techniques is critically analyzed and used to craft the requirements definition
report. The final section of this chapter describes each of the requirements-gathering
techniques in greater depth.

128 Chapter 5 Requirements Determination

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Creating the Requirements Definition

Creating the requirements definition is an iterative and ongoing process whereby the analyst
collects information with requirements-gathering techniques (e.g., interviews, document
analysis), critically analyzes the information to identify appropriate business requirements for
the system, and adds the requirements to the requirements definition report. The require-
ments definition is kept up to date so that the project team and business users can refer to it
and get a clear understanding of the new system.

To create the requirements definition, the project team first determines the kinds of
functional and nonfunctional requirements that they will collect about the system (of
course, these may change over time). These become the main sections of the document.
Next, the analysts use a variety of requirement-gathering techniques (e.g., interviews, obser-
vation) to collect information, and they list the business requirements that were identified
from that information. Finally, the analysts work with the entire project team and the busi-
ness users to verify, change, and complete the list and to help prioritize the importance of
the requirements that were identified.

This process continues throughout analysis, and the requirements evolves over time as
new requirements are identified and as the project moves into later phases of the SDLC.
Beware: the evolution of the requirements definition must be carefully managed. The project
team cannot keep adding to the requirements definition, or the system will keep growing and
growing and never get finished. Instead, the project team carefully identifies requirements
and evaluates which ones fit within the scope of the system. When a requirement reflects a
real business need but is not within the scope of the current system or current release, it is
added on a list of future requirements, or given a low priority. The management of require-
ments (and system scope) is one of the hardest parts of managing a project!

REQUIREMENTS ANALYSIS TECHNIQUES

Before the project team can determine what requirements are appropriate for a given sys-

tem, they need to have a clear vision of the kind of system that will be created, and the level

of change that it will bring to the organization. The basic process of analysis is divided into

three steps: understanding the as-is system, identifying improvements, and developing

requirements for the to-be system.
Sometimes the first step (i.e., understanding the as-is system) is skipped or done in a

cursory manner. This happens when no current system exists, if the existing system and
processes are irrelevant to the future system, or if the project team is using a RAD or agile
development methodology in which the as-is system is not emphasized. Users of tradi-
tional design methods such as waterfall and parallel development (see Chapter 1) typically
spend significant time understanding the as-is system and identifying improvements
before moving to capture requirements for the to-be system. However, newer RAD, agile,
and object-oriented methodologies, such as phased development, prototyping, throwaway
prototyping, and extreme programming (see Chapters 1 and 2) focus almost exclusively on
improvements and the to-be system requirements, and they spend little time investigating
the current as-is system.

Three requirements analysis techniques—business process automation, business
process improvement, or business process reengineering—help the analyst lead users
through the three (or two) analysis steps so that the vision of the system can be developed.
We should note that requirements analysis techniques and requirements-gathering tech-
niques go hand in hand. Analysts need to use requirements-gathering techniques to collect
information; requirements analysis techniques drive the kind of information that is gath-
ered and how it is ultimately analyzed. Although we focus now on the analysis techniques

Requirements Analysis Techniques 129

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

and then discuss requirements gathering at the end of the chapter, they happen concurrently
and are complementary activities.

The choice of analysis technique used is based on the amount of change the system is
meant to create in the organization. BPA is based on small change that improves process
efficiency, BPI creates process improvements that lead to better effectiveness, and BPR
revamps the way things work so that the organization is transformed on some level.

To move the users “from here to there,” an analyst needs strong critical thinking skills.
Critical thinking is the ability to recognize strengths and weaknesses and recast an idea in
an improved form, and they are needed to really understand issues and develop new busi-
ness processes. These skills are needed to thoroughly examine the results of requirements
gathering, to identify business requirements, and to translate those requirements into a
concept for the new system.

Business Process Automation

Business process automation (BPA) means leaving the basic way in which the organization
operates unchanged, and using computer technology to do some of the work. BPA can
make the organization more efficient but has the least impact on the business. BPA projects
spend a significant time understanding the current as-is system before moving on to
improvements and to-be system requirements. Problem analysis and root cause analysis are
two popular BPA techniques.

Problem Analysis The most straightforward (and probably the most commonly used)

requirements analysis technique is problem analysis. Problem analysis means asking the

users and managers to identify problems with the as-is system and to describe how to solve

them in the to-be system. Most users have a very good idea of the changes they would like

to see, and most will be quite vocal about suggesting them. Most changes tend to solve

problems rather than capitalize on opportunities, but this is possible, too. Improvements

from problem analysis tend to be small and incremental (e.g., provide more space in which

to type the customer’s address; provide a new report that currently does not exist).

This type of improvement often is very effective at improving a system’s efficiency or

ease of use. However, it often provides only minor improvements in business value—the

new system is better than the old, but it may be hard to identify significant monetary ben-

efits from the new system.

Root Cause Analysis The ideas produced by problem analysis tend to be solutions to

problems. All solutions make assumptions about the nature of the problem, assumptions

that may or may not be valid. In our experience, users (and most people in general) tend

to jump quickly to solutions without fully considering the nature of the problem. Some-

times the solutions are appropriate, but many times they address a symptom of the prob-

lem, not the true problem or root cause itself.2

For example, suppose you notice that a lightbulb is burned out above your front door.
You buy a new bulb, get out a ladder, and replace the bulb. A month later, you see that the
same bulb is burnt out, so you buy a new bulb, haul out the ladder, and replace it again.
This repeats itself several times. At this point, you have two choices. You can buy a large
package of lightbulbs and a fancy lightbulb changer on a long pole so you don’t need the

130 Chapter 5 Requirements Determination

2 Some excellent books that address the importance of gathering requirements and various techniques include:
Alan M. Davis, Software Requirements: Objects, Functions, & States, Revision (Englewood Cliffs, NJ: Prentice Hall,
1993); Gerald Kotonya and Ian Sommerville, Requirements Engineering (Chichester, England: John Wiley & Sons,
1998); and Dean Leffingwell and Don Widrig, Managing Software Requirements: A Unified Approach (Reading,
MA: Addison-Wesley, 2000).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

haul the ladder out each time (thus saving a lot of trips to the store for new bulbs and a lot
of effort in working with the ladder). Or you can fix the light fixture that is causing the light
to burn out in the first place. Buying the bulb changer is treating the symptom (the burnt-
out bulb), while fixing the fixture is treating the root cause.

In the business world, the challenge lies in identifying the root cause—few problems
are as simple as the lightbulb problem. The solutions that users propose (or systems that
analysts think of) may either address symptoms or root causes, but without a careful analy-
sis, it is difficult to tell which one. And finding out that you’ve just spent a million dollars
on a new lightbulb changer is a horrible feeling!

Root cause analysis therefore focuses on problems, not solutions. The analyst starts by
having the users generate a list of problems with the current system, and then prioritize the
problems in order of importance. Then starting with the most important, the users and/or
the analysts generate all the possible root causes for the problems. Each possible root cause
is investigated (starting with the most likely or easiest to check) until the true root cause(s)
are identified. If any possible root causes are identified for several problems, those should be
investigated first, because there is a good chance they are the real root causes influencing the
symptom problems.

In our lightbulb example, there are several possible root causes. A decision tree some-
times helps with the analysis. As Figure 5-3 shows, there are many possible root causes, so
buying a new fixture may or may not address the true root cause. In fact, buying a light-
bulb changer may actually address the root cause. The key point in root cause analysis is to
always challenge the obvious.

Requirements Analysis Techniques 131

Light bulb burns
out frequently

Buy better bulbs

Fix bad fixture

Fix bad wiring

Control power surges

Left on when not needed Left on when needed

Bulb burns out at
end of rated life

Bulb burns
out prematurely

Change procedure to
have bulb turned off

Develop ways to
automatically turn off bulb

Find way to
simplify changing

Buy a bulb with
a longer-rated life

Find other means
to deliver light

Find other ways to
achieve what light does

FIGURE 5-3 Root Cause Analysis for the Example of the Burned-Out Lightbulb

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Business Process Improvement

Business process improvement (BPI) means making moderate changes to the way in which

the organization operates to take advantage of new opportunities offered by technology or

to copy what competitors are doing. BPI can improve efficiency (i.e., doing things right)

and improve effectiveness (i.e., doing the right things). BPI projects also spend time under-

standing the as-is system, but much less time than BPA projects; their primary focus is on

improving business processes, so time is spent on the as-is only to help with the improve-

ment analyses and the to-be system requirements. Duration analysis, activity-based cost-

ing, and information benchmarking are three popular BPI activities.

Duration Analysis Duration analysis requires a detailed examination of the amount of

time it takes to perform each process in the current as-is system. The analysts begin by deter-

mining the total amount of time it takes, on average, to perform a set of business processes

for a typical input. They then time each of the individual steps (or subprocesses) in the busi-

ness process. The time to complete the basic steps are then totaled and compared to the total

for the overall process. When there is a significant difference between the two—and in our

experiences the total time often can be 10 or even 100 times longer than the sum of the

parts—this indicates that this part of the process is badly in need of a major overhaul.

For example, suppose that the analysts are working on a home mortgage system and

discover that on average, it takes thirty days for the bank to approve a mortgage. They then

look at each of the basic steps in the process (e.g., data entry, credit check, title search,

appraisal, etc.) and find that the total amount of time actually spent on each mortgage is

132 Chapter 5 Requirements Determination

In 1984, I developed an information system to help
schedule production orders in paper mills. Paper is made
in huge rolls that are six to ten feet wide. Customer orders
(e.g., newspaper, computer paper) are cut from these
large rolls. The goal of production scheduling is to decide
which orders to combine on one roll to reduce the
amount of paper wasted because no matter how you
place the orders on the rolls, you almost always end up
throwing away the last few inches—customer orders sel-
dom add up to exactly the same width as the roll itself
(imagine trying to cut several rolls of toilet paper from a
paper towel roll).

The scheduling system was designed to run on an
IBM PC, which in those days was not powerful enough to
use advanced mathematical techniques like linear pro-
gramming to calculate which orders to combine on
which roll. Instead, we designed the system to use the
rules of thumb that the production schedulers themselves
had developed over many years. After several months of
fine-tuning, the system worked very well. The schedulers
were happy and the amount of waste decreased.

By 1986, PCs had increased in power, so we revised
the system to use the advanced linear programming tech-

niques to provide better schedules and reduce the waste
even more. In our tests, the new system reduced waste by
a few percentage points over the original system, so it was
installed. However, after several months, there were big
problems; the schedulers were unhappy and the amount
of waste actually grew.

It turned out that although the new system really did
produce better schedules with less waste, the real prob-
lem was not figuring how to place the orders on the rolls
to reduce waste. Instead, the real problem was finding
orders for the next week that could be produced with the
current batch. The old system combined orders in a way
in which the schedulers found it easy to find “matching”
future orders. The new system made odd combinations
with which the schedulers had a hard time working. The
old system was eventually re-installed.

—Alan Dennis

Question

1. How could the problem with the new system have
been foreseen?

5-B When Optimal Isn’tCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

about eight hours. This is a strong indication that the overall process is badly broken,

because it takes thirty days to perform one day’s work.
These problems likely occur because the process is badly fragmented. Many different

people must perform different activities before the process finishes. In the mortgage exam-
ple, the application probably sits on many peoples’ desks for long periods of time before it
is processed. Processes in which many different people work on small parts of the inputs
are prime candidates for process integration or parallelization. Process integration means
changing the fundamental process so that fewer people work on the input, which often
requires changing the processes and retraining staff to perform a wider range of duties.
Process parallelization means changing the process so that all the individual steps are per-
formed at the same time. For example in the mortgage application example, there is prob-
ably no reason that the credit check cannot be performed at the same time as the appraisal
and title check.

Activity-Based Costing Activity-based costing is a similar analysis that examines the cost

of each major process or step in a business process rather than the time taken.3 The ana-

lysts identify the costs associated with each of the basic functional steps or processes, iden-

tify the most costly processes, and focus their improvement efforts on them.

Assigning costs is conceptually simple. You just examine the direct cost of labor and

materials for each input. Materials costs are easily assigned in a manufacturing process,

while labor costs are usually calculated based on the amount of time spent on the input and

the hourly cost of the staff. However, as you may recall from a managerial accounting

course, there are indirect costs such as rent, depreciation, and so on that also can be

included in activity costs.

Informal Benchmarking Benchmarking refers to studying how other organizations per-

form a business process in order to learn how your organization can do something better.

Benchmarking helps the organization by introducing ideas that employees may never have

considered, but have the potential to add value.

Informal benchmarking is fairly common for “customer-facing” business processes

(i.e., those processes that interact with the customer). With informal benchmarking, the

Requirements Analysis Techniques 133

3 For more information on activity-based costing, see K.B. Burk and D. W. Webster, Activity Based Costing (Fair-
fax, VA: American Management Systems, 1994); and D. T. Hicks, Activity-Based Costing: Making It Work for Small
and Mid-Sized Companies (New York: John Wiley, 1998).

A group of executives from a Fortune 500 company used
Duration Analysis to discuss their procurement process.
Using a huge wall of Velcro and a handful of placards, a
facilitator proceeded to map out the company’s process
for procuring a $50 software upgrade. Having quantified
the time it took to complete each step, she then assigned
costs based on the salaries of the employees involved. The

15-minute exercise left the group stunned. Their procure-
ment process had gotten so convoluted that it took eigh-
teen days, countless hours of paperwork and nearly
$22,000 in people time to get the product ordered,
received, and up and running on the requester’s desktop.
Source: “For Good Measure,” CIO Magazine, March 1 1999, by

Debby Young.

5-C Duration AnalysisCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

managers and analysts think about other organizations, or visit them as customers to

watch how the business process is performed. In many cases, the business studied may be

a known leader in the industry or simply a related firm. For example, suppose the team is

developing a Web site for a car dealer. The project sponsor, key managers, and key team

members would likely visit the Web sites of competitors, as well as those of others in the

car industry (e.g., manufacturers, accessories suppliers) and those in other industries that

have won awards for their Web sites.

Business Process Reengineering

Business process reengineering (BPR) means changing the fundamental way in which the

organization operates—“obliterating” the current way of doing business and making major

changes to take advantage of new ideas and new technology. BPR projects spend little time

understanding the as-is, because their goal is to focus on new ideas and new ways of doing

business. Outcome analysis, technology analysis, and activity elimination are three popu-

lar BPR activities.

Outcome Analysis Outcome analysis focuses on understanding the fundamental out-

comes that provide value to customers. While these outcomes sound as though they should

be obvious, they often aren’t. For example, suppose you are an insurance company, and one

of your customers has just had a car accident. What is the fundamental outcome from the

customer’s perspective? Traditionally, insurance companies have answered this question by

assuming the customer wants to receive the insurance payment quickly. To the customer,

however, the payment is only a means to the real outcome: a repaired car. The insurance

company might benefit by extending their view of the business process past its traditional

boundaries to include not paying for repairs, but performing the repairs or contracting

with an authorized body shop to do them.

With this approach, the system analysts encourage the managers and project spon-

sor to pretend they are customers and to think carefully about what the organization’s

products and services enable the customers to do—and what they could enable the cus-

tomer to do.

Technology Analysis Many major changes in business over the past decade have been

enabled by new technologies. Technology analysis therefore starts by having the analysts and

managers develop a list of important and interesting technologies. Then the group system-

atically identifies how each and every technology could be applied to the business process

and identifies how the business would benefit.

For example, one useful technology might be the Internet. Saturn, the car manufac-

turer, took this idea and developed an Extranet application for its suppliers. Rather than

ordering parts for its cars, Saturn makes its production schedule available electronically to

its suppliers, who ship the parts Saturn needs so that they arrive at the plant just in time.

This saves Saturn significant costs because it eliminates the need for people to monitor the

production schedule and issue purchase orders.

Activity Elimination Activity elimination is exactly what it sounds like. The analysts and

managers work together to identify how the organization could eliminate each and every

activity in the business process, how the function could operate without it, and what effects

are likely to occur. Initially, managers are reluctant to conclude that processes can be elim-

inated, but this is a “force-fit” exercise in that they must eliminate each activity. In some

cases the results are silly, but nonetheless, participants must address each and every activ-

ity in the business process.

134 Chapter 5 Requirements Determination

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

For example, in the home mortgage approval process discussed earlier, the managers

and analysts would start by eliminating the first activity, entering the data into the mort-

gage company’s computer. This leads to two obvious possibilities (1) eliminate the use of a

computer system; or (2) make someone else do the data entry (e.g., the customer over the

Web). They would then eliminate the next activity, the credit check. Silly right? After all,

making sure the applicant has good credit is critical in issuing a loan. Not really. The real

answer depends upon how many times the credit check identifies bad applications. If all or

almost all applicants have good credit and are seldom turned down by a credit check, then

the cost of the credit check may not be worth the cost of the few bad loans it prevents. Elim-

inating it may actually result in lower costs even with the cost of bad loans.

Selecting the Appropriate Technique

Each of the techniques discussed in this chapter has its own strengths and weaknesses (see

Figure 5-4). No one technique is inherently better than the others, and in practice most

projects use a combination of techniques.

Potential Business Value The potential business value varies with analysis strategy. While

BPA has the potential to improve the business, most of the benefits from BPA are tactical

and small in nature. Since BPA does not seek to change the business processes, it can only

improve their efficiency. BPI usually offers moderate potential benefits, depending upon

the scope of the project, because it seeks to change the business in some way. It can increase

both efficiency and effectiveness. BPR creates large potential benefits because it seeks to

radically improve the nature of the business.

Project Cost Project cost is always important. In general, BPA requires the lowest cost

because it has the narrowest focus and seeks to make the fewest number of changes. BPI

can be moderately expensive, depending upon the scope of the project. BPR is usually

expensive, both because of the amount of time required of senior managers and the

amount of redesign to business processes.

Breadth of Analysis Breadth of analysis refers to the scope of analysis, or whether analy-

sis includes business processes within a single business function, processes that cross the

organization, or processes that interact with those in customer or supplier organizations.

BPR takes a broad perspective, often spanning several major business processes, even across

multiple organizations. BPI has a much narrower scope that usually includes one or several

business functions. BPA typically examines a single process.

Risk One final issue is risk of failure, which is the likelihood of failure due to poor

design, unmet needs, or too much change for the organization to handle. BPA and BPI

have low to moderate risk because the to-be system is fairly well defined and understood,

Requirements Analysis Techniques 135

FIGURE 5-4

Characteristics of

Analysis Strategies

Potential business value Low–moderate Moderate High

Project cost Low Low–moderate High

Breadth of analysis Narrow Narrow–moderate Very broad

Risk Low–moderate Low–moderate Very high

Business Process Business Process Business Process
Automation Improvement Reengineering

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

and its potential impact on the business can be assessed before it is implemented. BPR

projects, on the other hand, are less predictable. BPR is extremely risky and not some-

thing to be undertaken unless the organization and its senior leadership are committed

to making significant changes. Mike Hammer, the father of BPR, estimates that 70 per-

cent of BPR projects fail.

136 Chapter 5 Requirements Determination

IBM Credit was a wholly owned subsidiary of IBM
responsible for financing mainframe computers sold by
IBM. While some customers bought mainframes outright,
or obtained financing from other sources, financing com-
puters provided significant additional profit.

When an IBM sales representative made a sale, he or
she would immediately call IBM Credit to obtain a
financing quote. The call was received by a credit officer
who would record the information on a request form. The
form would then be sent to the credit department to check
the customer’s credit status. This information would be
recorded on the form, which was then sent to the business
practices department who would write a contract (some-
times reflecting changes requested by the customer). The
form and the contract would then go to the pricing
department, which used the credit information to estab-
lish an interest rate and recorded it on the Form. The Form
and contract was then sent to the clerical group, where an
administrator would prepare a cover letter quoting the
interest rate and send the letter and contract via Federal
Express to the customer.

The problem at IBM Credit was a major one. Getting
a financing quote took anywhere for four to eight days (six
days on average), giving the customer time to rethink the
order or find financing elsewhere. While the quote was
being prepared, sales representatives would often call to
find out where the quote was in the process, so they
could tell the customer when to expect it. However, no
one at IBM Credit could answer the question because the
paper forms could be in any department and it was
impossible to locate one without physically walking

through the departments and going through the piles of
forms on everyone’s desk.

IBM Credit examined the process and changed it so
that each credit request was logged into a computer sys-
tem so that each department could record an applica-
tion’s status as they completed it and sent it to the next
department. In this way, sales representatives could call
the credit office and quickly learn the status of each appli-
cation. IBM used some sophisticated management sci-
ence queuing theory analysis to balance workloads and
staff across the different departments so none would be
overloaded. They also introduced performance standards
for each department (e.g., the pricing decision had to be
completed within one day after that department received
an application).

However, process times got worse, even though each
department was achieving almost 100 percent compli-
ance on its performance goals. After some investigation,
managers found that when people got busy, they conve-
niently found errors that forced them to return credit
requests to the previous department for correction,
thereby removing it from their time measurements.

Questions:

1. What techniques can you use to identify improve-
ments? Choose one technique and apply it to this
situation—what improvements did you identify?

Source: Reengineering the Corporation, New York: Harper Business,

1993, by M. Hammer and J. Champy.

5-2 IBM CreditYOUR

TURN

Suppose you are the analyst charged with developing a
new Web site for a local car dealer who wants to be very

innovative and try new things. What analysis techniques
would you recommend? Why?

5-3 Analysis StrategyYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

REQUIREMENTS-GATHERING TECHNIQUES

An analyst is very much like a detective (and business users sometimes are like elusive suspects).
He or she knows that there is a problem to be solved and therefore must look for clues that
uncover the solution. Unfortunately, the clues are not always obvious (and often missed), so the
analyst needs to notice details, talk with witnesses, and follow leads just as Sherlock Holmes
would have done. The best analysts will thoroughly gather requirements using a variety of tech-
niques and make sure that the current business processes and the needs for the new system are
well understood before moving into design. You don’t want to discover later that you have key
requirements wrong—surprises like this late in the SDLC can cause all kinds of problems.

The requirements-gathering process is used for building political support for the pro-

ject and establishing trust and rapport between the project team building the system and

the users who ultimately will choose to use or not use the system. Involving someone in the

process implies that the project teams views that person as an important resource and val-

ues his or her opinions. You must include all of the key stakeholders (the people who can

affect the system or who will be affected by the system) in the requirements-gathering

process. This might include managers, employees, staff members, and even some cus-

tomers and suppliers. If you do not involve a key person, that individual may feel slighted,

which can cause problems during implementation (e.g., “How could they have developed

the system without my input?!”).

The second challenge of requirements gathering is choosing the way(s) in which infor-

mation is collected. There are many techniques for gathering requirements that vary from

asking people questions to watching them work. In this chapter, we focus on the five most

commonly used techniques: interviews, JAD sessions (a special type of group meeting),

questionnaires, document analysis, and observation. Each technique has its own strengths

and weaknesses, many of which are complementary, so most projects use a combination of

techniques, probably most often interviews, JAD sessions, and document analysis.4

Interviews

The interview is the most commonly used requirements-gathering technique. After all, it is

natural—usually if you need to know something, you ask someone. In general, interviews

are conducted one-on-one (one interviewer and one interviewee), but sometimes, due to

time constraints, several people are interviewed at the same time. There are five basic steps

to the interview process: selecting interviewees, designing interview questions, preparing

for the interview, conducting the interview, and postinterview follow-up.5

Selecting Interviewees The first step to interviewing is to create an interview schedule that

lists all of the people who will be interviewed, when, and for what purpose (see Figure 5-5).

The schedule can be an informal list that is used to help set up meeting times, or a formal

list that is incorporated into the workplan. The people who appear on the interview sched-

ule are selected based on the analyst’s information needs. The project sponsor, key business

users, and other members of the project team can help the analyst determine who in the

organization can best provide important information about requirements. These people are

listed on the interview schedule in the order in which they should be interviewed.

Requirements-Gathering Techniques 137

4 Two good books that discuss the problems in finding the root causes to problems are: E.M. Goldratt, and J. Cox,
The Goal (Croton-on-Hudson, NY: North River Press, 1986), and E.M. Goldratt, The Haystack Syndrome (Cro-
ton-on-Hudson, NY: North River Press, 1990).
5 Two good books on interviewing are Brian James, The Systems Analysis Interview (Manchester: NCC Blackwell,
1989); and James P. Spradley, The Ethnographic Interview (New York, NY: Holt, Rinehart, and Winston, 1979).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

People at different levels of the organization will have different perspectives on the

system, so it is important to include both managers who manage the processes and staff

who actually perform the processes to gain both high-level and low-level perspectives on

an issue. Also, the kinds of interview subjects that you need may change over time. For

example, at the start of the project, the analyst has a limited understanding of the as-is

business process. It is common to begin by interviewing one or two senior managers to

get a strategic view, and then move to mid-level managers who can provide broad, over-

arching information about the business process and the expected role of the system being

developed. Once the analyst has a good understanding of the “big picture,” lower-level

managers and staff members can fill in the exact details of how the process works. Like

most other things about systems analysis, this is an iterative process—starting with senior

managers, moving to mid-level managers, then staff members, back to mid-level man-

agers, and so on, depending upon what information is needed along the way.

It is quite common for the list of interviewees to grow, often by 50 percent to 75 per-

cent. As you interview people, you likely will identify more information that is needed and

additional people who can provide the information.

138 Chapter 5 Require-

ments Determination

Andria McClellan Director, Accounting Strategic vision for new Mon, March 1
accounting system 8:00–10:00 AM

Jennifer Draper Manager, Accounts Current problems with Mon, March 1
Receivable accounts receivable 2:00–3:15 PM

process; future goals

Mark Goodin Manager, Accounts Current problems with Mon, March 1
Payable accounts payable 4:00–5:15 PM

process; future goals

Anne Asher Supervisor, Data Entry Accounts receivable and Wed, March 3
payable processes 10:00–11:00 AM

Fernando Merce Data Entry Clerk Accounts receivable and Wed, March 3
payable processes 1:00–3:00 PM

Purpose of
Name Position Interview Meeting

FIGURE 5-5

Sample Interview

Schedule

In 1990, I led a consulting team for a major development
project for the U.S. Army. The goal was to replace eight
existing systems used on virtually every Army base across
the United States. The as-is analysis models for these sys-
tems had been built, and our job was to identify improve-
ment opportunities and develop to-be process models for
each of the eight systems.

For the first system, we selected a group of mid-level
managers (captains and majors) recommended by their
commanders as being the experts in the system under con-
struction. These individuals were the first and second line

managers of the business function. The individuals were
expert at managing the process, but did not know the exact
details of how the process worked. The resulting to-be
analysis models were very general and non-specific.

—Alan Dennis

Question

1. Suppose you were in charge of the project. Create
an interview schedule the remaining seven projects.

5-D Selecting the Wrong PeopleCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Designing Interview Questions There are three types of interview questions: closed-

ended questions, open-ended questions, and probing questions. Closed-ended questions are

those that require a specific answer. You can think of them as being similar to multiple

choice or arithmetic questions on an exam (see Figure 5-6). Closed-ended questions are

used when the analyst is looking for specific, precise information (e.g., how many credit

card requests are received per day). In general, precise questions are best. For example,

rather than asking “Do you handle a lot of requests?” it is better to ask “How many requests

do you process per day?”

Closed-ended questions enable analysts to control the interview and obtain the infor-

mation they need. However, these types of questions don’t uncover why the answer is the

way it is, nor do they uncover information that the interviewer does not think to ask ahead

of time.

Open-ended questions are those that leave room for elaboration on the part of the inter-

viewee. They are similar in many ways to essay questions that you might find on an exam (see

Figure 5-6 for examples). Open-ended questions are designed to gather rich information

and give the interviewee more control over the information that is revealed during the inter-

view. Sometimes the information that the interviewee chooses to discuss uncovers informa-

tion that is just as important as the answer (e.g., if the interviewee talks only about other

departments when asked for problems, it may suggest that he or she is reluctant to admit his

or her own problems).

The third type of question is the probing question. Probing questions follow-up on

what has just been discussed in order to learn more, and they often are used when the

interviewer is unclear about an interviewee’s answer. They encourage the interviewee to

expand on or to confirm information from a previous response, and they are a signal that

the interviewer is listening and interested in the topic under discussion. Many beginning

analysts are reluctant to use probing questions because they are afraid that the interviewee

might be offended at being challenged or because they believe it shows that they didn’t

understand what the interviewee said. When done politely, probing questions can be a

powerful tool in requirements gathering.

In general, you should not ask questions about information that is readily available

from other sources. For example, rather than asking what information is used to perform

a task, it is simpler to show the interviewee a form or report (see document analysis later)

and ask what information on it is used. This helps focus the interviewee on the task, and

saves time, because he or she does not need to describe the information detail—he or she

just needs to point it out on the form or report.

Requirements-Gathering Techniques 139

Closed-Ended Questions • How many telephone orders are received per day?

• How do customers place orders?

• What information is missing from the monthly sales report?

Open-Ended Questions • What do you think about the current system?

• What are some of the problems you face on a daily basis?

• What are some of the improvements you would like to see in a
new system?

Probing Questions • Why?

• Can you give me an example?

• Can you explain that in a bit more detail?

Types of Questions Examples

FIGURE 5-6

Three Types of

Questions

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

No question type is better than another, and usually a combination of questions is

used during an interview. At the initial stage of an IS development project, the as-is process

can be unclear, so the interview process begins with unstructured interviews, interviews that

seek a broad and roughly defined set of information. In this case, the interviewer has a gen-

eral sense of the information needed, but few close-ended questions to ask. These are the

most challenging interviews to conduct because they require the interviewer to ask open-

ended questions and probe for important information “on the fly.”

As the project progresses, the analyst comes to understand the business process much

better, and he or she needs very specific information about how business processes are per-

formed (e.g., exactly how a customer credit card is approved). At this time, the analyst con-

ducts structured interviews, in which specific sets of questions are developed prior to the

interviews. There usually are more close-ended questions in a structured interview than in

the unstructured approach.

No matter what kind of interview is being conducted, interview questions must be

organized into a logical sequence, so that the interview flows well. For example, when try-

ing to gather information about the current business process, it can be useful to move in

logical order through the process or from the most important issues to the least important.

There are two fundamental approaches to organizing the interview questions: top-

down or bottom-up; see Figure 5-7. With the top-down interview, the interviewer starts

with broad, general issues and gradually works towards more specific ones. With the

bottom-up interview, the interviewer starts with very specific questions and moves to

broad questions. In practice, analysts mix the two approaches, starting with broad gen-

eral issues, moving to specific questions, and then back to general issues.

The top-down approach is an appropriate strategy for most interviews (it is certainly

the most common approach). The top-down approach enables the interviewee to become

accustomed to the topic before he or she needs to provide specifics. It also enables the inter-

viewer to understand the issues before moving to the details because the interviewer may

not have sufficient information at the start of the interview to ask very specific questions.

Perhaps most importantly, the top-down approach enables the interviewee to raise a set of

“big picture” issues before becoming enmeshed in details, so the interviewer is less likely to

miss important issues.

One case in which the bottom-up strategy may be preferred is when the analyst already

has gathered a lot of information about issues and just needs to fill in some holes with

140 Chapter 5 Requirements Determination

High-level:

Very general

Top-Down

Bottom-Up

Medium-level:

Moderately specific

Low-level:

Very specific

How
can

order
processing be

improved?

How can we reduce the
number of times that

customers return items they’ve
ordered?

How can we reduce the number of
errors in order processing (e.g., shipping

the wrong products)?

FIGURE 5-7

Top-Down and

Bottom-Up Questioning

Strategies

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

details. Or, bottom-up may be appropriate if lower-level staff members are threatened or

unable to answer high-level questions. For example, “How can we improve customer ser-

vice?” may be too broad a question for a customer service clerk, whereas a specific question

is readily answerable (e.g., “How can we speed up customer returns?”). In any event, all

interviews should begin with noncontroversial questions first, and then gradually move

into more contentious issues after the interviewer has developed some rapport with the

interviewee.

Preparing for the Interview It is important to prepare for the interview in the same

way that you would prepare to give a presentation. You should have a general interview

plan that lists the questions that you will ask in the appropriate order; anticipates possi-

ble answers and provides how you will follow up with them; and identifies segues

between related topics. Confirm the areas in which the interviewee has knowledge so you

do not ask questions that he or she cannot answer. Review the topic areas, the questions,

and the interview plan, and clearly decide which have the greatest priority in case you

run out of time.

In general, structured interviews with closed-ended questions take more time to pre-

pare than unstructured interviews. So, some beginning analysts prefer unstructured inter-

views, thinking that they can “wing it.” This is very dangerous and often counterproductive,

because any information not gathered in the first interview would require follow-up

efforts, and most users do not like to be interviewed repeatedly about the same issues.

Requirements-Gathering Techniques 141

Interpersonal skills are those skills than enable you to
develop rapport with others, and they are very important
for interviewing. They help you to communicate with oth-
ers effectively. Some people develop good interpersonal
skills at an early age; they simply seem to know how to
communicate and interact with others. Other people are
less “lucky” and need to work hard to develop their skills.
Interpersonal skills, like most skills, can be learned. Here
are some tips:

• Don’t worry, be happy. Happy people radiate confi-
dence and project their feelings on others. Try inter-
viewing someone while smiling and then interviewing
someone else while frowning and see what happens!

• Pay attention. Pay attention to what the other per-
son is saying (which is harder than you might
think). See how many times you catch yourself with
your mind on something other than the conversa-
tion at hand.

• Summarize key points. At the end of each major
theme or idea that someone explains, you should

repeat the key points back to the speaker (e.g., “Let
me make sure I understand. The key issues are…”).
This demonstrates that you consider the information
important—and also forces you to pay attention
(you can’t repeat what you didn’t hear).

• Be succinct. When you speak, be succinct. The goal
in interviewing (and in much of life) is to learn, not
to impress. The more you speak, the less time you
give to others.

• Be honest. Answer all questions truthfully, and if
you don’t know the answer, say so.

• Watch body language (yours and theirs). The way a
person sits or stands conveys much information. In
general, a person who is interested in what you are
saying sits or leans forward, makes eye contact, and
often touches his or her face. A person leaning
away from you or with an arm over the back of a
chair is disinterested. Crossed arms indicate defen-
siveness or uncertainty, while “steepling” (sitting
with hands raised in front of the body with finger-
tips touching) indicates a feeling of superiority.

5-1 Developing Interpersonal SkillsPRACTICAL

TIP

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Be sure to prepare the interviewee as well. When you schedule the interview, inform

the interviewee of the reason for the interview and the areas you will be discussing far

enough in advance so that he or she has time to think about the issues and organize his or

her thoughts. This is particularly important when you are an outsider to the organization,

and for lower-level employees who often are not asked for their opinions and who may be

uncertain about why you are interviewing them.

Conducting the Interview When you start the interview, the first goal is to build rap-

port with the interviewee, so that he or she trusts you and is willing to tell you the whole

truth, not just give the answers that he or she thinks you want. You should appear to be pro-

fessional and an unbiased, independent seeker of information. The interview should start

with an explanation of why you are there and why you have chosen to interview the per-

son, and then move into your planned interview questions.

It is critical to carefully record all the information that the interviewee provides. In our

experience, the best approach is to take careful notes—write down everything the intervie-

wee says, even if it does not appear immediately relevant. Don’t be afraid to ask the person

to slow down or to pause while you write, because this is a clear indication that the inter-

viewee’s information is important to you. One potentially controversial issue is whether or

not to tape-record the interview. Recording ensures that you do not miss important points,

but it can be intimidating for the interviewee. Most organizations have policies or gener-

ally accepted practices about the recording of interviews, so find out what they are before

you start an interview. If you are worried about missing information and cannot tape the

interview, then bring along a second person to take detailed notes.
As the interview progresses, it is important that you understand the issues that are

discussed. If you do not understand something, be sure to ask. Don’t be afraid to ask
“dumb questions” because the only thing worse than appearing “dumb” is to be “dumb”
by not understanding something. If you don’t understand something during the inter-
view, you certainly won’t understand it afterward. Try to recognize and define jargon, and
be sure to clarify jargon you do not understand. One good strategy to increase your
understanding during an interview is to periodically summarize the key points that the
interviewee is communicating. This avoids misunderstandings and also demonstrates that
you are listening.

Finally, be sure to separate facts from opinion. The interviewee may say, for example,
“we process too many credit card requests.” This is an opinion, and it is useful to follow this
up with a probing question requesting support for the statement (e.g., “Oh, how many do
you process in a day?”). It is helpful to check the facts because any differences between the
facts and the interviewee’s opinions can point out key areas for improvement. Suppose the
interviewee complains about a high or increasing number of errors, but the logs show that
errors have been decreasing. This suggests that errors are viewed as a very important prob-
lem that should be addressed by the new system, even if they are declining.

As the interview draws to a close, be sure to give the interviewee time to ask questions
or provide information that he or she thinks is important but was not part of your inter-
view plan. In most cases, the interviewee will have no additional concerns or information,
but in some cases this will lead to unanticipated, but important information. Likewise, it
can be useful to ask the interviewee if there are other people who should be interviewed.
Make sure that the interview ends on time (if necessary, omit some topics or plan to sched-
ule another interview).

As a last step in the interview, briefly explain what will happen next (see the next sec-
tion). You don’t want to prematurely promise certain features in the new system or a spe-
cific delivery date, but you do want to reassure the interviewee that his or her time was well
spent and very helpful to the project.

142 Chapter 5 Requirements Determination

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Post-Interview Follow-up After the interview is over, the analyst needs to prepare an

interview report that describes the information from the interview (Figure 5-8). The report

contains interview notes, information that was collected over the course of the interview

and is summarized in a useful format. In general, the interview report should be written

within forty-eight hours of the interview, because the longer you wait, the more likely you

are to forget information.

Often, the interview report is sent to the interviewee with a request to read it and

inform the analyst of clarifications or updates. Make sure the interviewee is convinced that

you genuinely want his or her corrections to the report. Usually there are few changes, but

the need for any significant changes suggests that a second interview will be required. Never

distribute someone’s information without prior approval.

Requirements-Gathering Techniques 143

Interview Notes Approved By: Linda Estey

Person Interviewed: Linda Estey,

Director, Human Resources

Interviewer: Barbara Wixom

Purpose of Interview:
• Understand reports produced for Human Resources by the current system
• Determine information requirements for future system

Summary of Interview:
• Sample reports of all current HR reports are attached to this report. The information that is not used

and missing information are noted on the reports.
• Two biggest problems with the current system are:

1. The data is too old (the HR Department needs information within two days of month end;
currently information is provided to them after a three-week delay)

2. The data is of poor quality (often reports must be reconciled with departmental HR database)

• The most common data errors found in the current system include incorrect job level information
and missing salary information.

Open Items:
• Get current employee roster report from Mary Skudrna (extension 4355).
• Verify calculations used to determine vacation time with Mary Skudrna.
• Schedule interview with Jim Wack (extension 2337) regarding the reasons for data quality problems.

Detailed Notes: See attached transcript.
FIGURE 5-8

Interview Report

Interviewing is not as simple as it first appears. Select two
people from class to go to the front of the room to demon-
strate an interview. (This also can be done in groups.) Have
one person be the interviewer, and the other the intervie-
wee. The interviewer should conduct a 5-minute interview
regarding the school course registration system. Gather
information about the existing system and how the system
can be improved. If there is time, repeat with another pair.

Questions:

1. Describe the body language of the interview pair.

2. What kind of interview was conducted?

3. What kinds of questions were asked?

4. What was done well? How could the interview be
improved?

5-4 Interview PracticeYOUR

TURN

TEMPLATE

can be found at
www.wiley.com
/college/dennis

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Joint Application Development(JAD)

Joint application development (or JAD as it is more commonly known) is an information

gathering technique that allows the project team, users, and management to work

together to identify requirements for the system. IBM developed the JAD technique in

the late 1970s, and it is often the most useful method for collecting information from

users.6 Capers Jones claims that JAD can reduce scope creep by 50 percent, and it avoids

the requirements for a system from being too specific or too vague, both of which cause

trouble during later stages of the SDLC.7 JAD is a structured process in which ten to

twenty users meet together under the direction of facilitator skilled in JAD techniques.

The facilitator is a person who sets the meeting agenda and guides the discussion, but

does not join in the discussion as a participant. He or she does not provide ideas or opin-

ions on the topics under discussion to remain neutral during the session. The facilitator

must be an expert in both group process techniques and systems analysis and design

techniques. One or two scribes assist the facilitator by recording notes, making copies,

and so on. Often the scribes will use computers and CASE tools to record information as

the JAD session proceeds.

The JAD group meets for several hours, several days, or several weeks until all of the

issues have been discussed and the needed information is collected. Most JAD sessions take

place in a specially prepared meeting room, away from the participants’ offices so that they

are not interrupted. The meeting room is usually arranged in a U shape so that all partici-

pants can easily see each other (see Figure 5-9). At the front of the room (the open part of

the “U”), there is a whiteboard, flip chart and/or overhead projector for use by the facilita-

tor who leads the discussion.

One problem with JAD is that it suffers from the traditional problems associated with

groups; sometimes people are reluctant to challenge the opinions of others (particularly

their boss), a few people often dominate the discussion, and not everyone participates. In

a fifteen-member group, for example, if everyone participates equally, then each person can

talk for only four minutes each hour and must listen for the remaining fifty-six minutes—

not a very efficient way to collect information.

A new form of JAD called electronic JAD or e-JAD attempts to overcome these prob-

lems by using groupware. In an e-JAD meeting room, each participant uses special software

on a networked computer to send anonymous ideas and opinions to everyone else. In this

way, all participants can contribute at the same time, without fear of reprisal from people

with differing opinions. Initial research suggests that e-JAD can reduce the time required

to run JAD sessions by 50 percent to 80 percent.8

Selecting Participants Selecting JAD participants is done in the same basic way as select-

ing interview participants. Participants are selected based on the information they can con-

tribute, to provide a broad mix of organizational levels, and to build political support for

the new system. The need for all JAD participants to be away from their office at the same

time can be a major problem. The office may need to be closed or run with a “skeleton”

staff until the JAD sessions are complete.

144 Chapter 5 Requirements Determination

6 More information on JAD can be found in J.Wood and D. Silver, Joint Application Development (New York: John
Wiley & Sons, 1989); and Alan Cline, “Joint Application Development for Requirements Collection and Man-
agement,” http://www.carolla.com/wp-jad.htm.
7 See Kevin Strehlo, “Catching up with the Jones and ‘Requirement’ Creep,” InfoWorld, July 29, 1996, and Kevin
Strehlo, “The Makings of a Happy Customer: Specifying Project X” Infoworld. Nov 11, 1996.
8 For more information on e-JAD, see A. R. Dennis, G. S. Hayes, and R. M. Daniels, “Business Process Modeling
with Groupware,” Journal of MIS 15(4), 1999, 115–142.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Ideally, the participants who are released from regular duties to attend the JAD sessions

should be the very best people in that business unit. However, without strong management

support, JAD sessions can fail because those selected to attend the JAD session are people

who are less likely to be missed (i.e., the least competent people).

The facilitator should be someone who is an expert in JAD or e-JAD techniques and

ideally someone who has experience with the business under discussion. In many cases, the

JAD facilitator is a consultant external to the organization because the organization may

not have a regular day-to-day need for JAD or e-JAD expertise. Developing and maintain-

ing this expertise in-house can be expensive.

Requirements-Gathering Techniques 145

Flip chart sheets

White board Screen

Computers

Projectors Printer

Name cards

Name cards

FIGURE 5-9 Joint Application Design Meeting Room

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Designing the JAD Session JAD sessions can run from as little as a half day to several

weeks, depending upon the size and scope of the project. In our experience, most JAD ses-

sions tend to last five to ten days spread over a three-week period. Most e-JAD sessions tend

to last one to four days in a one-week period. For example, the users and the analysts col-

lectively can create analysis deliverables, such as the functional models, structural models,

or the requirements definition.

As with interviewing, success depends upon a careful plan. JAD sessions usually are

designed and structured using the same principles as interviews. Most JAD sessions are

designed to collect specific information from users, and this requires the development of a

set of questions prior to the meeting. A difference between JAD and interviewing is that all

JAD sessions are structured—they must be carefully planned. In general, closed-ended

questions are seldom used because they do not spark the open and frank discussion that is

typical of JAD. In our experience, it is better to proceed top-down in JAD sessions when

gathering information. Typically thirty minutes is allocated to each separate agenda item,

and frequent breaks are scheduled throughout the day because participants tire easily.

Preparing for the JAD Session As with interviewing, it is important to prepare the ana-

lysts and participants for the JAD session. Because the sessions can go beyond the depth of

a typical interview and are usually conducted off-site, participants can be more concerned

about how to prepare. It is important that the participants understand what is expected of

them. If the goal of the JAD session, for example, is to develop an understanding of the cur-

rent system, then participants can bring procedure manuals and documents with them. If

the goal is to identify improvements for a system, then they can think about how they

would improve the system prior to the JAD Session.

Conducting the JAD Session Most JAD sessions try to follow a formal agenda, and most

have formal ground rules that define appropriate behavior. Common ground rules include

following the schedule, respecting others, opinions, accepting disagreement, and ensuring

that only one person talks a time.

The role of the JAD facilitator can be challenging. Many participants come to the JAD

session with strong feelings about the system to be discussed. Channeling these feelings so

that the session moves forward in a positive direction and getting participants to recognize

and accept—but not necessarily agree on—opinions and situations different from their

own requires significant expertise in systems analysis and design, JAD, and interpersonal

skills. Few systems analysts attempt to facilitate JAD sessions without being trained in JAD

techniques, and most apprentice with a skilled JAD facilitator before they attempt to lead

their first session.

The JAD facilitator performs three key functions. First, he or she ensures that the

group sticks to the agenda. The only reason to digress from the agenda is when it becomes

clear to the facilitator, project leader, and project sponsor that the JAD session has pro-

duced some new information that is unexpected and requires the JAD session (and perhaps

the project) to move in a new direction. When participants attempt to divert the discussion

away from the agenda, the facilitator must be firm but polite in leading discussion back to

the agenda and getting the group back on track.

Second, the facilitator must help the group understand the technical terms and jar-

gon that surround the system development process, and help the participants under-

stand the specific analysis techniques used. Participants are experts in their area, their

part of the business, but they are not experts in systems analysis. The facilitator must

therefore minimize the learning required and teach participants how to effectively pro-

vide the right information.

146 Chapter 5 Requirements Determination

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Third, the facilitator records the group’s input on a public display area, which can be a

whiteboard, flip chart, or computer display. He or she structures the information that the

group provides and helps the group recognize key issues and important solutions. Under no

circumstance should the facilitator insert his or her opinions into the discussion. The facil-

itator must remain neutral at all times and simply help the group through the process. The

moment the facilitator offers an opinion on an issue, the group will no longer see him or her

as a neutral party, but rather as someone who could be attempting to sway the group into

some predetermined solution.

However, this does not mean that the facilitator should not try to help the group resolve

issues. For example, if two items appear to be the same to the facilitator, the facilitator should

not say, “I think these may be similar.” Instead, the facilitator should ask, “Are these similar?” If

the group decides they are, the facilitator can combine them and move on. However, if the

group decides they are not similar (despite what the facilitator believes), the facilitator should

accept the decision and move on. The group is always right, and the facilitator has no opinion.

Post JAD Follow-up As with interviews, a JAD postsession report is prepared and circu-

lated among session attendees. The postsession report is essentially the same as the interview

report in Figure 5-8. Since the JAD sessions are longer and provide more information, it

usually takes a week or two after the JAD session before the report is complete.

Questionnaires

A questionnaire is a set of written questions for obtaining information from individuals.

Questionnaires often are used when there is a large number of people from whom informa-

tion and opinions are needed. In our experience, questionnaires are commonly used for sys-

tems intended for use outside of the organization (e.g., by customers or vendors) or for

systems with business users spread across many geographic locations. Most people automat-

ically think of paper when they think of questionnaires, but today more questionnaires are

being distributed in electronic form, either via e-mail or on the Web. Electronic distribution

can save a significant amount of money compared to distributing paper questionnaires.

Selecting Participants As with interviews and JAD sessions, the first step is to select the

individuals to whom the questionnaire will be sent. However, it is not usual to select every

person who could provide useful information. The standard approach is to select a sample,

or subset, of people who are representative of the entire group. Sampling guidelines are dis-

cussed in most statistics books, and most business schools include courses that cover the

topic, so we will not discuss it here. The important point in selecting a sample, however, is

to realize that not everyone who receives a questionnaire will actually complete it. On aver-

age, only 30 to 50 percent of paper and e-mail questionnaires are returned. Response rates

for Web-based questionnaires tend to be significantly lower (often only 5 to 30 percent).

Requirements-Gathering Techniques 147

Organize yourselves into groups of four to seven people,
and pick one person in each group to be the JAD facilita-
tor. Using a blackboard, whiteboard, or flip chart, gather
information about how the group performs some process

(e.g., working on a class assignment, making a sandwich,
paying bills, getting to class). How did the JAD session
go? Based on your experience, what are pros and cons of
using JAD in a real organization?

5-5 JAD PracticeYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Designing the Questionnaire Developing good questions is critical for questionnaires

because the information on a questionnaire cannot be immediately clarified for a confused

respondent. Questions on questionnaires must be very clearly written and leave little room

for misunderstanding, so closed-ended questions tend to be most commonly used. Ques-

tions must clearly enable the analyst to separate facts from opinions. Opinion questions

often ask the respondent the extent to which they agree or disagree (e.g., “Are network

problems common?”), while factual questions seek more precise values (e.g., “How often

148 Chapter 5 Requirements Determination

I have run more than a hundred JAD sessions and have
learned several standard “facilitator tricks.” Here are some
common problems and some ways to deal with them.

• Reducing domination. The facilitator should ensure
that no one person dominates the group discus-
sion. The only way to deal with someone who
dominates is head on. During a break, approach
the person, thank him or her for their insightful
comments, and ask them to help you make sure
that others also participate.

• Encouraging noncontributors. Drawing out people
who have participated very little is challenging
because you want to bring them into the conversa-
tion so that they will contribute again. The best
approach is to ask a direct factual question that you
are certain they can answer. And it helps to ask the
question using some repetition to give them time to
think. For example “Pat, I know you’ve worked
shipping orders a long time. You’ve probably been
in the Shipping Department longer than anyone
else. Could you help us understand exactly what
happens when an order is received in Shipping?”

• Side discussions. Sometimes participants engage in
side conversations and fail to pay attention to the
group. The easiest solution is simply to walk close
to the people and continue to facilitate right in front
of them. Few people will continue a side conver-
sion when you are two feet from them and the
entire group’s attention is on you and them.

• Agenda merry-go-round. The merry-go-round
occurs when a group member keeps returning to
the same issue every few minutes and won’t let go.
One solution is to let the person have five minutes
to ramble on about the issue while you carefully
write down every point on a flip chart or computer
file. This flip chart or file is then posted conspicu-
ously on the wall. When the person brings up the
issue again, you interrupt them, walk to the paper

and ask them what to add. If they mention some-
thing already on the list, you quickly interrupt,
point out that it is there, and ask what other infor-
mation to add. Don’t let them repeat the same
point, but write any new information.

• Violent agreement. Some of the worst disagree-
ments occur when participants really agree on the
issues but don’t realize that they agree because they
are using different terms. An example is arguing
whether a glass is half empty or half full; they agree
on the facts, but can’t agree on the words. In this
case, the facilitator has to translate the terms into
different words and find common ground so the
parties recognize that they really agree.

• Unresolved conflict. In some cases, participants
don’t agree and can’t understand how to determine
what alternatives are better. You can help by struc-
turing the issue. Ask for criteria by which the group
will identify a good alternative (e.g., “Suppose this
idea really did improve customer service. How
would I recognize the improved customer ser-
vice?”). Then once you have a list of criteria, ask the
group to assess the alternatives using them.

• True conflict. Sometimes, despite every attempt,
participants just can’t agree on an issue. The solu-
tion is to postpone the discussion and move on.
Document the issue as an “open issue” and list it
prominently on a flip chart. Have the group return
to the issue hours later. Often the issue will resolve
itself by then and you haven’t wasted time on it. If
the issue cannot be resolved later, move it to the list
of issues to be decided by the project sponsor or
some other more senior member of management.

• Use humor. Humor is one of the most power tools a
facilitator has and thus must be used judiciously. The
best JAD humor is always in context; never tell jokes but
take the opportunity to find the humor in the situation.

—Alan Dennis

5-2 Managing Problems in JAD SessionsPRACTICAL

TIP

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

does a network problem occur: once an hour, once a day, once a week?”). See Figure 5-10

for guidelines on questionnaire design.
Perhaps the most obvious issue—but one that is sometimes overlooked—is to have a

clear understanding of how the information collected from the questionnaire will be ana-
lyzed and used. You must address this issue before you distribute the questionnaire, because
it is too late afterward.

Questions should be relatively consistent in style, so that the respondent does not have
to read instructions for each question before answering it. It is generally good practice to
group related questions together to make them simpler to answer. Some experts suggest
that questionnaires should start with questions important to respondents, so that the ques-
tionnaire immediately grabs their interest and induces them to answer it. Perhaps the most
important step is to have several colleagues review the questionnaire and then pretest it
with a few people drawn from the groups to whom it will be sent. It is surprising how often
seemingly simple questions can be misunderstood.

Administering the questionnaire The key issue in administering the questionnaire is get-

ting participants to complete the questionnaire and send it back. Dozens of marketing research

books have been written about ways to improve response rates. Commonly used techniques

include: clearly explaining why the questionnaire is being conducted and why the respondent

has been selected; stating a date by which the questionnaire is to be returned; offering an

inducement to complete the questionnaire (e.g., a free pen); and offering to supply a summary

Requirements-Gathering Techniques 149

• Begin with nonthreatening and interesting questions.
• Group items into logically coherent sections.
• Do not put important items at the very end of the questionnaire.
• Do not crowd a page with too many items.
• Avoid abbreviations.
• Avoid biased or suggestive items or terms.
• Number questions to avoid confusion.
• Pretest the questionnaire to identify confusing questions.
• Provide anonymity to respondents.

FIGURE 5-10

Good Questionnaire

Design

Organize yourselves into small groups. Have each person
develop a short questionnaire to collect information
about the frequency in which group members perform
some process (e.g., working on a class assignment, mak-
ing a sandwich, paying bills, getting to class), how long it
takes them, how they feel about the process, and oppor-
tunities for improving the process.

Once everyone has completed his or her question-
naire, ask each member to pass it to the right, and then
complete his or her neighbor’s questionnaire. Pass the
questionnaire back to the creator when it is completed.

Questions:

1. How did the questionnaire you completed differ
from the one you created?

2. What are the strengths of each questionnaire?

3. How would you analyze the survey results if you
had received fifty responses?

4. What would you change about the questionnaire
that you developed?

5-6 Questionnaire PracticeYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

of the questionnaire responses. Systems analysts have additional techniques to improve

response rates inside the organization, such as personally handing out the questionnaire and

personally contacting those who have not returned them after a week or two, as well as request-

ing the respondents’ supervisors to administer the questionnaires in a group meeting.

Questionnaire Follow-up It is helpful to process the returned questionnaires and

develop a questionnaire report soon after the questionnaire deadline. This ensures that the

analysis process proceeds in a timely fashion and that respondents who requested copies of

the results receive them promptly.

Document Analysis

Project teams often use document analysis to understand the as-is system. Under ideal cir-

cumstances, the project team that developed the existing system will have produced docu-

mentation, which was then updated by all subsequent projects. In this case, the project

team can start by reviewing the documentation and examining the system itself.

Unfortunately, most systems are not well documented because project teams fail to docu-

ment their projects along the way, and when the projects are over—there is no time to go back

and document. Therefore, there may not be much technical documentation about the current

systems available, or it may not contain updated information about recent system changes.

However, there are many helpful documents that do exist in the organization: paper reports,

memorandums, policy manuals, user training manuals, organization charts, and forms.

But these documents (forms, reports, policy manuals, organization charts) only tell

part of the story. They represent the formal system that the organization uses. Quite often,

the “real” or informal system differs from the formal one, and these differences, particularly

large ones, give strong indications of what needs to be changed. For example, forms or

reports that are never used likely should be eliminated. Likewise, boxes or questions on

forms that are never filled in (or are used for other purposes) should be rethought. See Fig-

ure 5-11 for an example of how a document can be interpreted.

The most powerful indication that the system needs to be changed is when users cre-

ate their own forms or add additional information to existing ones. Such changes clearly

demonstrate the need for improvements to existing systems. Thus, it is useful to review

both blank and completed forms to identify these deviations. Likewise, when users access

multiple reports to satisfy their information needs, it is a clear sign that new information

or new information formats are needed.

Observation

Observation, the act of watching processes being performed, is a powerful tool for gather-

ing information about the as-is system because it enables the analyst to see the reality of a

situation, rather than listening to others describe it in interviews or JAD sessions. Several

research studies have shown that many managers really do not remember how they work

and how they allocate their time. (Quick, how many hours did you spend last week on each

of your courses?) Observation is a good way to check the validity of information gathered

from indirect sources such as interviews and questionnaires.9

In many ways, the analyst becomes an anthropologist as he or she walks through the

organization and observes the business system as it functions. The goal is to keep a low pro-

file, to not interrupt those working, and to not influence those being observed. Nonethe-

less, it is important to understand that what analysts observe may not be the normal

150 Chapter 5 Requirements Determination

9 A good book on observation is James P. Spradley, Participant Observation (New York, NY: Holt, Rinehart, and
Winston, 1980).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

day-to-day routine because people tend to be extremely careful in their behavior when they

are being watched. Even though normal practice may be to break formal organizational

rules, the observer is unlikely to see this. (Remember how you drove the last time a police

car followed you?) Thus, what you see may not be what you get.

Observation is often used to supplement interview information. The location of a

person’s office and its furnishings gives clues as to their power and influence in the orga-

nization, and can be used to support or refute information given in an interview. For

example, an analyst might become skeptical of someone who claims to use the existing

computer system extensively if the computer is never turned on while the analyst visits.

In most cases, observation will support the information that users provide in interviews.

When it does not, it is an important signal that extra care must be taken in analyzing the

business system.

Requirements-Gathering Techniques 151

Name: Buffy Pat Smith

Pet’s Name: Buffy Collie 7/6/99

Address: 100 Central Court. Apartment 10

Toronto, Ontario K7L 3N6

Phone Number: 555-3400

416-

Do you have insurance: yes

Insurance Company: Pet’s Mutual

Policy Number: KA-5493243

CENTRAL VETERINARY CLINIC
Patient Information Card

The staff had to add additional
information about the type of animal
and the animal’s date of birth. This
information should be added to the
new form in the to-be system.

The customer made a mistake.
This should be labeled
Owner’s Name to prevent
confusion.

The customer did not include
area code in the phone
number. This should be made
more clear.

FIGURE 5-11

Performing a

Document Analysis

TEMPLATE

can be found at
www.wiley.com
/college/dennis

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Selecting the Appropriate Techniques

Each of the requirements-gathering techniques just discussed has strengths and weak-

nesses. No one technique is always better than the others, and in practice most pro-

jects use a combination of techniques. Thus, it is important to understand the

strengths and weaknesses of each technique and when to use each (see Figure 5-12).

One issue not discussed is that of the analysts’ experience. In general, document

analysis and observation require the least amount of training, while JAD sessions are

the most challenging.

152 Chapter 5 Requirements Determination

At my neighborhood Publix grocery store, the cashiers
always hand write the total amount of the charge on
every credit card charge form, even though it is
printed on the form. Why? Because the “back office”
staff people who reconcile the cash in the cash draw-
ers with the amount sold at the end of each shift find
it hard to read the small print on the credit card forms.
Writing in large print makes it easier for them to add
the values up. However, cashiers sometimes make

mistakes and write the wrong amount on the forms,
which causes problems.

—Barbara Wixom

Questions:

1. What does the credit card charge form indicate
about the existing system?

2. How can you make improvements with a new system?

5-E Publix Credit Card FormsCONCEPTS

IN ACTION

Visit the library at your college or university and observe
how the book check-out process occurs. First watch several
students checking books out, and then check one out your-
self. Prepares a brief summary report of your observations.

When you return to class, share your observations
with others. You may notice that not all the reports present
the same information. Why? How would the information
be different had you used the interview or JAD technique?

5-7 Observation PracticeYOUR

TURN

Type of information As-is, improvements, As-is, improvements, As-is, improvements As-is As-is
to-be to-be

Depth of information High High Medium Low Low

Breadth of information Low Medium High High Low

Integration of information Low High Low Low Low

User involvement Medium High Low Low Low

Cost Medium Low–Medium Low Low Low–Medium

Joint Application Document
Interviews Design Questionnaires Analysis Observation

FIGURE 5-12 Table of Requirements-Gathering Techniques

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Type of Information The first characteristic is type of information. Some techniques are

more suited for use at different stages of the analysis process, whether understanding the as-

is system, identifying improvements, or developing the to-be system. Interviews and JAD are

commonly used in all three stages. In contrast, document analysis and observation usually are

most helpful for understanding the as-is, although occasionally they provide information

about current problems that need to be improved. Questionnaires are often used to gather

information about the as-is system, as well as general information about improvements.

Depth of information The depth of information refers to how rich and detailed the

information is that the technique usually produces, and the extent to which the technique

is useful at obtaining not only facts and opinions, but also an understanding of why those

facts and opinions exist. Interviews and JAD sessions are very useful at providing a good

depth of rich and detailed information and helping the analyst to understand the reasons

behind them. At the other extreme, document analysis and observation are useful for

obtaining facts, but little beyond that. Questionnaires can provide a medium depth of

information, soliciting both facts and opinions with little understanding of why.

Breadth of Information Breadth of information refers to the range of information and

information sources that can be easily collected using that technique. Questionnaires and doc-

ument analysis both are easily capable of soliciting a wide range of information from a large

number of information sources. In contrast, interviews and observation require the analyst to

visit each information source individually and, therefore, take more time. JAD sessions are in

the middle because many information sources are brought together at the same time.

Integration of Information One of the most challenging aspects of requirements gath-

ering is the integration of information from different sources. Simply put, different people

can provide conflicting information. Combining this information and attempting to

resolve differences in opinions or facts is usually very time consuming because it means

contacting each information source in turn, explaining the discrepancy, and attempting to

refine the information. In many cases, the individual wrongly perceives that the analyst is

challenging his or her information, when in fact it is another user in the organization. This

can make the user defensive and make it hard to resolve the differences.

All techniques suffer integration problems to some degree, but JAD sessions are

designed to improve integration because all information is integrated when it is collected,

not afterward. If two users provide conflicting information, the conflict becomes immedi-

ately obvious, as does the source of the conflict. The immediate integration of information

is the single most important benefit of JAD that distinguishes it from other techniques, and

this is why most organizations use JAD for important projects.

User Involvement User involvement refers to the amount of time and energy the

intended users of the new system must devote to the analysis process. It is generally agreed

that as users become more involved in the analysis process, the greater the chance of suc-

cess. However, user involvement can have a significant cost, and not all users are willing to

contribute valuable time and energy. Questionnaires, document analysis, and observation

place the least burden on users, while JAD sessions require the greatest effort.

Cost Cost is always an important consideration. In general, questionnaires, document

analysis, and observation are low cost techniques (although observation can be quite time

consuming). The low cost does not imply that they are more or less effective than the other

Requirements-Gathering Techniques 153

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

techniques. We regard interviews and JAD sessions as having moderate costs. In general,

JAD sessions are much more expensive initially, because they require many users to be

absent from their offices for significant periods of time, and they often involve highly paid

consultants. However, JAD sessions significantly reduce the time spent in information inte-

gration and thus cost less in the long term.

Combining Techniques In practice, requirements gathering combines a series of differ-

ent techniques. Most analysts start by using interviews with senior manager(s) to gain an

understanding of the project and the “big picture” issues. From this, the scope becomes

clear as to whether large or small changes are anticipated. These are often followed with

analysis of documents and policies to gain some understanding of the as-is system. Usually

interviews come next to gather the rest of the information needed for the as-is system.

In our experience, identifying improvements is most commonly done using JAD ses-

sions because the JAD session enables the users and key stakeholders to work together

through an analysis technique and come to a shared understanding of the possibilities

for the to-be system. Occasionally, these JAD sessions are followed by questionnaires sent

to a much wider set of users or potential users to see whether the opinions of those who

participated in the JAD sessions are widely shared.

Developing the concept for the to-be system is often done through interviews with

senior managers, followed by JAD sessions with users of all levels to make sure the key

needs of the new system are well understood.

APPLYING THE CONCEPTS AT CD SELECTIONS

Once the CD Selections approval committee approved the system proposal and feasibil-

ity analysis, the project team began performing analysis activities. These included gath-

ering requirements using a variety of techniques, and analyzing the requirements that

were gathered. An Internet marketing and sales consultant, Chris Campbell, was hired to

advise Alec, Margaret, and the project team during the analysis phase. Some highlights of

the project team’s activities are presented next.

Requirements Analysis Techniques

Margaret suggested that the project team conduct several JAD sessions with store man-

agers, marketing analysts, and Web-savvy members of the IT staff. Together, the groups

could work through some BPI techniques and brainstorm how improvements could be

made to the current order process using a new Web-based system.

Alec facilitated three JAD sessions that were conducted over the course of a week. Alec’s

past facilitation experience helped the eight-person meetings run smoothly and stay on track.

First, Alec used technology analysis and suggested several important Web technologies that

could be used for the system. The JAD session generated ideas about how CD Selections could

apply each of the technologies to the Internet sales system project. Alec had the group cate-

gorize the ideas into three sets: “definite” ideas that would have a good probability of provid-

ing business value; “possible” ideas that might add business value; and “unlikely” ideas.

Next, Alec applied informal benchmarking by introducing the Web sites of several

leading retailers and pointing out the features that they offered online. He selected some

sites based on their success with Internet sales, and others based on their similarity to the

vision for CD Selections’ new system. The group discussed the features that were common

across most retailers versus unique functionality, and they created a list of suggested busi-

ness requirements for the project team.

154 Chapter 5 Requirements Determination

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Requirements-Gathering Techniques

Alec believed that it would be important to understand the order processes and systems

that already existed in the organization because they would have to be closely integrated

with the Internet sales system. Three requirements-gathering techniques proved to be

helpful in understanding the current systems and processes—document analysis, inter-

views, and observation.

First, the project team collected existing reports (e.g., order forms, screenshots of the

online order screens) and system documentation that shed light on the as-is system. They

were able to gather a good amount of information about the brick-and-mortar order

processes and systems in this way. When questions arose, they conducted short interviews

with the person who provided the documentation for clarification.

Next, Alec interviewed the senior analysts for the order and inventory systems to get a bet-

ter understanding of how those systems worked. He asked if they had any ideas for the new

system, as well as any integration issues that would need to be addressed. Alex also interviewed

a contact from the ISP and the IT person who supported CD Selections’ current Web site—

both provided information about the existing communications infrastructure at CD Selec-

tions and its Web capabilities. Finally, Alex spent a half day visiting two of the retail stores and

observing exactly how the order and hold processes worked in the brick-and-mortar facilities.

Requirements Definition

Throughout all of these activities, the project team collected information and tried to iden-

tify the business requirements for the system from the information. As the project pro-

gressed, requirements were added to the requirements definition and grouped by

requirement type. When questions arose, they worked with Margaret, Chris, and Alec to

confirm that requirements were in scope. The requirements that fell outside of the scope of

the current system were typed into a separate document that would be saved for future use.

At the end of analysis, the requirements definition was distributed to Margaret, two mar-

keting employees who would work with the system on the business side, and several retail store

managers. This group then met for a two-day JAD session to clarify, finalize, and prioritize busi-

ness requirements and to create use cases (Chapter 6) to show how the system would be used.

The project team also spent time creating structural and behavioral models (Chapters

7 and 8) that depicted the objects in the future system. Members of marketing and IT

departments reviewed the documents during interviews with the project team. Figure 5-13

shows a portion of the final requirements definition.

System Proposal

Alec reviewed the requirements definition and the other deliverables that the project team

created during the analysis phase. Given Margaret’s desire to have the system operating

before next year’s Christmas season, Alec decided to timebox the project, and he deter-

mined what functionality could be included in the system by that schedule deadline (see

Chapter 3). He suggested that the project team develop the system in three versions rather

than attempting to develop a complete system that provided all the features initially

(Phased Development, see Chapter 2). The first version, to be operational well before the

holidays, would implement a “basic” system that would have the “standard” order features

of other Internet retailers. The second version, planned for late spring or early summer,

would have several features unique to CD Selections. The third version would add more

“advanced” features, such as the ability to listen to a sample of music over the Internet, to

find similar CDs, and to write reviews.

Applying the Concepts at CD Selections 155

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

156 Chapter 5 Requirements Determination

Nonfunctional Requirements

1. Operational Requirements

1.1 The Internet sales system will draw information from the main CD information database, which contains basic information
about CDs (e.g., title, artist, ID number, price, quantity in inventory). The Internet sales system will not write information to the
main CD information database.

1.2 The Internet sales system will store orders for new CDs in the special order system and will rely on the special order system to
complete the special orders generated.

1.3 A new module for the in-store system will be written to manage the “holds” generated by the Internet sales system. The
requirements for this new module will be documented as part of the Internet sales system because they are necessary for the
Internet sales system to function.

2. Performance Requirements

No special requirements performance requirements are anticipated

3. Security Requirements

No special security requirements are anticipated

4. Cultural and Political Requirements

No special cultural and political requirements are anticipated

Functional Requirements

1. Maintain CD Information

1.1 The Internet sales system will need a database of basic information about the CDs that it can sell over the Internet, similar to the
CD database at each of the retail stores (e.g., title, artist, id number, price, quantity in inventory).

1.2 Every day, the Internet sales system will receive an update from the distribution system that that will be used to update this CD
database. Some new CDs will be added, some will be deleted, and others will be revised (e.g., a new price).

1.3 The electronic marketing (EM) manager (a position that will need to be created) will also have the ability to update information
(e.g., prices for sales).

FIGURE 5-13 CD Selections Requirements Definition (Continues)

Alec revised the workplan accordingly, and he worked with Margaret and the folks in Mar-

keting to review the feasibility analysis and update it where appropriate. All of the deliverables

from the project were then combined into a system proposal and submitted to the approval

committee. Figure 5-14 shows the outline of the CD Selections system proposal. Margaret and

Alec met with the committee and presented the highlights of what was learned during the

analysis phase and the final concept of the new system. Based on the proposal and presentation,

the approval committee decided that they would continue to fund the Internet sales system.

SUMMARY

Analysis

Analysis focuses on capturing the business requirements for the system. It identifies the

“what” of the system and leads directly into design, during which the “how” of the system

is determined. Many deliverables are created during analysis, including the requirements

definition, functional models, structural models, and behavioral models. At the end of

analysis, all of these deliverables, along with revised planning and project management

deliverables, are combined into a system proposal and submitted to the approval commit-

tee for a decision regarding whether to move ahead with the project.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Requirements Determination

Requirements determination is the part of analysis whereby the project team turns the very

high-level explanation of the business requirements stated in the system request into a

more precise list of requirements. A requirement is simply a statement of what the system

must do or what characteristic it needs to have. Business requirements describe the “what”

of the systems, and system requirements describe “how” the system will be implemented.

A functional requirement relates directly to a process the system has to perform or infor-

mation it needs to contain. Nonfunctional requirements refer to behavioral properties that

the system must have, such as performance and usability. All of the functional and non-

functional business requirements that fit within the scope of the system are written in the

requirements definition, which is used to create other analysis deliverables and leads to the

initial design for the new system.

Summary 157

2. Maintain CD Marketing Information

2.1 The Internet sales system provides an additional opportunity to market CDs to current and new customers. The system will pro-
vide a database of marketing materials about selected CDs that will help Web users learn more about them (e.g., music reviews,
links to Web sites, artist information, and sample sound clips). When information about a CD that has additional marketing infor-
mation is displayed, a link will be provided to the additional information.

2.2 Marketing materials will be supplied primarily by vendors and record labels so that we can better promote their CDs. The EM
manager of the marketing department will determine what marketing materials will be placed in the system and will be responsi-
ble for adding, changing, and deleting the materials.

3. Place CD Orders

3.1 Customers will access the Internet sales system to look for CDs of interest. Some customers will search for specific CDs or CDs
by specific artists, while other customers will want to browse for interesting CDs in certain categories (e.g., rock, jazz, classical).

3.2 When the customer has found all the CDs he or she wants, the customer will "check out" by providing personal information (e.g.,
name, e-mail, address, credit card), and information regarding the order (e.g., the CDs to purchase, and the quantity for each
item).

3.3 The system will verify the customer's credit card information with an online credit card clearance center and either accept the
order or reject it.

3.4 Customers will also be able check to see if their preferred stores have the CDs in stock. They will use zip code to find stores close
to their location. If the CD is available at a preferred store, a customer can immediately place a hold on the CD in stock and then
come into the store and pick it up.

3.5 If the CD is not available in the customer’s preferred store, the customer can request that the CD be special ordered to that store
for later pickup. The customer will be notified by e-mail when the requested CD arrives at the requested store; the CD will be
placed on hold (which will again expire after 7 days). This process will work similarly to the current special order systems already
available in the regular stores.

3.6 Alternatively, the customer can mail order the CD (see requirement 4).

4. Fill Mail Orders

4.1 When a CD is mail ordered, the Internet sales system will send the mail order to the mail order distribution system.

4.2 The mail order distribution system will handle the actual sending of CDs to customers; it will notify the Internet sales system and
e-mail the customer.

4.3 Weekly reports can be run by the EM manager to check the order status.

FIGURE 5-13 CD Selections Requirements Definition (Continued)

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Requirements Analysis Techniques

The basic process of analysis is divided into three steps: understanding the as-is system, iden-

tifying improvements, and developing requirements for the to-be system. Three requirements

analysis techniques—business process automation, business process improvement, or business

process reengineering—help the analyst lead users through the three (or two) analysis steps so

that the vision of the system can be developed. Business process automation (BPA) means leav-

ing the basic way in which the organization operates unchanged, and using computer tech-

nology to do some of the work. Problem analysis and root cause analysis are two popular BPA

techniques. Business process improvement (BPI) means making moderate changes to the way

in which the organization operates to take advantage of new opportunities offered by tech-

nology or to copy what competitors are doing. Duration analysis, activity-based costing, and

information benchmarking are three popular BPI activities. Business process reengineering

(BPR) means changing the fundamental way in which the organization operates. Outcome

analysis, technology analysis, and activity elimination are three popular BPR activities.

Requirements-Gathering Techniques

Five techniques can be used to gather the business requirements for the proposed system:

interviews, joint application development, questionnaires, document analysis, and obser-

vation. Interviews involve meeting one or more people and asking them questions. There

are five basic steps to the interview process: selecting interviewees, designing interview

158 Chapter 5 Requirements Determination

1. Table of Contents

2. Executive Summary

A summary of all the essential information in the proposal so a busy executive can read it quickly
and decide what parts of the plan to read in more depth.

3. System Request

The revised system request form (see Chapter 3).

4. Workplan

The original workplan, revised after having completed the analysis phase (see Chapter 4)

5. Requirements Definition

A list of the functional and nonfunctional business requirements for the system (this chapter).

6. Feasibility Analysis

A revised feasibility analysis, using the information from the analysis phase (see Chapter 3).

7. Functional Models

An activity diagram and a set of use cases that illustrate the basic processes that the system needs
to support (see Chapter 6).

8. Structural Models

A set of structural models for the to-be system (see Chapter 7). This may include structural mod-
els of the current as-is system that will be replaced.

9. Behavioral Models

A set of behavioral models for the to-be system (see Chapter 8). This may include behavioral
models of the as-is system that will be replaced.

Appendices

These contain additional material relevant to the proposal, often used to support the recom-
mended system. This might include results of a questionnaire survey or interviews, industry
reports and statistics, and so on.

FIGURE 5-14

Outline of the CD

Selections System

Proposal

TEMPLATE

can be found at
www.wiley.com
/college/dennis

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

questions, preparing for the interview, conducting the interview, and postinterview follow-

up. Joint application development (JAD) allows the project team, users, and management

to work together to identify requirements for the system. Electronic JAD attempts to over-

come common problems associated with groups by using groupware. A questionnaire is a

set of written questions for obtaining information from individuals. Questionnaires often

are used when there is a large number of people from whom information and opinions are

needed. Document analysis entails reviewing the documentation and examining the sys-

tem itself. It can provide insights into the formal and informal system. Observation, the act

of watching processes being performed, is a powerful tool for gathering information about

the as-is system because it enables the analyst to see the reality of a situation firsthand.

Questions 159

Activity elimination

Activity-based costing

Analysis

As-is system

Benchmarking

Bottom-up interview

Breadth of analysis

Business process automation (BPA)

Business process improvement (BPI)

Business process reengineering (BPR)

Business requirement

Closed-ended question

Critical thinking skills

Document analysis

Duration analysis

Electronic JAD (e-JAD)

Facilitator

Formal system

Functional requirement

Ground rule

Informal benchmarking

Informal system

Interpersonal skill

Interview

Interview notes

Interview report

Interview schedule

Joint application development (JAD)

Nonfunctional requirements

Observation

Open-ended question

Outcome analysis

Parallelization

Problem analysis

Process integration

Postsession report

Potential business value

Probing question

Problem analysis

Project cost

Questionnaire

Requirement

Requirements definition

Requirements determination

Risk

Root cause

Root cause analysis

Sample

Scribe

Stakeholders

Structured interview

Symptom

System proposal

System requirements

Technology analysis

To-be system

Top-down interview

Unstructured interview

Walkthrough

KEY TERMS

1. What are the key deliverables that are created during

the analysis phase? What is the final deliverable from

the analysis phase, and what does it contain?

2. Explain the difference between an as-is system and a

to-be system.

3. What is the purpose of the requirements definition?

4. What are the three basic steps of the analysis process?

Which step is sometimes skipped or done in a cursory

fashion? Why?

5. Compare and contrast the business goals of BPA, BPI,

and BPR.

6. Compare and contrast problem analysis and root

cause analysis. Under what conditions would you use

problem analysis? Under what conditions would you

use root cause analysis?

7. Compare and contrast duration analysis and activity-

based costing.

8. Assuming time and money were not important con-

cerns, would BPR projects benefit from additional time

spent understanding the as-is system? Why or why not?

9. What are the important factors in selecting an appro-

priate analysis strategy?

10. Describe the five major steps in conducting interviews.

11. Explain the difference between a closed-ended ques-

tion, an open-ended question, and a probing question.

When would you use each?

QUESTIONS

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

160 Chapter 5 Requirements Determination

12. Explain the differences between unstructured inter-

views and structured interviews. When would you use

each approach?

13. Explain the difference between a top-down and bot-

tom-up interview approach. When would you use

each approach?

14. How are participants selected for interviews and JAD

sessions?

15. How can you differentiate between facts and opin-

ions? Why can both be useful?

16. Describe the five major steps in conducting JAD ses-

sions.

17. How does a JAD facilitator differ from a scribe?

18. What are the three primary things that a facilitator

does in conducting the JAD session?

19. What is e-JAD, and why might a company be inter-

ested in using it?

20. How does designing questions for questionnaires dif-

fer from designing questions for interviews or JAD

sessions?

21. What are typical response rates for questionnaires

and how can you improve them?

22. Describe document analysis.

23. How does the formal system differ from the informal

system? How does document analysis help you under-

stand both?

24. What are the key aspects of using observation in the

information-gathering process?

25. Explain factors that can be used to select information-

gathering techniques

A. Review the Amazon.com Web site. Develop the

requirements definition for the site. Create a list of

functional business requirements that the system

meets. What different kinds of nonfunctional business

requirements does the system meet? Provide examples

for each kind.

B. Pretend that you are going to build a new system that

automates or improves the interview process for the

Career Services Department of your school. Develop a

requirements definition for the new system. Include

both functional and nonfunctional system require-

ments. Pretend you will release the system in three dif-

ferent versions. Prioritize the requirements accordingly.

C. Describe in very general terms the as-is business

process for registering for classes at your university.

What BPA technique would you use to identify

improvements? With whom would you use the BPA

technique? What requirements-gathering technique

would help you apply the BPA technique? List some

example improvements that would you expect to find.

D. Describe in very general terms the as-is business

process for registering for classes at your university.

What BPI technique would you use to identify

improvements? With whom would you use the BPI

technique? What requirements-gathering technique

would help you apply the BPI technique? List some

example improvements that you would expect to find.

E. Describe in very general terms the as-is business

process for registering for classes at your university.

What BPR technique would you use to identify

improvements? With whom would you use the BPR

technique? What requirements-gathering technique

would help you apply the BPR technique? List some

example improvements that would you expect to find.

F. Suppose your university is having a dramatic increase

in enrollment and is having difficulty finding enough

seats in courses for students so they can take courses

required for graduation. Perform a technology analy-

sis to identify new ways to help students complete

their studies and graduate.

G. Suppose you are the analyst charged with developing a

new system for the university bookstore with which

students can order books online and have them deliv-

ered to their dorms and off-campus housing. What

requirements-gathering techniques will you use?

Describe in detail how you would apply the techniques.

H. Suppose you are the analyst charged with developing a

new system to help senior managers make better

strategic decisions. What requirements-gathering

techniques will you use? Describe in detail how you

would apply the techniques.

I. Find a partner and interview each other about what

tasks you/they did in the last job held (full-time, part-

time, past or current). If you haven’t worked before,

then assume your job is being a student. Before you do

this, develop a brief interview plan. After your partner

interviews you, identify the type of interview, inter-

view approach, and types of questions used.

J. Find a group of students and run a sixty-minute JAD

session on improving alumni relations at your univer-

sity. Develop a brief JAD plan, select two techniques

that will help identify improvements, and then

develop an agenda. Conduct the session using the

agenda, and write your postsession report.

EXERCISES

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Exercises 161

1. The State Firefighter’s Association has a membership

of 15,000. The purpose of the organization is to pro-

vide some financial support to the families of deceased

member firefighters and to organize a conference each

year bringing together firefighters from all over the

state. Annually members are billed dues and calls.

“Calls” are additional funds required to take care of

payments made to the families of deceased members.

The bookkeeping work for the association is handled

by the elected treasurer, Bob Smith, although it is

widely known that his wife, Laura, does all of the work.

Bob runs unopposed each year at the election, since no

one wants to take over the tedious and time-consum-

ing job of tracking memberships. Bob is paid a stipend

of $8,000 per year, but his wife spends well over twenty

hours per week on the job. The organization however,

is not happy with their performance.

A computer system is used to track the billing and

receipt of funds. This system was developed in 1984 by

a Computer Science student and his father. The system

is a DOS-based system written using dBase 3. The most

immediate problem facing the treasurer and his wife is

the fact that the software package no longer exists, and

there is no one around who knows how to maintain the

system. One query in particular takes seventeen hours

to run. Over the years, they have just avoided running

this query, although the information in it would be

quite useful. Questions from members concerning

their statements cannot be easily answered. Usually

Bob or Laura just jot down the inquiry and return a call

with the answer. Sometimes it takes three to five hours

to find the information needed to answer the question.

Often, they have to perform calculations manually

since the system was not programmed to handle cer-

tain types of queries. When member information is

entered into the system, each field is presented one at a

time. This makes it very difficult to return to a field and

correct a value that was entered. Sometimes a new

member is entered but disappears from the records.

The report of membership used in the conference

materials does not alphabetize members by city. Only

cities are listed in the correct order.

What requirements analysis strategy or strategies

would you recommend for this situation? Explain

your answer.

2. Brian Callahan, IS Project Manager, is just about ready

to depart for an urgent meeting called by Joe Camp-

bell, Manager of Manufacturing Operations. A major

BPI project sponsored by Joe recently cleared the

approval hurdle, and Brian helped bring the project

through project initiation. Now that the approval

committee has given the go-ahead, Brian has been

working on the project’s analysis plan.

One evening, while playing golf with a friend who

works in the Manufacturing Operations Department,

Brian learned that Joe wants to push the project’s time

frame up from Brian’s original estimate of thirteen

months. Brian’s friend overheard Joe say,“I can’t see why

that IS project team needs to spend all that time ‘analyz-

ing’ things. They’ve got two weeks scheduled just to look

at the existing system! That seems like a real waste. I want

that team to get going on building my system.”

Because Brian has a little inside knowledge about

Joe’s agenda for this meeting, he has been considering

how to handle Joe. What do you suggest Brian tell Joe?

3. Barry has recently been assigned to a project team

that will be developing a new retail store manage-

ment system for a chain of submarine sandwich

shops. Barry has several years of experience in pro-

gramming but has not done much analysis in his

career. He was a little nervous about the new work he

would be doing, but was confident he could handle

any assignment he was given.

One of Barry’s first assignments was to visit one of

the submarine sandwich shops and prepare an obser-

vation report on how the store operates. Barry

MINICASES

K. Find a questionnaire on the Web that has been created

to capture customer information. Describe the pur-

pose of the survey, the way questions are worded, and

how the questions have been organized. How can it be

improved? How will the responses be analyzed?

L. Develop a questionnaire that will help gather infor-

mation regarding processes at a popular restaurant, or

the college cafeteria (e.g., ordering, customer service).

Give the questionnaire to ten to fifteen students, ana-

lyze the responses, and write a brief report that

describes the results.

M.Contact the Career Services Department at your

university and find all the pertinent documents

designed to help students find permanent and/or

part-time jobs. Analyze the documents and write a

brief report.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

162 Chapter 5 Requirements Determination

planned to arrive at the store around noon, but he

chose a store in an area of town he was unfamiliar

with, and due to traffic delays and difficulty in finding

the store, he did not arrive until 1:30 PM. The store

manager was not expecting him and refused to let a

stranger behind the counter until Barry had him con-

tact the project sponsor (the Director of Store Man-

agement) back at company headquarters to verify who

he was and what his purpose was.

After finally securing permission to observe, Barry

stationed himself prominently in the work area

behind the counter so that he could see everything.

The staff had to maneuver around him as they went

about their tasks, and there were only minor occa-

sional collisions. Barry noticed that the store staff

seemed to be going about their work very slowly and

deliberately, but he supposed that was because the

store wasn’t very busy. At first, Barry questioned each

worker about what he or she was doing, but the store

manager eventually asked him not to interrupt their

work so much—he was interfering with their service

to the customers.

By 3:30 PM, Barry was a little bored. He decided to

leave, figuring he could get back to the office and pre-

pare his report before 5:00 PM that day. He was sure his

team leader would be pleased with his quick comple-

tion of his assignment. As he drove, he reflected,

“There really won’t be much to say in this report. All

they do is take the order, make the sandwich, collect

the payment, and hand over the order. It’s really sim-

ple!” Barry’s confidence in his analytical skills soared

as he anticipated his team leader’s praise.

Back at the store, the store manager shook his head,

commenting to his staff, “He comes here at the slowest

time of day on the slowest day of the week. He never

even looked at all the work I was doing in the back room

while he was here—summarizing yesterday’s sales,

checking inventory on hand, making up resupply orders

for the weekend … plus he never even considered our

store opening and closing procedures. I hate to think

that the new store management system is going to be

built by someone like that. I’d better contact Chuck (the

Director of Store Management) and let him know what

went on here today.” Evaluate Barry’s conduct of the

observation assignment.

4. Anne has been given the task of conducting a survey

of sales clerks who will be using a new order entry sys-

tem being developed for a household products catalog

company. The goal of the survey is to identify the

clerks’ opinions on the strengths and weaknesses of

the current system. There are about fifty clerks who

work in three different cities, so a survey seemed like

an ideal way of gathering the needed information

from the clerks.

Anne developed the questionnaire carefully and

pretested it on several sales supervisors who were

available at corporate headquarters. After revising it

based on their suggestions, she sent a paper version of

the questionnaire to each clerk, asking that it be

returned within one week. After one week, she had

only three completed questionnaires returned. After

another week, Anne received just two more com-

pleted questionnaires. Feeling somewhat desperate,

Anne then sent out an e-mail version of the question-

naire, again to all the clerks, asking them to respond

to the questionnaire by e-mail as soon as possible. She

received two e-mail questionnaires and three mes-

sages from clerks who had completed the paper ver-

sion expressing annoyance at being bothered with the

same questionnaire a second time. At this point, Anne

has just a 14 percent response rate, which she is sure

will not please her team leader. What suggestions do

you have that could have improved Anne’s response

rate to the questionnaire?

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

B
ehavioral
M

odels
Structural

M
odels

Functional
M

odels
R

equirem
ents

D
efinition

A
nalysis
Plan

PART TWO

Analysis Phase

The Analysis Phase answers the questions of who

will use the system, what the system will do, and

where and when it will be used. During this phase,

the project team will learn about the system. The

team then produces the Functional Model (Activity

Diagrams, Use Case Descriptions and Diagram),

Structural Model (CRC Cards and Class and Object

Diagrams), and Behavioral Models (Sequence Dia-

grams, Communication Diagrams, and Behavioral

State Machines).

CHAPTER 5

Requirements

Determination

CHAPTER 6

Functional

Modeling

CHAPTER 7

Structural

Modeling

CHAPTER 8

Behavioral

Modeling

C
op

yr
ig

ht
ed

 M
at

er
ia

l

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

One of the first activities of an analyst is to determine the business requirements for the

system. This chapter begins by presenting the requirements definition, a document that

lists the new system’s capabilities. It then describes how to analyze requirements using busi-

ness process automation, business process improvement, and business process reengineer-

ing techniques, and how to gather requirements using interviews, JAD sessions,

questionnaires, document analysis, and observation.

OBJECTIVES

■ Understand how to create a requirements definition.
■ Become familiar with requirements analysis techniques.
■ Understand when to use each requirements analysis technique.
■ Understand how to gather requirements using interviews, JAD sessions, question-

naires, document analysis, and observation.
■ Understand when to use each requirements-gathering technique.

CHAPTER OUTLINE

INTRODUCTION

The systems development life cycle (SDLC) is the process by which the organization moves

from the current system (often called the as-is system) to the new system (often called the to-

be system). The output of planning, discussed in Chapters 3 and 4, is the system request,

which provides general ideas for the to-be system, defines the project's scope, and provides

Introduction

Requirements Determination

What is a Requirement?

Requirements Definition

Determining Requirements

Creating the Requirements Definition

Requirements Analysis Techniques

Business Process Automation

Business Process Improvement

Business Process Reengineering

Selecting the Appropriate Technique

Requirement-Gathering Techniques

Interviews

Joint Application Development

Questionnaíres

Document Analysis

Observation

Selecting the Appropriate Techniques

Applying the Concepts at CD Selections

Requirements Analysis Techniques

Requirements-Gathering Techniques

Requirements Definition

System Proposal

Summary

C H A P T E R 5

Requirements Determination

123

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

the initial workplan. The analysis phase takes the general ideas in the system request and

refines them into a detailed requirements definition (this chapter), functional models (Chap-

ter 6), structural models (Chapter 7), and behavioral models (Chapter 8) that together form

the system proposal. The system proposal also includes revised project management deliver-

ables, such as the feasibility analysis (Chapter 3) and the workplan (Chapter 4).

The system proposal is presented to the approval committee, who decides if the project

is to continue. This usually happens at a system walkthrough, a meeting at which the concept

for the new system is presented to the users, managers, and key decision makers. The goal of

the walkthrough is to explain the system in moderate detail so that the users, managers, and

key decision makers clearly understand it, can identify needed improvements, and are able to

make a decision about whether the project should continue. If approved, the system proposal

moves into the design phase, and its elements (requirements definition, functional, struc-

tural, and behavioral models) are used as inputs to the steps in design. This further refines

them and defines in much more detail how the system will be built.

The line between analysis and design is very blurry. This is because the deliverables cre-

ated during analysis are really the first step in the design of the new system. Many of the major

design decisions for the new system are found in the analysis deliverables. In fact, a better

name for analysis would really be “analysis and initial design,” but because this is a rather long

name, and because most organizations simply call it analysis, we will too. Nonetheless, it is

important to remember that the deliverables from analysis are really the first step in the

design of the new system.

In many ways, the requirements determination step is the single most critical step of the

entire SDLC, because it is here that the major elements of the system first begin to emerge.

During requirements determination, the system is easy to change because little work has been

done yet. As the system moves through the other phases in the SDLC, it becomes harder and

harder to return to requirements determination and to make major changes because of all of

the rework that is involved. Several studies have shown that more than half of all system fail-

ures are due to problems with the requirements.1 This is why the iterative approaches of many

object-oriented methodologies are so effective—small batches of requirements can be identi-

fied and implemented in incremental stages, allowing the overall system to evolve over time.

In this chapter, we focus on the requirements-determination step of analysis. We begin

by explaining what a requirement is and the overall process of requirements gathering and

requirements analysis. We then present a set of techniques that can be used to analyze and

gather requirements.

REQUIREMENTS DETERMINATION

The purpose of the requirements determination step is to turn the very high-level explanation

of the business requirements stated in the system request into a more precise list of require-

ments than can be used as inputs to the rest of analysis (creating functional, structural, and

behavioral models). This expansion of the requirements ultimately leads to the design phase.

What is a Requirement?

A requirement is simply a statement of what the system must do or what characteristic it

must have. During analysis, requirements are written from the perspective of the busi-

nessperson, and they focus on the “what” of the system. They focus on business user needs,

so they usually are called business requirements (and sometimes user requirements). Later

124 Chapter 5 Requirements Determination

1 For example, see The Scope of Software Development Project Failures by The Standish Group, Dennis MA, 1995.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

in design, business requirements evolve to become more technical, and they describe “how”

the system will be implemented. Requirements in design are written from the developer’s

perspective, and they usually are called system requirements.

Before we continue, we want to stress that there is no black-and-white line dividing a

business requirement and a system requirement—and some companies use the terms

interchangeably. The important thing to remember is that a requirement is a statement of

what the system must do, and requirements will change over time as the project moves

from analysis to design to implementation. Requirements evolve from detailed statements

of the business capabilities that a system should have to detailed statements of the techni-

cal way in which the capabilities will be implemented in the new system.

Requirements can be either functional or nonfunctional in nature. A functional

requirement relates directly to a process the system has to perform or information it needs

to contain. For example, requirements that state that the system must have the ability to

search for available inventory or to report actual and budgeted expenses are functional

requirements. Functional requirements flow directly into the next steps of analysis (func-

tional, structural, and behavioral models) because they define the functions that the system

needs to have.

Nonfunctional requirements refer to behavioral properties that the system must have,

such as performance and usability. The ability to access the system using a Web browser

would be considered a nonfunctional requirement. Nonfunctional requirements may

influence the rest of analysis (functional, structural, and behavioral models) but often do

so only indirectly; nonfunctional requirements are primarily used in design when decisions

are made about the user interface, the hardware and software, and the system’s underlying

physical architecture.

Figure 5-1 lists different kinds of nonfunctional requirements and examples of each

kind. Notice that the nonfunctional requirements describe a variety of characteristics

regarding the system: operational, performance, security, and cultural and political. These

characteristics do not describe business processes or information, but they are very impor-

tant in understanding what the final system should be like. For example, the project team

Requirements Determination 125

One of the most common mistakes by new analysts is to
confuse functional and nonfunctional requirements. Pre-
tend that you received the following list of requirements
for a sales system.

Requirements for Proposed System:
The system should…

1. Be accessible to Web users

2. Include the company standard logo and color
scheme

3. Restrict access to profitability information

4. Include actual and budgeted cost information

5. Provide management reports

6. Include sales information that is updated at least
daily

7. Have 2-second maximum response time for prede-
fined queries, and 10-minute maximum response
time for ad hoc queries

8. Include information from all company subsidiaries

9. Print subsidiary reports in the primary language of
the subsidiary

10. Provide monthly rankings of salesperson perfor-
mance

Questions:

1. Which requirements are functional business
requirements? Provide two additional examples.

2. Which requirements are nonfunctional business
requirements? What kind of nonfunctional require-
ments are they? Provide two additional examples.

5-1 Identifying RequirementsYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

126 Chapter 5 Requirements Determination

Operational The physical and technical environments in ■ The system should be able to fit in a pocket or purse
which the system will operate ■ The system should be able to integrate with the exist-

ing inventory system
■ The system should be able to work on any Web

browser

Performance The speed, capacity, and reliability of the system ■ Any interaction between the user and the system
should not exceed 2 seconds

■ The system should receive updated inventory infor-
mation every 15 minutes

■ The system should be available for use 24 hours per
day, 365 days per year

Security Who has authorized access to the system under ■ Only direct managers can see personnel records
what circumstances of staff

■ Customers can only see their order history during
business hours

Cultural and Political Cultural, political factors and legal requirements ■ The system should be able to distinguish between
that affect the system United States and European currency

■ Company policy says that we only buy computers
from Dell

■ Country managers are permitted to authorize cus-
tomer user interfaces within their units

■ The system shall comply with insurance industry
standards

Source: The Atlantic Systems Guild, http;//www.systemsguild.com

FIGURE 5-1

Nonfunctional Requirements

Nonfunctional
Requirement Description Examples

I once worked on a consulting project in which my man-
ager created a requirements definition without listing non-
functional requirements. The project was then estimated
based on the requirements definition and sold to the client
for $5,000. In my manager’s mind, the system that we
would build for the client would be a very simple stand-
alone system running on current technology. It shouldn’t
take more than a week to analyze, design, and build.

Unfortunately, the client had other ideas. They
wanted the system to be used by many people in three
different departments, and they wanted the ability for any
number of people to work on the system concurrently.
The technology they had in place was antiquated, but

nonetheless they wanted the system to run effectively on
the existing equipment. Because we didn’t set the project
scope properly by including our assumptions about non-
functional requirements in the requirements definition,
we basically had to do whatever they wanted.

The capabilities they wanted took weeks to design
and program. The project ended up taking four months,
and the final project cost was $250,000. Our company
had to pick up the tab for everything except the agreed
upon $5,000. This was by far the most frustrating project
situation I ever experienced.

—Barbara Wixom

5-A What Can Happen If You Ignore Nonfunctional RequirementsCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

needs to know if a system needs to be highly secure, requires subsecond response time, or

has to reach a multilingual customer base. These requirements will impact design decisions

that will be made in design, particularly physical architecture design, so we will revisit them

in detail in Chapter 13. The goal at this point is to identify any major issues.

Requirements Definition

The requirements definition report—usually just called the requirements definition—is a

straightforward text report that simply lists the functional and nonfunctional requirements

in an outline format. Figure 5-2 shows a sample requirements definition for a word pro-

cessing program designed to compete against software, such as Microsoft Word.

The requirements are numbered in a legal or outline format so that each requirement

is clearly identified. The requirements are first grouped into functional and nonfunctional

requirements and then within each of those headings they are further grouped by the type

of nonfunctional requirement or by function.

Requirements Determination 127

 C. Functional Requirements

 1. Printing
 1.1. The user can select which pages to print
 1.2. The user can view a preview of the pages before printing
 1.3. The user can change the margins, paper size (e.g., letter, A4) and orientation
 on the page

 2. Spell Checking
 2.1. The user can check for spelling mistakes; the system can operate in one
 of two modes as selected by the users
 2.1.1. Mode 1 (Manual): The user will activate the spell checker and it will move the
 user to the next misspelled word
 2.1.2. Mode 2 (Automatic): As the user types, the spell checker will flag misspelled
 words so the user immediately see the misspelling
 2.2. The user can add words to the dictionary
 2.3. The user can mark words as not misspelled but not add them to the dictionary

 D. Nonfunctional Requirements

 1. Operational Requirements
 1.1. The system will operate in Windows and Macintosh environments
 1.2. The system will be able to read and write Word documents, RTF, and HTML
 1.3. The system will be able to import Gif, Jpeg, and BMP graphics files

 2. Performance Requirements
 2.1. Response times must be less than 7 seconds
 2.2. The Inventory database must be updated in real time

 3. Security Requirements
 3.1. No special security requirements are anticipated

 4. Cultural and Political Requirements
 4.1. No special cultural and political requirements are anticipated

FIGURE 5-2

Sample Requirements

Definition

TEMPLATE

can be found at
www.wiley.com
/college/dennis

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Sometimes, business requirements are prioritized on the requirements definition.

They can be ranked as having high, medium, or low importance in the new system, or they

can be labeled with the version of the system that will address the requirement (e.g., release

1, release 2, release 3). This practice is particularly important when using object-oriented

methodologies since they deliver requirements in batches by developing incremental ver-

sions of the system.

The most obvious purpose of the requirements definition is to provide the information

needed by the other deliverables in analysis, which include functional, structural, and

behavioral models, and to support activities in the design phase. The most important pur-

pose of the requirements definition, however, is to define the scope of the system. The doc-

ument describes to the analysts exactly what the system needs to end up doing. When

discrepancies arise, the document serves as the place to go for clarification.

Determining Requirements

Determining requirements for the requirements definition is both a business task and an IT

task. In the early days of computing, there was a presumption that the systems analysts, as

experts with computer systems, were in the best position to define how a computer system

should operate. Many systems failed because they did not adequately address the true busi-

ness needs of the users. Gradually, the presumption changed so that the users, as the busi-

ness experts, were seen as being the best position to define how a computer system should

operate. However, many systems failed to deliver performance benefits because users simply

automated an existing inefficient system, and they failed to incorporate new opportunities

offered by technology.

A good analogy is building a house or an apartment. We have all lived in a house or apart-

ment, and most of us have some understanding of what we would like to see in one. However,

if we were asked to design one from scratch, it would be a challenge because we lack appro-

priate design skills and technical engineering skills. Likewise, an architect acting alone would

probably miss some of our unique requirements.

Therefore, the most effective approach is to have both businesspeople and analysts

working together to determine business requirements. Sometimes, however, users don’t

know exactly what they want, and analysts need to help them discover their needs. Three

kinds of techniques have become popular to help analysts do this: business process

automation (BPA), business process improvement (BPI), and business process reengineer-

ing (BPR). These techniques are tools that analysts can use when they need to guide the

users in explaining what is wanted from a system.
The three kinds of techniques work similarly. They help users critically examine the

current state of systems and processes (the as-is system), identify exactly what needs to
change, and develop a concept for a new system (the to-be system). A different amount of
change is associated with each technique; BPA creates a small amount of change, BPI cre-
ates a moderate amount of change, and BPR creates significant change that affects much of
the organization. All three will be described in greater detail later in the chapter.

Although BPA, BPI, and BPR enable the analyst to help users create a vision for the
new system, they are not sufficient for extracting information about the detailed business
requirements that are needed to build it. Therefore, analysts use a portfolio of require-
ment-gathering techniques to acquire information from users. The analyst has many
gathering techniques from which to choose: interviews, questionnaires, observation,
joint application development (JAD), and document analysis. The information gathered
using these techniques is critically analyzed and used to craft the requirements definition
report. The final section of this chapter describes each of the requirements-gathering
techniques in greater depth.

128 Chapter 5 Requirements Determination

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Creating the Requirements Definition

Creating the requirements definition is an iterative and ongoing process whereby the analyst
collects information with requirements-gathering techniques (e.g., interviews, document
analysis), critically analyzes the information to identify appropriate business requirements for
the system, and adds the requirements to the requirements definition report. The require-
ments definition is kept up to date so that the project team and business users can refer to it
and get a clear understanding of the new system.

To create the requirements definition, the project team first determines the kinds of
functional and nonfunctional requirements that they will collect about the system (of
course, these may change over time). These become the main sections of the document.
Next, the analysts use a variety of requirement-gathering techniques (e.g., interviews, obser-
vation) to collect information, and they list the business requirements that were identified
from that information. Finally, the analysts work with the entire project team and the busi-
ness users to verify, change, and complete the list and to help prioritize the importance of
the requirements that were identified.

This process continues throughout analysis, and the requirements evolves over time as
new requirements are identified and as the project moves into later phases of the SDLC.
Beware: the evolution of the requirements definition must be carefully managed. The project
team cannot keep adding to the requirements definition, or the system will keep growing and
growing and never get finished. Instead, the project team carefully identifies requirements
and evaluates which ones fit within the scope of the system. When a requirement reflects a
real business need but is not within the scope of the current system or current release, it is
added on a list of future requirements, or given a low priority. The management of require-
ments (and system scope) is one of the hardest parts of managing a project!

REQUIREMENTS ANALYSIS TECHNIQUES

Before the project team can determine what requirements are appropriate for a given sys-

tem, they need to have a clear vision of the kind of system that will be created, and the level

of change that it will bring to the organization. The basic process of analysis is divided into

three steps: understanding the as-is system, identifying improvements, and developing

requirements for the to-be system.
Sometimes the first step (i.e., understanding the as-is system) is skipped or done in a

cursory manner. This happens when no current system exists, if the existing system and
processes are irrelevant to the future system, or if the project team is using a RAD or agile
development methodology in which the as-is system is not emphasized. Users of tradi-
tional design methods such as waterfall and parallel development (see Chapter 1) typically
spend significant time understanding the as-is system and identifying improvements
before moving to capture requirements for the to-be system. However, newer RAD, agile,
and object-oriented methodologies, such as phased development, prototyping, throwaway
prototyping, and extreme programming (see Chapters 1 and 2) focus almost exclusively on
improvements and the to-be system requirements, and they spend little time investigating
the current as-is system.

Three requirements analysis techniques—business process automation, business
process improvement, or business process reengineering—help the analyst lead users
through the three (or two) analysis steps so that the vision of the system can be developed.
We should note that requirements analysis techniques and requirements-gathering tech-
niques go hand in hand. Analysts need to use requirements-gathering techniques to collect
information; requirements analysis techniques drive the kind of information that is gath-
ered and how it is ultimately analyzed. Although we focus now on the analysis techniques

Requirements Analysis Techniques 129

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

and then discuss requirements gathering at the end of the chapter, they happen concurrently
and are complementary activities.

The choice of analysis technique used is based on the amount of change the system is
meant to create in the organization. BPA is based on small change that improves process
efficiency, BPI creates process improvements that lead to better effectiveness, and BPR
revamps the way things work so that the organization is transformed on some level.

To move the users “from here to there,” an analyst needs strong critical thinking skills.
Critical thinking is the ability to recognize strengths and weaknesses and recast an idea in
an improved form, and they are needed to really understand issues and develop new busi-
ness processes. These skills are needed to thoroughly examine the results of requirements
gathering, to identify business requirements, and to translate those requirements into a
concept for the new system.

Business Process Automation

Business process automation (BPA) means leaving the basic way in which the organization
operates unchanged, and using computer technology to do some of the work. BPA can
make the organization more efficient but has the least impact on the business. BPA projects
spend a significant time understanding the current as-is system before moving on to
improvements and to-be system requirements. Problem analysis and root cause analysis are
two popular BPA techniques.

Problem Analysis The most straightforward (and probably the most commonly used)

requirements analysis technique is problem analysis. Problem analysis means asking the

users and managers to identify problems with the as-is system and to describe how to solve

them in the to-be system. Most users have a very good idea of the changes they would like

to see, and most will be quite vocal about suggesting them. Most changes tend to solve

problems rather than capitalize on opportunities, but this is possible, too. Improvements

from problem analysis tend to be small and incremental (e.g., provide more space in which

to type the customer’s address; provide a new report that currently does not exist).

This type of improvement often is very effective at improving a system’s efficiency or

ease of use. However, it often provides only minor improvements in business value—the

new system is better than the old, but it may be hard to identify significant monetary ben-

efits from the new system.

Root Cause Analysis The ideas produced by problem analysis tend to be solutions to

problems. All solutions make assumptions about the nature of the problem, assumptions

that may or may not be valid. In our experience, users (and most people in general) tend

to jump quickly to solutions without fully considering the nature of the problem. Some-

times the solutions are appropriate, but many times they address a symptom of the prob-

lem, not the true problem or root cause itself.2

For example, suppose you notice that a lightbulb is burned out above your front door.
You buy a new bulb, get out a ladder, and replace the bulb. A month later, you see that the
same bulb is burnt out, so you buy a new bulb, haul out the ladder, and replace it again.
This repeats itself several times. At this point, you have two choices. You can buy a large
package of lightbulbs and a fancy lightbulb changer on a long pole so you don’t need the

130 Chapter 5 Requirements Determination

2 Some excellent books that address the importance of gathering requirements and various techniques include:
Alan M. Davis, Software Requirements: Objects, Functions, & States, Revision (Englewood Cliffs, NJ: Prentice Hall,
1993); Gerald Kotonya and Ian Sommerville, Requirements Engineering (Chichester, England: John Wiley & Sons,
1998); and Dean Leffingwell and Don Widrig, Managing Software Requirements: A Unified Approach (Reading,
MA: Addison-Wesley, 2000).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

haul the ladder out each time (thus saving a lot of trips to the store for new bulbs and a lot
of effort in working with the ladder). Or you can fix the light fixture that is causing the light
to burn out in the first place. Buying the bulb changer is treating the symptom (the burnt-
out bulb), while fixing the fixture is treating the root cause.

In the business world, the challenge lies in identifying the root cause—few problems
are as simple as the lightbulb problem. The solutions that users propose (or systems that
analysts think of) may either address symptoms or root causes, but without a careful analy-
sis, it is difficult to tell which one. And finding out that you’ve just spent a million dollars
on a new lightbulb changer is a horrible feeling!

Root cause analysis therefore focuses on problems, not solutions. The analyst starts by
having the users generate a list of problems with the current system, and then prioritize the
problems in order of importance. Then starting with the most important, the users and/or
the analysts generate all the possible root causes for the problems. Each possible root cause
is investigated (starting with the most likely or easiest to check) until the true root cause(s)
are identified. If any possible root causes are identified for several problems, those should be
investigated first, because there is a good chance they are the real root causes influencing the
symptom problems.

In our lightbulb example, there are several possible root causes. A decision tree some-
times helps with the analysis. As Figure 5-3 shows, there are many possible root causes, so
buying a new fixture may or may not address the true root cause. In fact, buying a light-
bulb changer may actually address the root cause. The key point in root cause analysis is to
always challenge the obvious.

Requirements Analysis Techniques 131

Light bulb burns
out frequently

Buy better bulbs

Fix bad fixture

Fix bad wiring

Control power surges

Left on when not needed Left on when needed

Bulb burns out at
end of rated life

Bulb burns
out prematurely

Change procedure to
have bulb turned off

Develop ways to
automatically turn off bulb

Find way to
simplify changing

Buy a bulb with
a longer-rated life

Find other means
to deliver light

Find other ways to
achieve what light does

FIGURE 5-3 Root Cause Analysis for the Example of the Burned-Out Lightbulb

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Business Process Improvement

Business process improvement (BPI) means making moderate changes to the way in which

the organization operates to take advantage of new opportunities offered by technology or

to copy what competitors are doing. BPI can improve efficiency (i.e., doing things right)

and improve effectiveness (i.e., doing the right things). BPI projects also spend time under-

standing the as-is system, but much less time than BPA projects; their primary focus is on

improving business processes, so time is spent on the as-is only to help with the improve-

ment analyses and the to-be system requirements. Duration analysis, activity-based cost-

ing, and information benchmarking are three popular BPI activities.

Duration Analysis Duration analysis requires a detailed examination of the amount of

time it takes to perform each process in the current as-is system. The analysts begin by deter-

mining the total amount of time it takes, on average, to perform a set of business processes

for a typical input. They then time each of the individual steps (or subprocesses) in the busi-

ness process. The time to complete the basic steps are then totaled and compared to the total

for the overall process. When there is a significant difference between the two—and in our

experiences the total time often can be 10 or even 100 times longer than the sum of the

parts—this indicates that this part of the process is badly in need of a major overhaul.

For example, suppose that the analysts are working on a home mortgage system and

discover that on average, it takes thirty days for the bank to approve a mortgage. They then

look at each of the basic steps in the process (e.g., data entry, credit check, title search,

appraisal, etc.) and find that the total amount of time actually spent on each mortgage is

132 Chapter 5 Requirements Determination

In 1984, I developed an information system to help
schedule production orders in paper mills. Paper is made
in huge rolls that are six to ten feet wide. Customer orders
(e.g., newspaper, computer paper) are cut from these
large rolls. The goal of production scheduling is to decide
which orders to combine on one roll to reduce the
amount of paper wasted because no matter how you
place the orders on the rolls, you almost always end up
throwing away the last few inches—customer orders sel-
dom add up to exactly the same width as the roll itself
(imagine trying to cut several rolls of toilet paper from a
paper towel roll).

The scheduling system was designed to run on an
IBM PC, which in those days was not powerful enough to
use advanced mathematical techniques like linear pro-
gramming to calculate which orders to combine on
which roll. Instead, we designed the system to use the
rules of thumb that the production schedulers themselves
had developed over many years. After several months of
fine-tuning, the system worked very well. The schedulers
were happy and the amount of waste decreased.

By 1986, PCs had increased in power, so we revised
the system to use the advanced linear programming tech-

niques to provide better schedules and reduce the waste
even more. In our tests, the new system reduced waste by
a few percentage points over the original system, so it was
installed. However, after several months, there were big
problems; the schedulers were unhappy and the amount
of waste actually grew.

It turned out that although the new system really did
produce better schedules with less waste, the real prob-
lem was not figuring how to place the orders on the rolls
to reduce waste. Instead, the real problem was finding
orders for the next week that could be produced with the
current batch. The old system combined orders in a way
in which the schedulers found it easy to find “matching”
future orders. The new system made odd combinations
with which the schedulers had a hard time working. The
old system was eventually re-installed.

—Alan Dennis

Question

1. How could the problem with the new system have
been foreseen?

5-B When Optimal Isn’tCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

about eight hours. This is a strong indication that the overall process is badly broken,

because it takes thirty days to perform one day’s work.
These problems likely occur because the process is badly fragmented. Many different

people must perform different activities before the process finishes. In the mortgage exam-
ple, the application probably sits on many peoples’ desks for long periods of time before it
is processed. Processes in which many different people work on small parts of the inputs
are prime candidates for process integration or parallelization. Process integration means
changing the fundamental process so that fewer people work on the input, which often
requires changing the processes and retraining staff to perform a wider range of duties.
Process parallelization means changing the process so that all the individual steps are per-
formed at the same time. For example in the mortgage application example, there is prob-
ably no reason that the credit check cannot be performed at the same time as the appraisal
and title check.

Activity-Based Costing Activity-based costing is a similar analysis that examines the cost

of each major process or step in a business process rather than the time taken.3 The ana-

lysts identify the costs associated with each of the basic functional steps or processes, iden-

tify the most costly processes, and focus their improvement efforts on them.

Assigning costs is conceptually simple. You just examine the direct cost of labor and

materials for each input. Materials costs are easily assigned in a manufacturing process,

while labor costs are usually calculated based on the amount of time spent on the input and

the hourly cost of the staff. However, as you may recall from a managerial accounting

course, there are indirect costs such as rent, depreciation, and so on that also can be

included in activity costs.

Informal Benchmarking Benchmarking refers to studying how other organizations per-

form a business process in order to learn how your organization can do something better.

Benchmarking helps the organization by introducing ideas that employees may never have

considered, but have the potential to add value.

Informal benchmarking is fairly common for “customer-facing” business processes

(i.e., those processes that interact with the customer). With informal benchmarking, the

Requirements Analysis Techniques 133

3 For more information on activity-based costing, see K.B. Burk and D. W. Webster, Activity Based Costing (Fair-
fax, VA: American Management Systems, 1994); and D. T. Hicks, Activity-Based Costing: Making It Work for Small
and Mid-Sized Companies (New York: John Wiley, 1998).

A group of executives from a Fortune 500 company used
Duration Analysis to discuss their procurement process.
Using a huge wall of Velcro and a handful of placards, a
facilitator proceeded to map out the company’s process
for procuring a $50 software upgrade. Having quantified
the time it took to complete each step, she then assigned
costs based on the salaries of the employees involved. The

15-minute exercise left the group stunned. Their procure-
ment process had gotten so convoluted that it took eigh-
teen days, countless hours of paperwork and nearly
$22,000 in people time to get the product ordered,
received, and up and running on the requester’s desktop.
Source: “For Good Measure,” CIO Magazine, March 1 1999, by

Debby Young.

5-C Duration AnalysisCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

managers and analysts think about other organizations, or visit them as customers to

watch how the business process is performed. In many cases, the business studied may be

a known leader in the industry or simply a related firm. For example, suppose the team is

developing a Web site for a car dealer. The project sponsor, key managers, and key team

members would likely visit the Web sites of competitors, as well as those of others in the

car industry (e.g., manufacturers, accessories suppliers) and those in other industries that

have won awards for their Web sites.

Business Process Reengineering

Business process reengineering (BPR) means changing the fundamental way in which the

organization operates—“obliterating” the current way of doing business and making major

changes to take advantage of new ideas and new technology. BPR projects spend little time

understanding the as-is, because their goal is to focus on new ideas and new ways of doing

business. Outcome analysis, technology analysis, and activity elimination are three popu-

lar BPR activities.

Outcome Analysis Outcome analysis focuses on understanding the fundamental out-

comes that provide value to customers. While these outcomes sound as though they should

be obvious, they often aren’t. For example, suppose you are an insurance company, and one

of your customers has just had a car accident. What is the fundamental outcome from the

customer’s perspective? Traditionally, insurance companies have answered this question by

assuming the customer wants to receive the insurance payment quickly. To the customer,

however, the payment is only a means to the real outcome: a repaired car. The insurance

company might benefit by extending their view of the business process past its traditional

boundaries to include not paying for repairs, but performing the repairs or contracting

with an authorized body shop to do them.

With this approach, the system analysts encourage the managers and project spon-

sor to pretend they are customers and to think carefully about what the organization’s

products and services enable the customers to do—and what they could enable the cus-

tomer to do.

Technology Analysis Many major changes in business over the past decade have been

enabled by new technologies. Technology analysis therefore starts by having the analysts and

managers develop a list of important and interesting technologies. Then the group system-

atically identifies how each and every technology could be applied to the business process

and identifies how the business would benefit.

For example, one useful technology might be the Internet. Saturn, the car manufac-

turer, took this idea and developed an Extranet application for its suppliers. Rather than

ordering parts for its cars, Saturn makes its production schedule available electronically to

its suppliers, who ship the parts Saturn needs so that they arrive at the plant just in time.

This saves Saturn significant costs because it eliminates the need for people to monitor the

production schedule and issue purchase orders.

Activity Elimination Activity elimination is exactly what it sounds like. The analysts and

managers work together to identify how the organization could eliminate each and every

activity in the business process, how the function could operate without it, and what effects

are likely to occur. Initially, managers are reluctant to conclude that processes can be elim-

inated, but this is a “force-fit” exercise in that they must eliminate each activity. In some

cases the results are silly, but nonetheless, participants must address each and every activ-

ity in the business process.

134 Chapter 5 Requirements Determination

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

For example, in the home mortgage approval process discussed earlier, the managers

and analysts would start by eliminating the first activity, entering the data into the mort-

gage company’s computer. This leads to two obvious possibilities (1) eliminate the use of a

computer system; or (2) make someone else do the data entry (e.g., the customer over the

Web). They would then eliminate the next activity, the credit check. Silly right? After all,

making sure the applicant has good credit is critical in issuing a loan. Not really. The real

answer depends upon how many times the credit check identifies bad applications. If all or

almost all applicants have good credit and are seldom turned down by a credit check, then

the cost of the credit check may not be worth the cost of the few bad loans it prevents. Elim-

inating it may actually result in lower costs even with the cost of bad loans.

Selecting the Appropriate Technique

Each of the techniques discussed in this chapter has its own strengths and weaknesses (see

Figure 5-4). No one technique is inherently better than the others, and in practice most

projects use a combination of techniques.

Potential Business Value The potential business value varies with analysis strategy. While

BPA has the potential to improve the business, most of the benefits from BPA are tactical

and small in nature. Since BPA does not seek to change the business processes, it can only

improve their efficiency. BPI usually offers moderate potential benefits, depending upon

the scope of the project, because it seeks to change the business in some way. It can increase

both efficiency and effectiveness. BPR creates large potential benefits because it seeks to

radically improve the nature of the business.

Project Cost Project cost is always important. In general, BPA requires the lowest cost

because it has the narrowest focus and seeks to make the fewest number of changes. BPI

can be moderately expensive, depending upon the scope of the project. BPR is usually

expensive, both because of the amount of time required of senior managers and the

amount of redesign to business processes.

Breadth of Analysis Breadth of analysis refers to the scope of analysis, or whether analy-

sis includes business processes within a single business function, processes that cross the

organization, or processes that interact with those in customer or supplier organizations.

BPR takes a broad perspective, often spanning several major business processes, even across

multiple organizations. BPI has a much narrower scope that usually includes one or several

business functions. BPA typically examines a single process.

Risk One final issue is risk of failure, which is the likelihood of failure due to poor

design, unmet needs, or too much change for the organization to handle. BPA and BPI

have low to moderate risk because the to-be system is fairly well defined and understood,

Requirements Analysis Techniques 135

FIGURE 5-4

Characteristics of

Analysis Strategies

Potential business value Low–moderate Moderate High

Project cost Low Low–moderate High

Breadth of analysis Narrow Narrow–moderate Very broad

Risk Low–moderate Low–moderate Very high

Business Process Business Process Business Process
Automation Improvement Reengineering

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

and its potential impact on the business can be assessed before it is implemented. BPR

projects, on the other hand, are less predictable. BPR is extremely risky and not some-

thing to be undertaken unless the organization and its senior leadership are committed

to making significant changes. Mike Hammer, the father of BPR, estimates that 70 per-

cent of BPR projects fail.

136 Chapter 5 Requirements Determination

IBM Credit was a wholly owned subsidiary of IBM
responsible for financing mainframe computers sold by
IBM. While some customers bought mainframes outright,
or obtained financing from other sources, financing com-
puters provided significant additional profit.

When an IBM sales representative made a sale, he or
she would immediately call IBM Credit to obtain a
financing quote. The call was received by a credit officer
who would record the information on a request form. The
form would then be sent to the credit department to check
the customer’s credit status. This information would be
recorded on the form, which was then sent to the business
practices department who would write a contract (some-
times reflecting changes requested by the customer). The
form and the contract would then go to the pricing
department, which used the credit information to estab-
lish an interest rate and recorded it on the Form. The Form
and contract was then sent to the clerical group, where an
administrator would prepare a cover letter quoting the
interest rate and send the letter and contract via Federal
Express to the customer.

The problem at IBM Credit was a major one. Getting
a financing quote took anywhere for four to eight days (six
days on average), giving the customer time to rethink the
order or find financing elsewhere. While the quote was
being prepared, sales representatives would often call to
find out where the quote was in the process, so they
could tell the customer when to expect it. However, no
one at IBM Credit could answer the question because the
paper forms could be in any department and it was
impossible to locate one without physically walking

through the departments and going through the piles of
forms on everyone’s desk.

IBM Credit examined the process and changed it so
that each credit request was logged into a computer sys-
tem so that each department could record an applica-
tion’s status as they completed it and sent it to the next
department. In this way, sales representatives could call
the credit office and quickly learn the status of each appli-
cation. IBM used some sophisticated management sci-
ence queuing theory analysis to balance workloads and
staff across the different departments so none would be
overloaded. They also introduced performance standards
for each department (e.g., the pricing decision had to be
completed within one day after that department received
an application).

However, process times got worse, even though each
department was achieving almost 100 percent compli-
ance on its performance goals. After some investigation,
managers found that when people got busy, they conve-
niently found errors that forced them to return credit
requests to the previous department for correction,
thereby removing it from their time measurements.

Questions:

1. What techniques can you use to identify improve-
ments? Choose one technique and apply it to this
situation—what improvements did you identify?

Source: Reengineering the Corporation, New York: Harper Business,

1993, by M. Hammer and J. Champy.

5-2 IBM CreditYOUR

TURN

Suppose you are the analyst charged with developing a
new Web site for a local car dealer who wants to be very

innovative and try new things. What analysis techniques
would you recommend? Why?

5-3 Analysis StrategyYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

REQUIREMENTS-GATHERING TECHNIQUES

An analyst is very much like a detective (and business users sometimes are like elusive suspects).
He or she knows that there is a problem to be solved and therefore must look for clues that
uncover the solution. Unfortunately, the clues are not always obvious (and often missed), so the
analyst needs to notice details, talk with witnesses, and follow leads just as Sherlock Holmes
would have done. The best analysts will thoroughly gather requirements using a variety of tech-
niques and make sure that the current business processes and the needs for the new system are
well understood before moving into design. You don’t want to discover later that you have key
requirements wrong—surprises like this late in the SDLC can cause all kinds of problems.

The requirements-gathering process is used for building political support for the pro-

ject and establishing trust and rapport between the project team building the system and

the users who ultimately will choose to use or not use the system. Involving someone in the

process implies that the project teams views that person as an important resource and val-

ues his or her opinions. You must include all of the key stakeholders (the people who can

affect the system or who will be affected by the system) in the requirements-gathering

process. This might include managers, employees, staff members, and even some cus-

tomers and suppliers. If you do not involve a key person, that individual may feel slighted,

which can cause problems during implementation (e.g., “How could they have developed

the system without my input?!”).

The second challenge of requirements gathering is choosing the way(s) in which infor-

mation is collected. There are many techniques for gathering requirements that vary from

asking people questions to watching them work. In this chapter, we focus on the five most

commonly used techniques: interviews, JAD sessions (a special type of group meeting),

questionnaires, document analysis, and observation. Each technique has its own strengths

and weaknesses, many of which are complementary, so most projects use a combination of

techniques, probably most often interviews, JAD sessions, and document analysis.4

Interviews

The interview is the most commonly used requirements-gathering technique. After all, it is

natural—usually if you need to know something, you ask someone. In general, interviews

are conducted one-on-one (one interviewer and one interviewee), but sometimes, due to

time constraints, several people are interviewed at the same time. There are five basic steps

to the interview process: selecting interviewees, designing interview questions, preparing

for the interview, conducting the interview, and postinterview follow-up.5

Selecting Interviewees The first step to interviewing is to create an interview schedule that

lists all of the people who will be interviewed, when, and for what purpose (see Figure 5-5).

The schedule can be an informal list that is used to help set up meeting times, or a formal

list that is incorporated into the workplan. The people who appear on the interview sched-

ule are selected based on the analyst’s information needs. The project sponsor, key business

users, and other members of the project team can help the analyst determine who in the

organization can best provide important information about requirements. These people are

listed on the interview schedule in the order in which they should be interviewed.

Requirements-Gathering Techniques 137

4 Two good books that discuss the problems in finding the root causes to problems are: E.M. Goldratt, and J. Cox,
The Goal (Croton-on-Hudson, NY: North River Press, 1986), and E.M. Goldratt, The Haystack Syndrome (Cro-
ton-on-Hudson, NY: North River Press, 1990).
5 Two good books on interviewing are Brian James, The Systems Analysis Interview (Manchester: NCC Blackwell,
1989); and James P. Spradley, The Ethnographic Interview (New York, NY: Holt, Rinehart, and Winston, 1979).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

People at different levels of the organization will have different perspectives on the

system, so it is important to include both managers who manage the processes and staff

who actually perform the processes to gain both high-level and low-level perspectives on

an issue. Also, the kinds of interview subjects that you need may change over time. For

example, at the start of the project, the analyst has a limited understanding of the as-is

business process. It is common to begin by interviewing one or two senior managers to

get a strategic view, and then move to mid-level managers who can provide broad, over-

arching information about the business process and the expected role of the system being

developed. Once the analyst has a good understanding of the “big picture,” lower-level

managers and staff members can fill in the exact details of how the process works. Like

most other things about systems analysis, this is an iterative process—starting with senior

managers, moving to mid-level managers, then staff members, back to mid-level man-

agers, and so on, depending upon what information is needed along the way.

It is quite common for the list of interviewees to grow, often by 50 percent to 75 per-

cent. As you interview people, you likely will identify more information that is needed and

additional people who can provide the information.

138 Chapter 5 Require-

ments Determination

Andria McClellan Director, Accounting Strategic vision for new Mon, March 1
accounting system 8:00–10:00 AM

Jennifer Draper Manager, Accounts Current problems with Mon, March 1
Receivable accounts receivable 2:00–3:15 PM

process; future goals

Mark Goodin Manager, Accounts Current problems with Mon, March 1
Payable accounts payable 4:00–5:15 PM

process; future goals

Anne Asher Supervisor, Data Entry Accounts receivable and Wed, March 3
payable processes 10:00–11:00 AM

Fernando Merce Data Entry Clerk Accounts receivable and Wed, March 3
payable processes 1:00–3:00 PM

Purpose of
Name Position Interview Meeting

FIGURE 5-5

Sample Interview

Schedule

In 1990, I led a consulting team for a major development
project for the U.S. Army. The goal was to replace eight
existing systems used on virtually every Army base across
the United States. The as-is analysis models for these sys-
tems had been built, and our job was to identify improve-
ment opportunities and develop to-be process models for
each of the eight systems.

For the first system, we selected a group of mid-level
managers (captains and majors) recommended by their
commanders as being the experts in the system under con-
struction. These individuals were the first and second line

managers of the business function. The individuals were
expert at managing the process, but did not know the exact
details of how the process worked. The resulting to-be
analysis models were very general and non-specific.

—Alan Dennis

Question

1. Suppose you were in charge of the project. Create
an interview schedule the remaining seven projects.

5-D Selecting the Wrong PeopleCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Designing Interview Questions There are three types of interview questions: closed-

ended questions, open-ended questions, and probing questions. Closed-ended questions are

those that require a specific answer. You can think of them as being similar to multiple

choice or arithmetic questions on an exam (see Figure 5-6). Closed-ended questions are

used when the analyst is looking for specific, precise information (e.g., how many credit

card requests are received per day). In general, precise questions are best. For example,

rather than asking “Do you handle a lot of requests?” it is better to ask “How many requests

do you process per day?”

Closed-ended questions enable analysts to control the interview and obtain the infor-

mation they need. However, these types of questions don’t uncover why the answer is the

way it is, nor do they uncover information that the interviewer does not think to ask ahead

of time.

Open-ended questions are those that leave room for elaboration on the part of the inter-

viewee. They are similar in many ways to essay questions that you might find on an exam (see

Figure 5-6 for examples). Open-ended questions are designed to gather rich information

and give the interviewee more control over the information that is revealed during the inter-

view. Sometimes the information that the interviewee chooses to discuss uncovers informa-

tion that is just as important as the answer (e.g., if the interviewee talks only about other

departments when asked for problems, it may suggest that he or she is reluctant to admit his

or her own problems).

The third type of question is the probing question. Probing questions follow-up on

what has just been discussed in order to learn more, and they often are used when the

interviewer is unclear about an interviewee’s answer. They encourage the interviewee to

expand on or to confirm information from a previous response, and they are a signal that

the interviewer is listening and interested in the topic under discussion. Many beginning

analysts are reluctant to use probing questions because they are afraid that the interviewee

might be offended at being challenged or because they believe it shows that they didn’t

understand what the interviewee said. When done politely, probing questions can be a

powerful tool in requirements gathering.

In general, you should not ask questions about information that is readily available

from other sources. For example, rather than asking what information is used to perform

a task, it is simpler to show the interviewee a form or report (see document analysis later)

and ask what information on it is used. This helps focus the interviewee on the task, and

saves time, because he or she does not need to describe the information detail—he or she

just needs to point it out on the form or report.

Requirements-Gathering Techniques 139

Closed-Ended Questions • How many telephone orders are received per day?

• How do customers place orders?

• What information is missing from the monthly sales report?

Open-Ended Questions • What do you think about the current system?

• What are some of the problems you face on a daily basis?

• What are some of the improvements you would like to see in a
new system?

Probing Questions • Why?

• Can you give me an example?

• Can you explain that in a bit more detail?

Types of Questions Examples

FIGURE 5-6

Three Types of

Questions

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

No question type is better than another, and usually a combination of questions is

used during an interview. At the initial stage of an IS development project, the as-is process

can be unclear, so the interview process begins with unstructured interviews, interviews that

seek a broad and roughly defined set of information. In this case, the interviewer has a gen-

eral sense of the information needed, but few close-ended questions to ask. These are the

most challenging interviews to conduct because they require the interviewer to ask open-

ended questions and probe for important information “on the fly.”

As the project progresses, the analyst comes to understand the business process much

better, and he or she needs very specific information about how business processes are per-

formed (e.g., exactly how a customer credit card is approved). At this time, the analyst con-

ducts structured interviews, in which specific sets of questions are developed prior to the

interviews. There usually are more close-ended questions in a structured interview than in

the unstructured approach.

No matter what kind of interview is being conducted, interview questions must be

organized into a logical sequence, so that the interview flows well. For example, when try-

ing to gather information about the current business process, it can be useful to move in

logical order through the process or from the most important issues to the least important.

There are two fundamental approaches to organizing the interview questions: top-

down or bottom-up; see Figure 5-7. With the top-down interview, the interviewer starts

with broad, general issues and gradually works towards more specific ones. With the

bottom-up interview, the interviewer starts with very specific questions and moves to

broad questions. In practice, analysts mix the two approaches, starting with broad gen-

eral issues, moving to specific questions, and then back to general issues.

The top-down approach is an appropriate strategy for most interviews (it is certainly

the most common approach). The top-down approach enables the interviewee to become

accustomed to the topic before he or she needs to provide specifics. It also enables the inter-

viewer to understand the issues before moving to the details because the interviewer may

not have sufficient information at the start of the interview to ask very specific questions.

Perhaps most importantly, the top-down approach enables the interviewee to raise a set of

“big picture” issues before becoming enmeshed in details, so the interviewer is less likely to

miss important issues.

One case in which the bottom-up strategy may be preferred is when the analyst already

has gathered a lot of information about issues and just needs to fill in some holes with

140 Chapter 5 Requirements Determination

High-level:

Very general

Top-Down

Bottom-Up

Medium-level:

Moderately specific

Low-level:

Very specific

How
can

order
processing be

improved?

How can we reduce the
number of times that

customers return items they’ve
ordered?

How can we reduce the number of
errors in order processing (e.g., shipping

the wrong products)?

FIGURE 5-7

Top-Down and

Bottom-Up Questioning

Strategies

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

details. Or, bottom-up may be appropriate if lower-level staff members are threatened or

unable to answer high-level questions. For example, “How can we improve customer ser-

vice?” may be too broad a question for a customer service clerk, whereas a specific question

is readily answerable (e.g., “How can we speed up customer returns?”). In any event, all

interviews should begin with noncontroversial questions first, and then gradually move

into more contentious issues after the interviewer has developed some rapport with the

interviewee.

Preparing for the Interview It is important to prepare for the interview in the same

way that you would prepare to give a presentation. You should have a general interview

plan that lists the questions that you will ask in the appropriate order; anticipates possi-

ble answers and provides how you will follow up with them; and identifies segues

between related topics. Confirm the areas in which the interviewee has knowledge so you

do not ask questions that he or she cannot answer. Review the topic areas, the questions,

and the interview plan, and clearly decide which have the greatest priority in case you

run out of time.

In general, structured interviews with closed-ended questions take more time to pre-

pare than unstructured interviews. So, some beginning analysts prefer unstructured inter-

views, thinking that they can “wing it.” This is very dangerous and often counterproductive,

because any information not gathered in the first interview would require follow-up

efforts, and most users do not like to be interviewed repeatedly about the same issues.

Requirements-Gathering Techniques 141

Interpersonal skills are those skills than enable you to
develop rapport with others, and they are very important
for interviewing. They help you to communicate with oth-
ers effectively. Some people develop good interpersonal
skills at an early age; they simply seem to know how to
communicate and interact with others. Other people are
less “lucky” and need to work hard to develop their skills.
Interpersonal skills, like most skills, can be learned. Here
are some tips:

• Don’t worry, be happy. Happy people radiate confi-
dence and project their feelings on others. Try inter-
viewing someone while smiling and then interviewing
someone else while frowning and see what happens!

• Pay attention. Pay attention to what the other per-
son is saying (which is harder than you might
think). See how many times you catch yourself with
your mind on something other than the conversa-
tion at hand.

• Summarize key points. At the end of each major
theme or idea that someone explains, you should

repeat the key points back to the speaker (e.g., “Let
me make sure I understand. The key issues are…”).
This demonstrates that you consider the information
important—and also forces you to pay attention
(you can’t repeat what you didn’t hear).

• Be succinct. When you speak, be succinct. The goal
in interviewing (and in much of life) is to learn, not
to impress. The more you speak, the less time you
give to others.

• Be honest. Answer all questions truthfully, and if
you don’t know the answer, say so.

• Watch body language (yours and theirs). The way a
person sits or stands conveys much information. In
general, a person who is interested in what you are
saying sits or leans forward, makes eye contact, and
often touches his or her face. A person leaning
away from you or with an arm over the back of a
chair is disinterested. Crossed arms indicate defen-
siveness or uncertainty, while “steepling” (sitting
with hands raised in front of the body with finger-
tips touching) indicates a feeling of superiority.

5-1 Developing Interpersonal SkillsPRACTICAL

TIP

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Be sure to prepare the interviewee as well. When you schedule the interview, inform

the interviewee of the reason for the interview and the areas you will be discussing far

enough in advance so that he or she has time to think about the issues and organize his or

her thoughts. This is particularly important when you are an outsider to the organization,

and for lower-level employees who often are not asked for their opinions and who may be

uncertain about why you are interviewing them.

Conducting the Interview When you start the interview, the first goal is to build rap-

port with the interviewee, so that he or she trusts you and is willing to tell you the whole

truth, not just give the answers that he or she thinks you want. You should appear to be pro-

fessional and an unbiased, independent seeker of information. The interview should start

with an explanation of why you are there and why you have chosen to interview the per-

son, and then move into your planned interview questions.

It is critical to carefully record all the information that the interviewee provides. In our

experience, the best approach is to take careful notes—write down everything the intervie-

wee says, even if it does not appear immediately relevant. Don’t be afraid to ask the person

to slow down or to pause while you write, because this is a clear indication that the inter-

viewee’s information is important to you. One potentially controversial issue is whether or

not to tape-record the interview. Recording ensures that you do not miss important points,

but it can be intimidating for the interviewee. Most organizations have policies or gener-

ally accepted practices about the recording of interviews, so find out what they are before

you start an interview. If you are worried about missing information and cannot tape the

interview, then bring along a second person to take detailed notes.
As the interview progresses, it is important that you understand the issues that are

discussed. If you do not understand something, be sure to ask. Don’t be afraid to ask
“dumb questions” because the only thing worse than appearing “dumb” is to be “dumb”
by not understanding something. If you don’t understand something during the inter-
view, you certainly won’t understand it afterward. Try to recognize and define jargon, and
be sure to clarify jargon you do not understand. One good strategy to increase your
understanding during an interview is to periodically summarize the key points that the
interviewee is communicating. This avoids misunderstandings and also demonstrates that
you are listening.

Finally, be sure to separate facts from opinion. The interviewee may say, for example,
“we process too many credit card requests.” This is an opinion, and it is useful to follow this
up with a probing question requesting support for the statement (e.g., “Oh, how many do
you process in a day?”). It is helpful to check the facts because any differences between the
facts and the interviewee’s opinions can point out key areas for improvement. Suppose the
interviewee complains about a high or increasing number of errors, but the logs show that
errors have been decreasing. This suggests that errors are viewed as a very important prob-
lem that should be addressed by the new system, even if they are declining.

As the interview draws to a close, be sure to give the interviewee time to ask questions
or provide information that he or she thinks is important but was not part of your inter-
view plan. In most cases, the interviewee will have no additional concerns or information,
but in some cases this will lead to unanticipated, but important information. Likewise, it
can be useful to ask the interviewee if there are other people who should be interviewed.
Make sure that the interview ends on time (if necessary, omit some topics or plan to sched-
ule another interview).

As a last step in the interview, briefly explain what will happen next (see the next sec-
tion). You don’t want to prematurely promise certain features in the new system or a spe-
cific delivery date, but you do want to reassure the interviewee that his or her time was well
spent and very helpful to the project.

142 Chapter 5 Requirements Determination

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Post-Interview Follow-up After the interview is over, the analyst needs to prepare an

interview report that describes the information from the interview (Figure 5-8). The report

contains interview notes, information that was collected over the course of the interview

and is summarized in a useful format. In general, the interview report should be written

within forty-eight hours of the interview, because the longer you wait, the more likely you

are to forget information.

Often, the interview report is sent to the interviewee with a request to read it and

inform the analyst of clarifications or updates. Make sure the interviewee is convinced that

you genuinely want his or her corrections to the report. Usually there are few changes, but

the need for any significant changes suggests that a second interview will be required. Never

distribute someone’s information without prior approval.

Requirements-Gathering Techniques 143

Interview Notes Approved By: Linda Estey

Person Interviewed: Linda Estey,

Director, Human Resources

Interviewer: Barbara Wixom

Purpose of Interview:
• Understand reports produced for Human Resources by the current system
• Determine information requirements for future system

Summary of Interview:
• Sample reports of all current HR reports are attached to this report. The information that is not used

and missing information are noted on the reports.
• Two biggest problems with the current system are:

1. The data is too old (the HR Department needs information within two days of month end;
currently information is provided to them after a three-week delay)

2. The data is of poor quality (often reports must be reconciled with departmental HR database)

• The most common data errors found in the current system include incorrect job level information
and missing salary information.

Open Items:
• Get current employee roster report from Mary Skudrna (extension 4355).
• Verify calculations used to determine vacation time with Mary Skudrna.
• Schedule interview with Jim Wack (extension 2337) regarding the reasons for data quality problems.

Detailed Notes: See attached transcript.
FIGURE 5-8

Interview Report

Interviewing is not as simple as it first appears. Select two
people from class to go to the front of the room to demon-
strate an interview. (This also can be done in groups.) Have
one person be the interviewer, and the other the intervie-
wee. The interviewer should conduct a 5-minute interview
regarding the school course registration system. Gather
information about the existing system and how the system
can be improved. If there is time, repeat with another pair.

Questions:

1. Describe the body language of the interview pair.

2. What kind of interview was conducted?

3. What kinds of questions were asked?

4. What was done well? How could the interview be
improved?

5-4 Interview PracticeYOUR

TURN

TEMPLATE

can be found at
www.wiley.com
/college/dennis

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Joint Application Development(JAD)

Joint application development (or JAD as it is more commonly known) is an information

gathering technique that allows the project team, users, and management to work

together to identify requirements for the system. IBM developed the JAD technique in

the late 1970s, and it is often the most useful method for collecting information from

users.6 Capers Jones claims that JAD can reduce scope creep by 50 percent, and it avoids

the requirements for a system from being too specific or too vague, both of which cause

trouble during later stages of the SDLC.7 JAD is a structured process in which ten to

twenty users meet together under the direction of facilitator skilled in JAD techniques.

The facilitator is a person who sets the meeting agenda and guides the discussion, but

does not join in the discussion as a participant. He or she does not provide ideas or opin-

ions on the topics under discussion to remain neutral during the session. The facilitator

must be an expert in both group process techniques and systems analysis and design

techniques. One or two scribes assist the facilitator by recording notes, making copies,

and so on. Often the scribes will use computers and CASE tools to record information as

the JAD session proceeds.

The JAD group meets for several hours, several days, or several weeks until all of the

issues have been discussed and the needed information is collected. Most JAD sessions take

place in a specially prepared meeting room, away from the participants’ offices so that they

are not interrupted. The meeting room is usually arranged in a U shape so that all partici-

pants can easily see each other (see Figure 5-9). At the front of the room (the open part of

the “U”), there is a whiteboard, flip chart and/or overhead projector for use by the facilita-

tor who leads the discussion.

One problem with JAD is that it suffers from the traditional problems associated with

groups; sometimes people are reluctant to challenge the opinions of others (particularly

their boss), a few people often dominate the discussion, and not everyone participates. In

a fifteen-member group, for example, if everyone participates equally, then each person can

talk for only four minutes each hour and must listen for the remaining fifty-six minutes—

not a very efficient way to collect information.

A new form of JAD called electronic JAD or e-JAD attempts to overcome these prob-

lems by using groupware. In an e-JAD meeting room, each participant uses special software

on a networked computer to send anonymous ideas and opinions to everyone else. In this

way, all participants can contribute at the same time, without fear of reprisal from people

with differing opinions. Initial research suggests that e-JAD can reduce the time required

to run JAD sessions by 50 percent to 80 percent.8

Selecting Participants Selecting JAD participants is done in the same basic way as select-

ing interview participants. Participants are selected based on the information they can con-

tribute, to provide a broad mix of organizational levels, and to build political support for

the new system. The need for all JAD participants to be away from their office at the same

time can be a major problem. The office may need to be closed or run with a “skeleton”

staff until the JAD sessions are complete.

144 Chapter 5 Requirements Determination

6 More information on JAD can be found in J.Wood and D. Silver, Joint Application Development (New York: John
Wiley & Sons, 1989); and Alan Cline, “Joint Application Development for Requirements Collection and Man-
agement,” http://www.carolla.com/wp-jad.htm.
7 See Kevin Strehlo, “Catching up with the Jones and ‘Requirement’ Creep,” InfoWorld, July 29, 1996, and Kevin
Strehlo, “The Makings of a Happy Customer: Specifying Project X” Infoworld. Nov 11, 1996.
8 For more information on e-JAD, see A. R. Dennis, G. S. Hayes, and R. M. Daniels, “Business Process Modeling
with Groupware,” Journal of MIS 15(4), 1999, 115–142.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Ideally, the participants who are released from regular duties to attend the JAD sessions

should be the very best people in that business unit. However, without strong management

support, JAD sessions can fail because those selected to attend the JAD session are people

who are less likely to be missed (i.e., the least competent people).

The facilitator should be someone who is an expert in JAD or e-JAD techniques and

ideally someone who has experience with the business under discussion. In many cases, the

JAD facilitator is a consultant external to the organization because the organization may

not have a regular day-to-day need for JAD or e-JAD expertise. Developing and maintain-

ing this expertise in-house can be expensive.

Requirements-Gathering Techniques 145

Flip chart sheets

White board Screen

Computers

Projectors Printer

Name cards

Name cards

FIGURE 5-9 Joint Application Design Meeting Room

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Designing the JAD Session JAD sessions can run from as little as a half day to several

weeks, depending upon the size and scope of the project. In our experience, most JAD ses-

sions tend to last five to ten days spread over a three-week period. Most e-JAD sessions tend

to last one to four days in a one-week period. For example, the users and the analysts col-

lectively can create analysis deliverables, such as the functional models, structural models,

or the requirements definition.

As with interviewing, success depends upon a careful plan. JAD sessions usually are

designed and structured using the same principles as interviews. Most JAD sessions are

designed to collect specific information from users, and this requires the development of a

set of questions prior to the meeting. A difference between JAD and interviewing is that all

JAD sessions are structured—they must be carefully planned. In general, closed-ended

questions are seldom used because they do not spark the open and frank discussion that is

typical of JAD. In our experience, it is better to proceed top-down in JAD sessions when

gathering information. Typically thirty minutes is allocated to each separate agenda item,

and frequent breaks are scheduled throughout the day because participants tire easily.

Preparing for the JAD Session As with interviewing, it is important to prepare the ana-

lysts and participants for the JAD session. Because the sessions can go beyond the depth of

a typical interview and are usually conducted off-site, participants can be more concerned

about how to prepare. It is important that the participants understand what is expected of

them. If the goal of the JAD session, for example, is to develop an understanding of the cur-

rent system, then participants can bring procedure manuals and documents with them. If

the goal is to identify improvements for a system, then they can think about how they

would improve the system prior to the JAD Session.

Conducting the JAD Session Most JAD sessions try to follow a formal agenda, and most

have formal ground rules that define appropriate behavior. Common ground rules include

following the schedule, respecting others, opinions, accepting disagreement, and ensuring

that only one person talks a time.

The role of the JAD facilitator can be challenging. Many participants come to the JAD

session with strong feelings about the system to be discussed. Channeling these feelings so

that the session moves forward in a positive direction and getting participants to recognize

and accept—but not necessarily agree on—opinions and situations different from their

own requires significant expertise in systems analysis and design, JAD, and interpersonal

skills. Few systems analysts attempt to facilitate JAD sessions without being trained in JAD

techniques, and most apprentice with a skilled JAD facilitator before they attempt to lead

their first session.

The JAD facilitator performs three key functions. First, he or she ensures that the

group sticks to the agenda. The only reason to digress from the agenda is when it becomes

clear to the facilitator, project leader, and project sponsor that the JAD session has pro-

duced some new information that is unexpected and requires the JAD session (and perhaps

the project) to move in a new direction. When participants attempt to divert the discussion

away from the agenda, the facilitator must be firm but polite in leading discussion back to

the agenda and getting the group back on track.

Second, the facilitator must help the group understand the technical terms and jar-

gon that surround the system development process, and help the participants under-

stand the specific analysis techniques used. Participants are experts in their area, their

part of the business, but they are not experts in systems analysis. The facilitator must

therefore minimize the learning required and teach participants how to effectively pro-

vide the right information.

146 Chapter 5 Requirements Determination

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Third, the facilitator records the group’s input on a public display area, which can be a

whiteboard, flip chart, or computer display. He or she structures the information that the

group provides and helps the group recognize key issues and important solutions. Under no

circumstance should the facilitator insert his or her opinions into the discussion. The facil-

itator must remain neutral at all times and simply help the group through the process. The

moment the facilitator offers an opinion on an issue, the group will no longer see him or her

as a neutral party, but rather as someone who could be attempting to sway the group into

some predetermined solution.

However, this does not mean that the facilitator should not try to help the group resolve

issues. For example, if two items appear to be the same to the facilitator, the facilitator should

not say, “I think these may be similar.” Instead, the facilitator should ask, “Are these similar?” If

the group decides they are, the facilitator can combine them and move on. However, if the

group decides they are not similar (despite what the facilitator believes), the facilitator should

accept the decision and move on. The group is always right, and the facilitator has no opinion.

Post JAD Follow-up As with interviews, a JAD postsession report is prepared and circu-

lated among session attendees. The postsession report is essentially the same as the interview

report in Figure 5-8. Since the JAD sessions are longer and provide more information, it

usually takes a week or two after the JAD session before the report is complete.

Questionnaires

A questionnaire is a set of written questions for obtaining information from individuals.

Questionnaires often are used when there is a large number of people from whom informa-

tion and opinions are needed. In our experience, questionnaires are commonly used for sys-

tems intended for use outside of the organization (e.g., by customers or vendors) or for

systems with business users spread across many geographic locations. Most people automat-

ically think of paper when they think of questionnaires, but today more questionnaires are

being distributed in electronic form, either via e-mail or on the Web. Electronic distribution

can save a significant amount of money compared to distributing paper questionnaires.

Selecting Participants As with interviews and JAD sessions, the first step is to select the

individuals to whom the questionnaire will be sent. However, it is not usual to select every

person who could provide useful information. The standard approach is to select a sample,

or subset, of people who are representative of the entire group. Sampling guidelines are dis-

cussed in most statistics books, and most business schools include courses that cover the

topic, so we will not discuss it here. The important point in selecting a sample, however, is

to realize that not everyone who receives a questionnaire will actually complete it. On aver-

age, only 30 to 50 percent of paper and e-mail questionnaires are returned. Response rates

for Web-based questionnaires tend to be significantly lower (often only 5 to 30 percent).

Requirements-Gathering Techniques 147

Organize yourselves into groups of four to seven people,
and pick one person in each group to be the JAD facilita-
tor. Using a blackboard, whiteboard, or flip chart, gather
information about how the group performs some process

(e.g., working on a class assignment, making a sandwich,
paying bills, getting to class). How did the JAD session
go? Based on your experience, what are pros and cons of
using JAD in a real organization?

5-5 JAD PracticeYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Designing the Questionnaire Developing good questions is critical for questionnaires

because the information on a questionnaire cannot be immediately clarified for a confused

respondent. Questions on questionnaires must be very clearly written and leave little room

for misunderstanding, so closed-ended questions tend to be most commonly used. Ques-

tions must clearly enable the analyst to separate facts from opinions. Opinion questions

often ask the respondent the extent to which they agree or disagree (e.g., “Are network

problems common?”), while factual questions seek more precise values (e.g., “How often

148 Chapter 5 Requirements Determination

I have run more than a hundred JAD sessions and have
learned several standard “facilitator tricks.” Here are some
common problems and some ways to deal with them.

• Reducing domination. The facilitator should ensure
that no one person dominates the group discus-
sion. The only way to deal with someone who
dominates is head on. During a break, approach
the person, thank him or her for their insightful
comments, and ask them to help you make sure
that others also participate.

• Encouraging noncontributors. Drawing out people
who have participated very little is challenging
because you want to bring them into the conversa-
tion so that they will contribute again. The best
approach is to ask a direct factual question that you
are certain they can answer. And it helps to ask the
question using some repetition to give them time to
think. For example “Pat, I know you’ve worked
shipping orders a long time. You’ve probably been
in the Shipping Department longer than anyone
else. Could you help us understand exactly what
happens when an order is received in Shipping?”

• Side discussions. Sometimes participants engage in
side conversations and fail to pay attention to the
group. The easiest solution is simply to walk close
to the people and continue to facilitate right in front
of them. Few people will continue a side conver-
sion when you are two feet from them and the
entire group’s attention is on you and them.

• Agenda merry-go-round. The merry-go-round
occurs when a group member keeps returning to
the same issue every few minutes and won’t let go.
One solution is to let the person have five minutes
to ramble on about the issue while you carefully
write down every point on a flip chart or computer
file. This flip chart or file is then posted conspicu-
ously on the wall. When the person brings up the
issue again, you interrupt them, walk to the paper

and ask them what to add. If they mention some-
thing already on the list, you quickly interrupt,
point out that it is there, and ask what other infor-
mation to add. Don’t let them repeat the same
point, but write any new information.

• Violent agreement. Some of the worst disagree-
ments occur when participants really agree on the
issues but don’t realize that they agree because they
are using different terms. An example is arguing
whether a glass is half empty or half full; they agree
on the facts, but can’t agree on the words. In this
case, the facilitator has to translate the terms into
different words and find common ground so the
parties recognize that they really agree.

• Unresolved conflict. In some cases, participants
don’t agree and can’t understand how to determine
what alternatives are better. You can help by struc-
turing the issue. Ask for criteria by which the group
will identify a good alternative (e.g., “Suppose this
idea really did improve customer service. How
would I recognize the improved customer ser-
vice?”). Then once you have a list of criteria, ask the
group to assess the alternatives using them.

• True conflict. Sometimes, despite every attempt,
participants just can’t agree on an issue. The solu-
tion is to postpone the discussion and move on.
Document the issue as an “open issue” and list it
prominently on a flip chart. Have the group return
to the issue hours later. Often the issue will resolve
itself by then and you haven’t wasted time on it. If
the issue cannot be resolved later, move it to the list
of issues to be decided by the project sponsor or
some other more senior member of management.

• Use humor. Humor is one of the most power tools a
facilitator has and thus must be used judiciously. The
best JAD humor is always in context; never tell jokes but
take the opportunity to find the humor in the situation.

—Alan Dennis

5-2 Managing Problems in JAD SessionsPRACTICAL

TIP

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

does a network problem occur: once an hour, once a day, once a week?”). See Figure 5-10

for guidelines on questionnaire design.
Perhaps the most obvious issue—but one that is sometimes overlooked—is to have a

clear understanding of how the information collected from the questionnaire will be ana-
lyzed and used. You must address this issue before you distribute the questionnaire, because
it is too late afterward.

Questions should be relatively consistent in style, so that the respondent does not have
to read instructions for each question before answering it. It is generally good practice to
group related questions together to make them simpler to answer. Some experts suggest
that questionnaires should start with questions important to respondents, so that the ques-
tionnaire immediately grabs their interest and induces them to answer it. Perhaps the most
important step is to have several colleagues review the questionnaire and then pretest it
with a few people drawn from the groups to whom it will be sent. It is surprising how often
seemingly simple questions can be misunderstood.

Administering the questionnaire The key issue in administering the questionnaire is get-

ting participants to complete the questionnaire and send it back. Dozens of marketing research

books have been written about ways to improve response rates. Commonly used techniques

include: clearly explaining why the questionnaire is being conducted and why the respondent

has been selected; stating a date by which the questionnaire is to be returned; offering an

inducement to complete the questionnaire (e.g., a free pen); and offering to supply a summary

Requirements-Gathering Techniques 149

• Begin with nonthreatening and interesting questions.
• Group items into logically coherent sections.
• Do not put important items at the very end of the questionnaire.
• Do not crowd a page with too many items.
• Avoid abbreviations.
• Avoid biased or suggestive items or terms.
• Number questions to avoid confusion.
• Pretest the questionnaire to identify confusing questions.
• Provide anonymity to respondents.

FIGURE 5-10

Good Questionnaire

Design

Organize yourselves into small groups. Have each person
develop a short questionnaire to collect information
about the frequency in which group members perform
some process (e.g., working on a class assignment, mak-
ing a sandwich, paying bills, getting to class), how long it
takes them, how they feel about the process, and oppor-
tunities for improving the process.

Once everyone has completed his or her question-
naire, ask each member to pass it to the right, and then
complete his or her neighbor’s questionnaire. Pass the
questionnaire back to the creator when it is completed.

Questions:

1. How did the questionnaire you completed differ
from the one you created?

2. What are the strengths of each questionnaire?

3. How would you analyze the survey results if you
had received fifty responses?

4. What would you change about the questionnaire
that you developed?

5-6 Questionnaire PracticeYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

of the questionnaire responses. Systems analysts have additional techniques to improve

response rates inside the organization, such as personally handing out the questionnaire and

personally contacting those who have not returned them after a week or two, as well as request-

ing the respondents’ supervisors to administer the questionnaires in a group meeting.

Questionnaire Follow-up It is helpful to process the returned questionnaires and

develop a questionnaire report soon after the questionnaire deadline. This ensures that the

analysis process proceeds in a timely fashion and that respondents who requested copies of

the results receive them promptly.

Document Analysis

Project teams often use document analysis to understand the as-is system. Under ideal cir-

cumstances, the project team that developed the existing system will have produced docu-

mentation, which was then updated by all subsequent projects. In this case, the project

team can start by reviewing the documentation and examining the system itself.

Unfortunately, most systems are not well documented because project teams fail to docu-

ment their projects along the way, and when the projects are over—there is no time to go back

and document. Therefore, there may not be much technical documentation about the current

systems available, or it may not contain updated information about recent system changes.

However, there are many helpful documents that do exist in the organization: paper reports,

memorandums, policy manuals, user training manuals, organization charts, and forms.

But these documents (forms, reports, policy manuals, organization charts) only tell

part of the story. They represent the formal system that the organization uses. Quite often,

the “real” or informal system differs from the formal one, and these differences, particularly

large ones, give strong indications of what needs to be changed. For example, forms or

reports that are never used likely should be eliminated. Likewise, boxes or questions on

forms that are never filled in (or are used for other purposes) should be rethought. See Fig-

ure 5-11 for an example of how a document can be interpreted.

The most powerful indication that the system needs to be changed is when users cre-

ate their own forms or add additional information to existing ones. Such changes clearly

demonstrate the need for improvements to existing systems. Thus, it is useful to review

both blank and completed forms to identify these deviations. Likewise, when users access

multiple reports to satisfy their information needs, it is a clear sign that new information

or new information formats are needed.

Observation

Observation, the act of watching processes being performed, is a powerful tool for gather-

ing information about the as-is system because it enables the analyst to see the reality of a

situation, rather than listening to others describe it in interviews or JAD sessions. Several

research studies have shown that many managers really do not remember how they work

and how they allocate their time. (Quick, how many hours did you spend last week on each

of your courses?) Observation is a good way to check the validity of information gathered

from indirect sources such as interviews and questionnaires.9

In many ways, the analyst becomes an anthropologist as he or she walks through the

organization and observes the business system as it functions. The goal is to keep a low pro-

file, to not interrupt those working, and to not influence those being observed. Nonethe-

less, it is important to understand that what analysts observe may not be the normal

150 Chapter 5 Requirements Determination

9 A good book on observation is James P. Spradley, Participant Observation (New York, NY: Holt, Rinehart, and
Winston, 1980).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

day-to-day routine because people tend to be extremely careful in their behavior when they

are being watched. Even though normal practice may be to break formal organizational

rules, the observer is unlikely to see this. (Remember how you drove the last time a police

car followed you?) Thus, what you see may not be what you get.

Observation is often used to supplement interview information. The location of a

person’s office and its furnishings gives clues as to their power and influence in the orga-

nization, and can be used to support or refute information given in an interview. For

example, an analyst might become skeptical of someone who claims to use the existing

computer system extensively if the computer is never turned on while the analyst visits.

In most cases, observation will support the information that users provide in interviews.

When it does not, it is an important signal that extra care must be taken in analyzing the

business system.

Requirements-Gathering Techniques 151

Name: Buffy Pat Smith

Pet’s Name: Buffy Collie 7/6/99

Address: 100 Central Court. Apartment 10

Toronto, Ontario K7L 3N6

Phone Number: 555-3400

416-

Do you have insurance: yes

Insurance Company: Pet’s Mutual

Policy Number: KA-5493243

CENTRAL VETERINARY CLINIC
Patient Information Card

The staff had to add additional
information about the type of animal
and the animal’s date of birth. This
information should be added to the
new form in the to-be system.

The customer made a mistake.
This should be labeled
Owner’s Name to prevent
confusion.

The customer did not include
area code in the phone
number. This should be made
more clear.

FIGURE 5-11

Performing a

Document Analysis

TEMPLATE

can be found at
www.wiley.com
/college/dennis

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Selecting the Appropriate Techniques

Each of the requirements-gathering techniques just discussed has strengths and weak-

nesses. No one technique is always better than the others, and in practice most pro-

jects use a combination of techniques. Thus, it is important to understand the

strengths and weaknesses of each technique and when to use each (see Figure 5-12).

One issue not discussed is that of the analysts’ experience. In general, document

analysis and observation require the least amount of training, while JAD sessions are

the most challenging.

152 Chapter 5 Requirements Determination

At my neighborhood Publix grocery store, the cashiers
always hand write the total amount of the charge on
every credit card charge form, even though it is
printed on the form. Why? Because the “back office”
staff people who reconcile the cash in the cash draw-
ers with the amount sold at the end of each shift find
it hard to read the small print on the credit card forms.
Writing in large print makes it easier for them to add
the values up. However, cashiers sometimes make

mistakes and write the wrong amount on the forms,
which causes problems.

—Barbara Wixom

Questions:

1. What does the credit card charge form indicate
about the existing system?

2. How can you make improvements with a new system?

5-E Publix Credit Card FormsCONCEPTS

IN ACTION

Visit the library at your college or university and observe
how the book check-out process occurs. First watch several
students checking books out, and then check one out your-
self. Prepares a brief summary report of your observations.

When you return to class, share your observations
with others. You may notice that not all the reports present
the same information. Why? How would the information
be different had you used the interview or JAD technique?

5-7 Observation PracticeYOUR

TURN

Type of information As-is, improvements, As-is, improvements, As-is, improvements As-is As-is
to-be to-be

Depth of information High High Medium Low Low

Breadth of information Low Medium High High Low

Integration of information Low High Low Low Low

User involvement Medium High Low Low Low

Cost Medium Low–Medium Low Low Low–Medium

Joint Application Document
Interviews Design Questionnaires Analysis Observation

FIGURE 5-12 Table of Requirements-Gathering Techniques

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Type of Information The first characteristic is type of information. Some techniques are

more suited for use at different stages of the analysis process, whether understanding the as-

is system, identifying improvements, or developing the to-be system. Interviews and JAD are

commonly used in all three stages. In contrast, document analysis and observation usually are

most helpful for understanding the as-is, although occasionally they provide information

about current problems that need to be improved. Questionnaires are often used to gather

information about the as-is system, as well as general information about improvements.

Depth of information The depth of information refers to how rich and detailed the

information is that the technique usually produces, and the extent to which the technique

is useful at obtaining not only facts and opinions, but also an understanding of why those

facts and opinions exist. Interviews and JAD sessions are very useful at providing a good

depth of rich and detailed information and helping the analyst to understand the reasons

behind them. At the other extreme, document analysis and observation are useful for

obtaining facts, but little beyond that. Questionnaires can provide a medium depth of

information, soliciting both facts and opinions with little understanding of why.

Breadth of Information Breadth of information refers to the range of information and

information sources that can be easily collected using that technique. Questionnaires and doc-

ument analysis both are easily capable of soliciting a wide range of information from a large

number of information sources. In contrast, interviews and observation require the analyst to

visit each information source individually and, therefore, take more time. JAD sessions are in

the middle because many information sources are brought together at the same time.

Integration of Information One of the most challenging aspects of requirements gath-

ering is the integration of information from different sources. Simply put, different people

can provide conflicting information. Combining this information and attempting to

resolve differences in opinions or facts is usually very time consuming because it means

contacting each information source in turn, explaining the discrepancy, and attempting to

refine the information. In many cases, the individual wrongly perceives that the analyst is

challenging his or her information, when in fact it is another user in the organization. This

can make the user defensive and make it hard to resolve the differences.

All techniques suffer integration problems to some degree, but JAD sessions are

designed to improve integration because all information is integrated when it is collected,

not afterward. If two users provide conflicting information, the conflict becomes immedi-

ately obvious, as does the source of the conflict. The immediate integration of information

is the single most important benefit of JAD that distinguishes it from other techniques, and

this is why most organizations use JAD for important projects.

User Involvement User involvement refers to the amount of time and energy the

intended users of the new system must devote to the analysis process. It is generally agreed

that as users become more involved in the analysis process, the greater the chance of suc-

cess. However, user involvement can have a significant cost, and not all users are willing to

contribute valuable time and energy. Questionnaires, document analysis, and observation

place the least burden on users, while JAD sessions require the greatest effort.

Cost Cost is always an important consideration. In general, questionnaires, document

analysis, and observation are low cost techniques (although observation can be quite time

consuming). The low cost does not imply that they are more or less effective than the other

Requirements-Gathering Techniques 153

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

techniques. We regard interviews and JAD sessions as having moderate costs. In general,

JAD sessions are much more expensive initially, because they require many users to be

absent from their offices for significant periods of time, and they often involve highly paid

consultants. However, JAD sessions significantly reduce the time spent in information inte-

gration and thus cost less in the long term.

Combining Techniques In practice, requirements gathering combines a series of differ-

ent techniques. Most analysts start by using interviews with senior manager(s) to gain an

understanding of the project and the “big picture” issues. From this, the scope becomes

clear as to whether large or small changes are anticipated. These are often followed with

analysis of documents and policies to gain some understanding of the as-is system. Usually

interviews come next to gather the rest of the information needed for the as-is system.

In our experience, identifying improvements is most commonly done using JAD ses-

sions because the JAD session enables the users and key stakeholders to work together

through an analysis technique and come to a shared understanding of the possibilities

for the to-be system. Occasionally, these JAD sessions are followed by questionnaires sent

to a much wider set of users or potential users to see whether the opinions of those who

participated in the JAD sessions are widely shared.

Developing the concept for the to-be system is often done through interviews with

senior managers, followed by JAD sessions with users of all levels to make sure the key

needs of the new system are well understood.

APPLYING THE CONCEPTS AT CD SELECTIONS

Once the CD Selections approval committee approved the system proposal and feasibil-

ity analysis, the project team began performing analysis activities. These included gath-

ering requirements using a variety of techniques, and analyzing the requirements that

were gathered. An Internet marketing and sales consultant, Chris Campbell, was hired to

advise Alec, Margaret, and the project team during the analysis phase. Some highlights of

the project team’s activities are presented next.

Requirements Analysis Techniques

Margaret suggested that the project team conduct several JAD sessions with store man-

agers, marketing analysts, and Web-savvy members of the IT staff. Together, the groups

could work through some BPI techniques and brainstorm how improvements could be

made to the current order process using a new Web-based system.

Alec facilitated three JAD sessions that were conducted over the course of a week. Alec’s

past facilitation experience helped the eight-person meetings run smoothly and stay on track.

First, Alec used technology analysis and suggested several important Web technologies that

could be used for the system. The JAD session generated ideas about how CD Selections could

apply each of the technologies to the Internet sales system project. Alec had the group cate-

gorize the ideas into three sets: “definite” ideas that would have a good probability of provid-

ing business value; “possible” ideas that might add business value; and “unlikely” ideas.

Next, Alec applied informal benchmarking by introducing the Web sites of several

leading retailers and pointing out the features that they offered online. He selected some

sites based on their success with Internet sales, and others based on their similarity to the

vision for CD Selections’ new system. The group discussed the features that were common

across most retailers versus unique functionality, and they created a list of suggested busi-

ness requirements for the project team.

154 Chapter 5 Requirements Determination

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Requirements-Gathering Techniques

Alec believed that it would be important to understand the order processes and systems

that already existed in the organization because they would have to be closely integrated

with the Internet sales system. Three requirements-gathering techniques proved to be

helpful in understanding the current systems and processes—document analysis, inter-

views, and observation.

First, the project team collected existing reports (e.g., order forms, screenshots of the

online order screens) and system documentation that shed light on the as-is system. They

were able to gather a good amount of information about the brick-and-mortar order

processes and systems in this way. When questions arose, they conducted short interviews

with the person who provided the documentation for clarification.

Next, Alec interviewed the senior analysts for the order and inventory systems to get a bet-

ter understanding of how those systems worked. He asked if they had any ideas for the new

system, as well as any integration issues that would need to be addressed. Alex also interviewed

a contact from the ISP and the IT person who supported CD Selections’ current Web site—

both provided information about the existing communications infrastructure at CD Selec-

tions and its Web capabilities. Finally, Alex spent a half day visiting two of the retail stores and

observing exactly how the order and hold processes worked in the brick-and-mortar facilities.

Requirements Definition

Throughout all of these activities, the project team collected information and tried to iden-

tify the business requirements for the system from the information. As the project pro-

gressed, requirements were added to the requirements definition and grouped by

requirement type. When questions arose, they worked with Margaret, Chris, and Alec to

confirm that requirements were in scope. The requirements that fell outside of the scope of

the current system were typed into a separate document that would be saved for future use.

At the end of analysis, the requirements definition was distributed to Margaret, two mar-

keting employees who would work with the system on the business side, and several retail store

managers. This group then met for a two-day JAD session to clarify, finalize, and prioritize busi-

ness requirements and to create use cases (Chapter 6) to show how the system would be used.

The project team also spent time creating structural and behavioral models (Chapters

7 and 8) that depicted the objects in the future system. Members of marketing and IT

departments reviewed the documents during interviews with the project team. Figure 5-13

shows a portion of the final requirements definition.

System Proposal

Alec reviewed the requirements definition and the other deliverables that the project team

created during the analysis phase. Given Margaret’s desire to have the system operating

before next year’s Christmas season, Alec decided to timebox the project, and he deter-

mined what functionality could be included in the system by that schedule deadline (see

Chapter 3). He suggested that the project team develop the system in three versions rather

than attempting to develop a complete system that provided all the features initially

(Phased Development, see Chapter 2). The first version, to be operational well before the

holidays, would implement a “basic” system that would have the “standard” order features

of other Internet retailers. The second version, planned for late spring or early summer,

would have several features unique to CD Selections. The third version would add more

“advanced” features, such as the ability to listen to a sample of music over the Internet, to

find similar CDs, and to write reviews.

Applying the Concepts at CD Selections 155

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

156 Chapter 5 Requirements Determination

Nonfunctional Requirements

1. Operational Requirements

1.1 The Internet sales system will draw information from the main CD information database, which contains basic information
about CDs (e.g., title, artist, ID number, price, quantity in inventory). The Internet sales system will not write information to the
main CD information database.

1.2 The Internet sales system will store orders for new CDs in the special order system and will rely on the special order system to
complete the special orders generated.

1.3 A new module for the in-store system will be written to manage the “holds” generated by the Internet sales system. The
requirements for this new module will be documented as part of the Internet sales system because they are necessary for the
Internet sales system to function.

2. Performance Requirements

No special requirements performance requirements are anticipated

3. Security Requirements

No special security requirements are anticipated

4. Cultural and Political Requirements

No special cultural and political requirements are anticipated

Functional Requirements

1. Maintain CD Information

1.1 The Internet sales system will need a database of basic information about the CDs that it can sell over the Internet, similar to the
CD database at each of the retail stores (e.g., title, artist, id number, price, quantity in inventory).

1.2 Every day, the Internet sales system will receive an update from the distribution system that that will be used to update this CD
database. Some new CDs will be added, some will be deleted, and others will be revised (e.g., a new price).

1.3 The electronic marketing (EM) manager (a position that will need to be created) will also have the ability to update information
(e.g., prices for sales).

FIGURE 5-13 CD Selections Requirements Definition (Continues)

Alec revised the workplan accordingly, and he worked with Margaret and the folks in Mar-

keting to review the feasibility analysis and update it where appropriate. All of the deliverables

from the project were then combined into a system proposal and submitted to the approval

committee. Figure 5-14 shows the outline of the CD Selections system proposal. Margaret and

Alec met with the committee and presented the highlights of what was learned during the

analysis phase and the final concept of the new system. Based on the proposal and presentation,

the approval committee decided that they would continue to fund the Internet sales system.

SUMMARY

Analysis

Analysis focuses on capturing the business requirements for the system. It identifies the

“what” of the system and leads directly into design, during which the “how” of the system

is determined. Many deliverables are created during analysis, including the requirements

definition, functional models, structural models, and behavioral models. At the end of

analysis, all of these deliverables, along with revised planning and project management

deliverables, are combined into a system proposal and submitted to the approval commit-

tee for a decision regarding whether to move ahead with the project.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Requirements Determination

Requirements determination is the part of analysis whereby the project team turns the very

high-level explanation of the business requirements stated in the system request into a

more precise list of requirements. A requirement is simply a statement of what the system

must do or what characteristic it needs to have. Business requirements describe the “what”

of the systems, and system requirements describe “how” the system will be implemented.

A functional requirement relates directly to a process the system has to perform or infor-

mation it needs to contain. Nonfunctional requirements refer to behavioral properties that

the system must have, such as performance and usability. All of the functional and non-

functional business requirements that fit within the scope of the system are written in the

requirements definition, which is used to create other analysis deliverables and leads to the

initial design for the new system.

Summary 157

2. Maintain CD Marketing Information

2.1 The Internet sales system provides an additional opportunity to market CDs to current and new customers. The system will pro-
vide a database of marketing materials about selected CDs that will help Web users learn more about them (e.g., music reviews,
links to Web sites, artist information, and sample sound clips). When information about a CD that has additional marketing infor-
mation is displayed, a link will be provided to the additional information.

2.2 Marketing materials will be supplied primarily by vendors and record labels so that we can better promote their CDs. The EM
manager of the marketing department will determine what marketing materials will be placed in the system and will be responsi-
ble for adding, changing, and deleting the materials.

3. Place CD Orders

3.1 Customers will access the Internet sales system to look for CDs of interest. Some customers will search for specific CDs or CDs
by specific artists, while other customers will want to browse for interesting CDs in certain categories (e.g., rock, jazz, classical).

3.2 When the customer has found all the CDs he or she wants, the customer will "check out" by providing personal information (e.g.,
name, e-mail, address, credit card), and information regarding the order (e.g., the CDs to purchase, and the quantity for each
item).

3.3 The system will verify the customer's credit card information with an online credit card clearance center and either accept the
order or reject it.

3.4 Customers will also be able check to see if their preferred stores have the CDs in stock. They will use zip code to find stores close
to their location. If the CD is available at a preferred store, a customer can immediately place a hold on the CD in stock and then
come into the store and pick it up.

3.5 If the CD is not available in the customer’s preferred store, the customer can request that the CD be special ordered to that store
for later pickup. The customer will be notified by e-mail when the requested CD arrives at the requested store; the CD will be
placed on hold (which will again expire after 7 days). This process will work similarly to the current special order systems already
available in the regular stores.

3.6 Alternatively, the customer can mail order the CD (see requirement 4).

4. Fill Mail Orders

4.1 When a CD is mail ordered, the Internet sales system will send the mail order to the mail order distribution system.

4.2 The mail order distribution system will handle the actual sending of CDs to customers; it will notify the Internet sales system and
e-mail the customer.

4.3 Weekly reports can be run by the EM manager to check the order status.

FIGURE 5-13 CD Selections Requirements Definition (Continued)

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Requirements Analysis Techniques

The basic process of analysis is divided into three steps: understanding the as-is system, iden-

tifying improvements, and developing requirements for the to-be system. Three requirements

analysis techniques—business process automation, business process improvement, or business

process reengineering—help the analyst lead users through the three (or two) analysis steps so

that the vision of the system can be developed. Business process automation (BPA) means leav-

ing the basic way in which the organization operates unchanged, and using computer tech-

nology to do some of the work. Problem analysis and root cause analysis are two popular BPA

techniques. Business process improvement (BPI) means making moderate changes to the way

in which the organization operates to take advantage of new opportunities offered by tech-

nology or to copy what competitors are doing. Duration analysis, activity-based costing, and

information benchmarking are three popular BPI activities. Business process reengineering

(BPR) means changing the fundamental way in which the organization operates. Outcome

analysis, technology analysis, and activity elimination are three popular BPR activities.

Requirements-Gathering Techniques

Five techniques can be used to gather the business requirements for the proposed system:

interviews, joint application development, questionnaires, document analysis, and obser-

vation. Interviews involve meeting one or more people and asking them questions. There

are five basic steps to the interview process: selecting interviewees, designing interview

158 Chapter 5 Requirements Determination

1. Table of Contents

2. Executive Summary

A summary of all the essential information in the proposal so a busy executive can read it quickly
and decide what parts of the plan to read in more depth.

3. System Request

The revised system request form (see Chapter 3).

4. Workplan

The original workplan, revised after having completed the analysis phase (see Chapter 4)

5. Requirements Definition

A list of the functional and nonfunctional business requirements for the system (this chapter).

6. Feasibility Analysis

A revised feasibility analysis, using the information from the analysis phase (see Chapter 3).

7. Functional Models

An activity diagram and a set of use cases that illustrate the basic processes that the system needs
to support (see Chapter 6).

8. Structural Models

A set of structural models for the to-be system (see Chapter 7). This may include structural mod-
els of the current as-is system that will be replaced.

9. Behavioral Models

A set of behavioral models for the to-be system (see Chapter 8). This may include behavioral
models of the as-is system that will be replaced.

Appendices

These contain additional material relevant to the proposal, often used to support the recom-
mended system. This might include results of a questionnaire survey or interviews, industry
reports and statistics, and so on.

FIGURE 5-14

Outline of the CD

Selections System

Proposal

TEMPLATE

can be found at
www.wiley.com
/college/dennis

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

questions, preparing for the interview, conducting the interview, and postinterview follow-

up. Joint application development (JAD) allows the project team, users, and management

to work together to identify requirements for the system. Electronic JAD attempts to over-

come common problems associated with groups by using groupware. A questionnaire is a

set of written questions for obtaining information from individuals. Questionnaires often

are used when there is a large number of people from whom information and opinions are

needed. Document analysis entails reviewing the documentation and examining the sys-

tem itself. It can provide insights into the formal and informal system. Observation, the act

of watching processes being performed, is a powerful tool for gathering information about

the as-is system because it enables the analyst to see the reality of a situation firsthand.

Questions 159

Activity elimination

Activity-based costing

Analysis

As-is system

Benchmarking

Bottom-up interview

Breadth of analysis

Business process automation (BPA)

Business process improvement (BPI)

Business process reengineering (BPR)

Business requirement

Closed-ended question

Critical thinking skills

Document analysis

Duration analysis

Electronic JAD (e-JAD)

Facilitator

Formal system

Functional requirement

Ground rule

Informal benchmarking

Informal system

Interpersonal skill

Interview

Interview notes

Interview report

Interview schedule

Joint application development (JAD)

Nonfunctional requirements

Observation

Open-ended question

Outcome analysis

Parallelization

Problem analysis

Process integration

Postsession report

Potential business value

Probing question

Problem analysis

Project cost

Questionnaire

Requirement

Requirements definition

Requirements determination

Risk

Root cause

Root cause analysis

Sample

Scribe

Stakeholders

Structured interview

Symptom

System proposal

System requirements

Technology analysis

To-be system

Top-down interview

Unstructured interview

Walkthrough

KEY TERMS

1. What are the key deliverables that are created during

the analysis phase? What is the final deliverable from

the analysis phase, and what does it contain?

2. Explain the difference between an as-is system and a

to-be system.

3. What is the purpose of the requirements definition?

4. What are the three basic steps of the analysis process?

Which step is sometimes skipped or done in a cursory

fashion? Why?

5. Compare and contrast the business goals of BPA, BPI,

and BPR.

6. Compare and contrast problem analysis and root

cause analysis. Under what conditions would you use

problem analysis? Under what conditions would you

use root cause analysis?

7. Compare and contrast duration analysis and activity-

based costing.

8. Assuming time and money were not important con-

cerns, would BPR projects benefit from additional time

spent understanding the as-is system? Why or why not?

9. What are the important factors in selecting an appro-

priate analysis strategy?

10. Describe the five major steps in conducting interviews.

11. Explain the difference between a closed-ended ques-

tion, an open-ended question, and a probing question.

When would you use each?

QUESTIONS

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

160 Chapter 5 Requirements Determination

12. Explain the differences between unstructured inter-

views and structured interviews. When would you use

each approach?

13. Explain the difference between a top-down and bot-

tom-up interview approach. When would you use

each approach?

14. How are participants selected for interviews and JAD

sessions?

15. How can you differentiate between facts and opin-

ions? Why can both be useful?

16. Describe the five major steps in conducting JAD ses-

sions.

17. How does a JAD facilitator differ from a scribe?

18. What are the three primary things that a facilitator

does in conducting the JAD session?

19. What is e-JAD, and why might a company be inter-

ested in using it?

20. How does designing questions for questionnaires dif-

fer from designing questions for interviews or JAD

sessions?

21. What are typical response rates for questionnaires

and how can you improve them?

22. Describe document analysis.

23. How does the formal system differ from the informal

system? How does document analysis help you under-

stand both?

24. What are the key aspects of using observation in the

information-gathering process?

25. Explain factors that can be used to select information-

gathering techniques

A. Review the Amazon.com Web site. Develop the

requirements definition for the site. Create a list of

functional business requirements that the system

meets. What different kinds of nonfunctional business

requirements does the system meet? Provide examples

for each kind.

B. Pretend that you are going to build a new system that

automates or improves the interview process for the

Career Services Department of your school. Develop a

requirements definition for the new system. Include

both functional and nonfunctional system require-

ments. Pretend you will release the system in three dif-

ferent versions. Prioritize the requirements accordingly.

C. Describe in very general terms the as-is business

process for registering for classes at your university.

What BPA technique would you use to identify

improvements? With whom would you use the BPA

technique? What requirements-gathering technique

would help you apply the BPA technique? List some

example improvements that would you expect to find.

D. Describe in very general terms the as-is business

process for registering for classes at your university.

What BPI technique would you use to identify

improvements? With whom would you use the BPI

technique? What requirements-gathering technique

would help you apply the BPI technique? List some

example improvements that you would expect to find.

E. Describe in very general terms the as-is business

process for registering for classes at your university.

What BPR technique would you use to identify

improvements? With whom would you use the BPR

technique? What requirements-gathering technique

would help you apply the BPR technique? List some

example improvements that would you expect to find.

F. Suppose your university is having a dramatic increase

in enrollment and is having difficulty finding enough

seats in courses for students so they can take courses

required for graduation. Perform a technology analy-

sis to identify new ways to help students complete

their studies and graduate.

G. Suppose you are the analyst charged with developing a

new system for the university bookstore with which

students can order books online and have them deliv-

ered to their dorms and off-campus housing. What

requirements-gathering techniques will you use?

Describe in detail how you would apply the techniques.

H. Suppose you are the analyst charged with developing a

new system to help senior managers make better

strategic decisions. What requirements-gathering

techniques will you use? Describe in detail how you

would apply the techniques.

I. Find a partner and interview each other about what

tasks you/they did in the last job held (full-time, part-

time, past or current). If you haven’t worked before,

then assume your job is being a student. Before you do

this, develop a brief interview plan. After your partner

interviews you, identify the type of interview, inter-

view approach, and types of questions used.

J. Find a group of students and run a sixty-minute JAD

session on improving alumni relations at your univer-

sity. Develop a brief JAD plan, select two techniques

that will help identify improvements, and then

develop an agenda. Conduct the session using the

agenda, and write your postsession report.

EXERCISES

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Exercises 161

1. The State Firefighter’s Association has a membership

of 15,000. The purpose of the organization is to pro-

vide some financial support to the families of deceased

member firefighters and to organize a conference each

year bringing together firefighters from all over the

state. Annually members are billed dues and calls.

“Calls” are additional funds required to take care of

payments made to the families of deceased members.

The bookkeeping work for the association is handled

by the elected treasurer, Bob Smith, although it is

widely known that his wife, Laura, does all of the work.

Bob runs unopposed each year at the election, since no

one wants to take over the tedious and time-consum-

ing job of tracking memberships. Bob is paid a stipend

of $8,000 per year, but his wife spends well over twenty

hours per week on the job. The organization however,

is not happy with their performance.

A computer system is used to track the billing and

receipt of funds. This system was developed in 1984 by

a Computer Science student and his father. The system

is a DOS-based system written using dBase 3. The most

immediate problem facing the treasurer and his wife is

the fact that the software package no longer exists, and

there is no one around who knows how to maintain the

system. One query in particular takes seventeen hours

to run. Over the years, they have just avoided running

this query, although the information in it would be

quite useful. Questions from members concerning

their statements cannot be easily answered. Usually

Bob or Laura just jot down the inquiry and return a call

with the answer. Sometimes it takes three to five hours

to find the information needed to answer the question.

Often, they have to perform calculations manually

since the system was not programmed to handle cer-

tain types of queries. When member information is

entered into the system, each field is presented one at a

time. This makes it very difficult to return to a field and

correct a value that was entered. Sometimes a new

member is entered but disappears from the records.

The report of membership used in the conference

materials does not alphabetize members by city. Only

cities are listed in the correct order.

What requirements analysis strategy or strategies

would you recommend for this situation? Explain

your answer.

2. Brian Callahan, IS Project Manager, is just about ready

to depart for an urgent meeting called by Joe Camp-

bell, Manager of Manufacturing Operations. A major

BPI project sponsored by Joe recently cleared the

approval hurdle, and Brian helped bring the project

through project initiation. Now that the approval

committee has given the go-ahead, Brian has been

working on the project’s analysis plan.

One evening, while playing golf with a friend who

works in the Manufacturing Operations Department,

Brian learned that Joe wants to push the project’s time

frame up from Brian’s original estimate of thirteen

months. Brian’s friend overheard Joe say,“I can’t see why

that IS project team needs to spend all that time ‘analyz-

ing’ things. They’ve got two weeks scheduled just to look

at the existing system! That seems like a real waste. I want

that team to get going on building my system.”

Because Brian has a little inside knowledge about

Joe’s agenda for this meeting, he has been considering

how to handle Joe. What do you suggest Brian tell Joe?

3. Barry has recently been assigned to a project team

that will be developing a new retail store manage-

ment system for a chain of submarine sandwich

shops. Barry has several years of experience in pro-

gramming but has not done much analysis in his

career. He was a little nervous about the new work he

would be doing, but was confident he could handle

any assignment he was given.

One of Barry’s first assignments was to visit one of

the submarine sandwich shops and prepare an obser-

vation report on how the store operates. Barry

MINICASES

K. Find a questionnaire on the Web that has been created

to capture customer information. Describe the pur-

pose of the survey, the way questions are worded, and

how the questions have been organized. How can it be

improved? How will the responses be analyzed?

L. Develop a questionnaire that will help gather infor-

mation regarding processes at a popular restaurant, or

the college cafeteria (e.g., ordering, customer service).

Give the questionnaire to ten to fifteen students, ana-

lyze the responses, and write a brief report that

describes the results.

M.Contact the Career Services Department at your

university and find all the pertinent documents

designed to help students find permanent and/or

part-time jobs. Analyze the documents and write a

brief report.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

162 Chapter 5 Requirements Determination

planned to arrive at the store around noon, but he

chose a store in an area of town he was unfamiliar

with, and due to traffic delays and difficulty in finding

the store, he did not arrive until 1:30 PM. The store

manager was not expecting him and refused to let a

stranger behind the counter until Barry had him con-

tact the project sponsor (the Director of Store Man-

agement) back at company headquarters to verify who

he was and what his purpose was.

After finally securing permission to observe, Barry

stationed himself prominently in the work area

behind the counter so that he could see everything.

The staff had to maneuver around him as they went

about their tasks, and there were only minor occa-

sional collisions. Barry noticed that the store staff

seemed to be going about their work very slowly and

deliberately, but he supposed that was because the

store wasn’t very busy. At first, Barry questioned each

worker about what he or she was doing, but the store

manager eventually asked him not to interrupt their

work so much—he was interfering with their service

to the customers.

By 3:30 PM, Barry was a little bored. He decided to

leave, figuring he could get back to the office and pre-

pare his report before 5:00 PM that day. He was sure his

team leader would be pleased with his quick comple-

tion of his assignment. As he drove, he reflected,

“There really won’t be much to say in this report. All

they do is take the order, make the sandwich, collect

the payment, and hand over the order. It’s really sim-

ple!” Barry’s confidence in his analytical skills soared

as he anticipated his team leader’s praise.

Back at the store, the store manager shook his head,

commenting to his staff, “He comes here at the slowest

time of day on the slowest day of the week. He never

even looked at all the work I was doing in the back room

while he was here—summarizing yesterday’s sales,

checking inventory on hand, making up resupply orders

for the weekend … plus he never even considered our

store opening and closing procedures. I hate to think

that the new store management system is going to be

built by someone like that. I’d better contact Chuck (the

Director of Store Management) and let him know what

went on here today.” Evaluate Barry’s conduct of the

observation assignment.

4. Anne has been given the task of conducting a survey

of sales clerks who will be using a new order entry sys-

tem being developed for a household products catalog

company. The goal of the survey is to identify the

clerks’ opinions on the strengths and weaknesses of

the current system. There are about fifty clerks who

work in three different cities, so a survey seemed like

an ideal way of gathering the needed information

from the clerks.

Anne developed the questionnaire carefully and

pretested it on several sales supervisors who were

available at corporate headquarters. After revising it

based on their suggestions, she sent a paper version of

the questionnaire to each clerk, asking that it be

returned within one week. After one week, she had

only three completed questionnaires returned. After

another week, Anne received just two more com-

pleted questionnaires. Feeling somewhat desperate,

Anne then sent out an e-mail version of the question-

naire, again to all the clerks, asking them to respond

to the questionnaire by e-mail as soon as possible. She

received two e-mail questionnaires and three mes-

sages from clerks who had completed the paper ver-

sion expressing annoyance at being bothered with the

same questionnaire a second time. At this point, Anne

has just a 14 percent response rate, which she is sure

will not please her team leader. What suggestions do

you have that could have improved Anne’s response

rate to the questionnaire?

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Functional models describe business processes and the interaction of an information sys-

tem with its environment. In object-oriented systems development, two types of models

are used to describe the functionality of an information system: activity diagrams and use

cases. Activity diagrams support the logical modeling of business processes and workflows.

Use cases are used to describe the basic functions of the information system. Both activity

diagrams and use cases can be used to describe the current as-is system and the to-be sys-

tem being developed. This chapter describes functional modeling as a means to document

and understand requirements, and to understand the functional or external behavior of the

system. This chapter also introduces use case points as a basis for project size estimation.

OBJECTIVES:

■ Understand the rules and style guidelines for activity diagrams.
■ Understand the rules and style guidelines for use cases and use case diagrams.
■ Understand the process used to create use cases and use case diagrams.
■ Be able to create functional models using activity diagrams, use cases, and use

case diagrams.
■ Become familiar with the use of use case points.

CHAPTER OUTLINE

Introduction

Business Process Modeling with

Activity Diagrams

Elements of an Activity Diagram

Guidelines for Creating Activity Diagrams

Use Case Descriptions

Types of Use Cases

Elements of a Use Case Description

Guidelines for Creating Use Case

Descriptions

Use Case Diagrams

Actor

Association

Use Case

Subject Boundary

Creating Use Case Descriptions and Use

Case Diagrams

Identify the Major Use Cases

Expand the Major Use Cases

Confirm the Major Use Cases

Create the Use Case Diagram

Refining Project Size and Effort

Estimation using Use Case Points

Applying the Concepts at CD Selections

Business Process Modeling with

Activity Diagrams

Identifying the Major Use Cases

Expanding the Major Use Cases

Confirming the Major Use Cases

Creating the Use Case Diagram

Refining the Project Size and Effort

Estimation Using Use Case Points

Summary

C H A P T E R 6

Functional Modeling

163

C
op

yr
ig

ht
ed

 M
at

er
ia

l

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

INTRODUCTION

The previous chapter discussed the more popular requirements-gathering techniques such

as interviewing, JAD, and observation. Using these techniques, the analyst determined the

requirements and created a requirements definition. The requirements definition defined

what the system is to do. In this chapter, we discuss how the information that is gathered

using these techniques is organized and presented in the form of activity diagrams and use

cases. Since UML has been accepted as the standard notation by the Object Management

Group (OMG), almost all object-oriented development projects today utilize activity dia-

grams and use cases to document and organize the requirements that are obtained during

the analysis phase.1

An activity diagram can be used for any type of process modeling activity.2 In this chap-

ter, we describe their use in the context of business process modeling. Process models depict

how a business system operates. They illustrate the processes or activities that are performed

and how objects (data) move among them. A process model can be used to document the cur-

rent system (i.e., as-is system) or the new system being developed (i.e., to-be system), whether

computerized or not. There are many different process modeling techniques in use today.3

A use case is a formal way of representing how a business system interacts with its envi-

ronment. A use case illustrates the activities that are performed by the users of the system.

As such, use case modeling is often thought of as an external or functional view of a busi-

ness process in that it shows how the users view the process, rather than the internal mech-

anisms by which the process and supporting systems operate. Like activity diagrams, use

cases can be used to document the current system (i.e., as-is system) or the new system

being developed (i.e., to-be system).

Activity diagrams and use cases are logical models—models that describe the business

domain’s activities without suggesting how they are conducted. Logical models are some-

times referred to as problem domain models. When reading an activity diagram or use case,

in principle, you should not be able to tell if an activity is computerized or manual; if a piece

of information is collected by paper form or via the Web; if information is placed in a filing

cabinet or a large database. These physical details are defined during the design phase, when

the logical models are refined into physical models. These models provide information that

is needed to ultimately build the system. By focusing on logical activities first, analysts can

focus on how the business should run without being distracted with implementation details.

As a first step, the project team gathers requirements from the users (see Chapter 5).

Next, using the gathered requirements, the project team models the overall business process

using activity diagrams. Next the team uses the identified activities to identify the use cases

that occur in the business. They then prepare use case descriptions and use case diagrams for

each use case. Use cases are the discrete activities that the users perform, such as selling CDs,

ordering CDs, and accepting returned CDs from customers. Users work closely with the

project team to create the business process models in the form of activity diagrams and use

164 Chapter 6 Functional Modeling

1 Other similar techniques that are commonly used in non-UML projects are task modeling— see Ian Graham,
Migrating to Object Technology (Reading, MA: Addison-Wesley, 1995), and Ian Graham, Brian Henderson-Sell-
ers, and Houman Younessi, The OPEN Process Specification, (Reading, MA: Addison-Wesley, 1997)—and sce-
nario-based design—see John M. Carroll, Scenario-Based Design: Envisioning Work and Technology in System
Development (New York: John Wiley & Sons, 1995).
2 We actually used an activity diagram to describe a simple process in Chapter 1 (see Figure 1-1).
3 Another commonly used process modeling technique is IDEF0. IDEF0 is used extensively throughout the U.S. fed-
eral government. For more information about IDEF0, see FIPS 183: Integration Definition for Function Modeling
(IDEF0), Federal Information Processing Standards Publications, Washington, D.C.: U.S. Department of Com-
merce, 1993. Also, from an object-oriented perspective, a good book that utilizes the UML to address business
process modeling is Hans-Erik Eriksson and Magnus Penker, Business Modeling with UML (New York: Wiley, 2000).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Business Process Modeling with Activity Diagrams 165

4 For a good introduction to data flow diagrams and structured approaches to systems analysis and design, see
Alan Dennis and Barbara Haley Wixom, Systems Analysis Design, 2nd Ed. (New York: Wiley, 2003).
5 Technically speaking, activity diagrams combine process modeling ideas from many different techniques
including event models, statecharts, and Petri Nets. However, UML 2.0’s activity diagram has more in common
with Petri Nets than the other process modeling techniques. For a good description of using Petri Nets to model
business workflows see Wil van der Aalst and Kees van Hee, Workflow Management: Models, Methods, and Sys-
tems (Cambridge, MA: MIT Press, 2002).

case descriptions that contain all the information needed to start modeling the system. Once

the activity diagrams and use case descriptions are prepared, the systems analysts transform

them into a use case diagram that portrays the external behavioral or functional view of the

business process. Next, the analyst typically creates class diagrams (see the next chapter) to

create a structural model of the business problem domain.

In this chapter, we first describe business process modeling and activity diagrams. Sec-

ond, we describe use cases, their elements, and a set of guidelines for creating use cases.

Third, we describe use case diagrams and how to create them. Fourth, using use cases as a

basis, we revisit the topic of project size estimation.

BUSINESS PROCESS MODELING WITH ACTIVITY DIAGRAMS

Business process models describe the different activities that when combined together

support a business process. Business processes typically cut across functional depart-

ments (e.g., the creation of a new product will involve many different activities that will

combine the efforts of many employees in many departments). Furthermore, from an

object-oriented perspective, they cut across multiple objects. As such, many of the ear-

lier object-oriented systems development approaches tended to ignore business process

modeling. Instead, they focused only on modeling processes via use cases (see later in

this chapter) and behavioral models (see Chapter 8). However, today we realize that

modeling business processes themselves is a very constructive activity that can be used

to make sense out of the gathered requirements (see Chapter 5). The one potential

problem of building business process models, from an object-oriented systems devel-

opment perspective, is that they tend to reinforce a functional decomposition mindset.

However, as long as they are used properly, they are a very powerful tool for communi-

cating the analyst’s current understanding of the requirements with the user. In this sec-

tion of the chapter, we introduce the use of UML 2.0’s activity diagrams as a means to

build business process models.

Activity diagrams are used to model the behavior in a business process independent

of objects.4 In many ways, activity diagrams can be viewed as sophisticated data flow dia-

grams that are used in conjunction with structured analysis. However, unlike data flow

diagrams, Activity diagrams include notation that addresses the modeling of parallel, con-

current activities and complex decision processes. As such, activity diagrams can be used

to model everything from a high-level business workflow that involve many different use

cases, to the details of an individual use case, all the way down to the specific details of an

individual method. In a nutshell, activity diagrams can be used to model any type of

process.5 In this chapter, we restrict our coverage of activity diagrams to the modeling of

high-level business processes.

Elements of an Activity Diagram

Activity diagrams portray the primary activities and the relationships among the activi-

ties in a process. Figure 6-1 shows the syntax of an activity diagram. Figure 6-2 presents a

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

166 Chapter 6 Functional Modeling

An Action:

■ Is a simple, non-decomposable piece of behavior

■ Is labeled by its name
Action

An Activity:

■ Is used to represent a set of actions

■ Is labeled by its name

An Object Node:

■ Is used to represent an object that is connected to a set of Object Flows

■ Is labeled by its class name

A Decision Node:

■ Is used to represent a test condition to ensure that the control flow or object flow
only goes down one path

■ Is labeled with the decision criteria to continue down the specific path

A Swimlane:

■ Is used to break up an activity diagram into rows and columns to assign the
individual activities (or actions) to the individuals or objects that are responsible
for executing the activity (or action)

■ Is labeled with the name of the individual or object responsible

A Control Flow:

■ Shows the sequence of execution

An Object Flow:

■ Shows the flow of an object from one activity (or action) to another activity
(or action)

A Final-Activity Node:

■ Is used to stop all control flows and object flows in an activity (or action)

A Merge Node:

■ Is used to bring back together different decision paths that were created using a
decision-node

A Fork Node:

■ Is used to split behavior into a set of parallel or concurrent flows of activities
(or actions)

A Join Node:

■ Is used to bring back together a set of parallel or concurrent flows of activities
(or actions)

An Initial Node:

■ Portrays the beginning of a set of actions or activities

A Final-Flow Node:

■ Is used to stop a specific control flow or object flow

Activity

Class Name

[Decision
Criteria]

[Decision
Criteria]

Name

FIGURE 6-1 Syntax for an Activity Diagram

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

simple activity diagram that represents part of an appointment system for a doctor’s

office.6 Next, we describe each of the different elements of an activity diagram.

Actions and Activities Actions and activities are performed for some specific business

reason. Actions and activities can represent manual or computerized behavior. They are

depicted in an activity diagram as a rounded rectangle (see Figure 6-1). Furthermore, they

should have a name that begins with a verb and ends with a noun (e.g., “Make Appoint-

ment” or “Make Payment Arrangements”). Names should be short, yet contain enough

information so that the reader can easily understand exactly what they do. The only differ-

ence between an action and an activity is that an activity can be decomposed further into

a set of activities and/or actions, whereas an action represents a simple nondecomposable

piece of the overall behavior being modeled. Typically, only activities are used for business

Business Process Modeling with Activity Diagrams 167

Get Patient Information

Appt.
Request Info

Appt.

Appt.
Request Info

Appt.

Create New Patient

Make Payment Arrangements

[New Patient]

[Old Patient]

Cancel Appointment Change AppointmentCreate Appointment

FIGURE 6-2
Activity Diagram for

Appointment System

6 Due to the actual complexity of the syntax of activity diagrams, we follow a minimalist philosophy in our cover-
age (see John M. Carrol, The Nurnberg Funnel: Designing Minimalist Instruction for Practical Computer Skill (Cam-
bridge, MA: MIT Press, 1990)). However, the material contained in this section is based on the Unified Modeling
Language: Superstructure Version 2.0, ptc/03-08-02 (www.uml.org). Additional useful references include Michael
Jesse Chonoles and James A. Schardt, UML 2 for Dummies (Indianapolis, IN: Wiley, 2003), Hans-Erik Eriksson,
Magnus Penker, Brian Lyons, and David Fado, UML 2 Toolkit (Indianapolis, IN: Wiley, 2004), and Kendall Scott, Fast
Track UML 2.0 (Berkeley, CA: Apress, 2004). For a complete description of all diagrams, see www.uml.org.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

process or workflow modeling. Furthermore, in most cases, each activity will be associated

with a use case. The activity diagram in Figure 6-2 shows six separate but related activities

for a typical appointment system used in a doctor’s office: Get Patient Information, Create

New Patient, Make Payment Arrangements, Create Appointment, Cancel Appointment,

and Change Appointment.

Object Nodes Activities and actions typically modify or transform objects. Object

nodes model these objects in an activity diagram. Object nodes are portrayed in an

activity diagram as a rectangle (see Figure 6-1). The name of the class of the object is

written inside of the rectangle. Essentially, object nodes represent the flow of informa-

tion from one activity to another activity. The simple appointment system portrayed in

Figure 6-2 shows object nodes flowing from the Create Appointment and Change

Appointment activities.

Control Flows and Object Flows There are two different types of “flows” in activity

diagrams: control and object (see Figure 6-1). Control flows model the paths of execution

through a business process. Control flows are portrayed as a solid line with an arrowhead

on it showing the direction of flow. Control flows can only be attached to actions or activ-

ities. Figure 6-2 portrays a set of control flows through a doctor’s office’s appointment sys-

tem. Object flows model the flow of objects through a business process. Since activities and

actions modify or transform objects, object flows are necessary to show the actual objects

that flow into and out of the actions or activities.7 Object flows are depicted as a dashed

line with an arrowhead on it showing the direction of flow. An individual object flow must

be attached to an action or activity on one end and an object node on the other end. Fig-

ure 6-2 portrays a set of control and object flows through the appointment system of a

doctor’s office.

Control Nodes There are seven different types of control nodes in an activity diagram:

initial, final-activity, final-flow, decision, merge, fork, and join (see Figure 6-1). An initial

node portrays the beginning of a set of actions or activities.8 An initial node is shown as a

small filled in circle. A final-activity node is used to “stop the process” being modeled. Any

time a final-activity node is reached, all actions and activities are ended immediately,

regardless of whether they are completed. A final-activity node is represented as a circle

surrounding a small filled-in circle making it resemble a bull’s eye. A final-flow node is sim-

ilar to a final-activity node, except that it stops a specific path of execution through the

business process, but allows the other concurrent or parallel paths to continue. A final-flow

node is shown as a small circle with an X in it.

The decision and merge nodes support modeling the decision structure of a business

process. The decision node is used to represent the actual test condition that is used to deter-

mine which of the paths exiting the decision node is to be traversed. In this case, each of

the exiting paths must be labeled with a guard condition. A guard condition represents the

value of the test for that particular path to be executed. For example, in Figure 6-2, the deci-

sion node immediately below the “Get Patient Information” activity has two mutually

exclusive paths that could be executed: one for old or previous patients, the other for new

patients. The merge node is used to bring back together multiple mutually exclusive paths

that have been split based on an earlier decision (e.g., the old and new patient paths in Fig-

ure 6-2 are brought back together).

168 Chapter 6 Functional Modeling

7 For those familiar with data flow diagrams, these are similar to data flows.
8 For those familiar with IBM flowcharts, this is similar to the start node.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

The fork and join nodes allow parallel and concurrent processes to be modeled

(see Figure 6-1). The fork node is used to split the behavior of the business process into

multiple parallel or concurrent flows. Unlike the decision node, the paths are not

mutually exclusive (i.e., both paths are executed concurrently). For example, in Figure

6-3, the fork node is used to show that two concurrent, parallel processes are to be exe-

cuted. In this case, each process is executed by two separate processors (parents). How-

ever, the purpose of the join node is similar to the merge node. The join node simply

brings back together the separate parallel or concurrent flows in the business process

into a single flow.

Swimlanes As already described, activity diagrams can be useful in modeling a business

process independent of any object implementation. However, there are times that it is use-

ful to break up an activity diagram in a manner that is useful in assigning responsibility to

objects or individuals that would actually perform the activity. This is especially useful

when modeling a business workflow. This is accomplished through the use of swimlanes.

In Figure 6-3, the swimlanes are used to break up among two parents the making of a

school lunch comprised of a peanut butter and jelly sandwich with a drink and dessert. In

this case, we are using vertical swimlanes. You could also draw the activity diagram using

more of a left-to-right orientation instead of a top-down orientation. In that case, the

swimlanes would be drawn horizontally.

In an actual business workflow, we would see that we had activities that should be

associated with roles of individuals that are involved in the business workflow (e.g.,

employees or customers) and the activities that were to be accomplished by the informa-

tion system that was being created. This association of activities with external roles, inter-

nal roles, and the system is very useful when creating the use case descriptions and diagram

described later in this chapter.

Guidelines for Creating Activity Diagrams

Scott Ambler has suggested the following guidelines when creating activity diagrams:9

1. Since an activity diagram can be used to model any kind of process, you should

set the context or scope of the activity being modeled. Once you have determined

the scope, you should give the diagram an appropriate title.

2. You must identify the activities, control flows, and object flows that occur

between the activities.

3. You should identify any decisions that are part of the process being modeled.

4. You should attempt to identify any prospects for parallelism in the process.

5. You should draw the activity diagram.

When drawing an activity diagram, you should limit the diagram to a single initial

node that starts the process being modeled. This node should be placed at the top or top-

left of the diagram depending on the complexity of the diagram. Furthermore, for most

business processes, there should only be a single final-activity node. This node should be

placed at the bottom or bottom-right of the diagram (see Figures 6-2 and 6-3). Since most

high-level business processes are sequential, not parallel, the use of a final-flow node

should be limited.

Business Process Modeling with Activity Diagrams 169

9 For more details, see Scott W. Ambler, The Object Primer: The Application Developer’s Guide to Object Orientation
and the UML, 2nd Ed. (Cambridge University Press/SIGS Books, 2001) and Scott W. Ambler, The Elements of UML
Style (Cambridge University Press, 2003).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

When modeling high-level business processes or workflows, you should only include

the more important decisions in the activity diagrams. In those cases, be sure that the guard

conditions associated with the outflows of the decision nodes are mutually exclusive. Fur-

thermore, the outflows and guard conditions should form a complete set (i.e., all potential

values of the decision are associated with one of the flows).

As in decision modeling, you should only include forks and joins to represent the more

important parallel activities in the process. For example, an alternative version of Figure 6-3

may not include the forks and joins associated with the GetJelly, GetBread, GetPeanutButter,

GetDrink, and GetDessert activities. This would greatly simplify the diagram.10

170 Chapter 6 Functional Modeling

firstParent secondParent

GetJelly GetBread

GetDrink GetDessert

GetPeanutButter

CreateSandwich

CreateLunch

GetLunchBox

PutLunchInBox

FIGURE 6-3
Activity Diagram for

Making a School Box

Lunch

10 In fact, the only reason we depicted the diagram in Figure 6-3 with the multiple fork and join nodes was to
demonstrate that it could be done.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

When laying out the activity diagram, you should attempt to minimize line crossings

to enhance the readability of the diagram. You also should lay out the activities on the dia-

gram in a left to right and/or top to bottom order based on the order that the activities are

executed. For example, in Figure 6-3, the Create Sandwich activity takes place before the

Create Lunch activity.

Swimlanes should only be used to simplify the understanding of an activity diagram.

Furthermore, the swimlanes should enhance the readability of the diagram. For example,

when using a horizontal orientation for swimlanes, the top swimlane should represent the

most important object or individual involved with the process. The order of the remaining

swimlanes should be based on minimizing the number of flows crossing the different

swimlanes. Also, when there are object flows among the activities associated with the dif-

ferent individuals (swimlanes) executing the activities of the process, it is useful to show the

actual object flowing from one individual to another individual by including an object

node “between” the two individuals (i.e., between the two swimlanes). This, of course,

impacts how the swimlanes should be placed on the diagram.

Finally, you should challenge any activity that does not have any outflows or any

inflows. Activities with no outflows are referred to as black-hole activities. If the activity is

truly an end point in the diagram, the activity should have a control flow from it to a final-

activity or final-flow node. An activity that does not have any inflow is known as a miracle

activity. In this case, the activity is either missing an inflow from the initial node of the dia-

gram or from another activity.

USE CASE DESCRIPTIONS

Use cases are simple descriptions of a system’s functions from the bird’s-eye view of the users.11

Use case diagrams are functional diagrams in that they portray the basic functions of the sys-

tem—that is, what the users can do and how the system should respond to the user’s actions.12

Creating use case diagrams is a two-step process: First, the users work with the project team to

write text-based use case descriptions, and second, the project team translates the use case

descriptions into formal use case diagrams. Both the use case descriptions and the use case dia-

grams are based on the identified requirements and the activity diagram description of the

Use Case Descriptions 171

Look at the activity diagram for the appointment system
in Figure 6-2. Think of one more activity that a user might
ask for when gathering requirements for this system (e.g.,
maintaining patient insurance information). How would

you depict this on the existing diagram? After adding the
activity to the diagram, what is your recommendation?
Would you keep the new activity within the scope of this
system? Why or why not?

6-1 Activity DiagramsYOUR

TURN

11 For a more detailed description of use case modeling see Alistair Cockburn, Writing Effective Use Cases (Read-
ing, MA: Addison-Wesley, 2001).
12 Nonfunctional requirements, such as reliability requirements and performance requirements are often docu-
mented outside of the use case through more traditional requirements documents. See Gerald Kotonya and Ian Som-
merville, Requirements Engineering, (Chichester, England: Wiley, 1998), Benjamin L. Kovitz, Practical Software
Requirements: A Manual of Content & Style (Greenwich, CT: Manning, 1999), Dean Leffingwell and Donwidrig, Man-
aging Software Requirements: A Unified Approach (Reading, MA: Addison-Wesley, 2000), and Richard H. Thayer, M.
Dorfman, and Sidney C. Bailin, Eds., Software Requirements Engineering, 2nd Ed. (IEEE Computer Society, 1997).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

business process. Use case descriptions contain all the information needed to produce use case

diagrams. Although it is possible to skip the use case description step and move directly to cre-

ating use case diagrams and the other diagrams that follow, users often have difficulty describ-

ing their business processes using only use case diagrams. Through the creation of use case

descriptions, users can describe the required details of each individual use case. As to which

should come first—use case descriptions or use case diagram—technically speaking, it really

does not matter. Both should be done to fully describe the requirements that the information

system must meet. In this text, we present the creation of the use case descriptions first.13

Use cases are the primary drivers for all of the UML diagramming techniques. The use

case communicates at a high level what the system needs to do, and all of the UML diagram-

ming techniques build on this by presenting the use case functionality in a different way for a

different purpose. Use cases are the building blocks by which the system is designed and built.

Use cases capture the typical interaction of the system with the system’s users (end

users and other systems). These interactions represent the external, or functional, view of

the system from the perspective of the user. Each use case describes one and only one func-

tion in which users interact with the system,14 although a use case may contain several

“paths” that a user can take while interacting with the system (e.g., when searching for a

book in Web bookstore, the user might search by subject, by author, or by title). Each path

through the use case is referred to as a scenario.

When creating use cases, the project team must work closely with the users to gather

the requirements needed for the use cases. This is often done through interviews, JAD ses-

sions, and observation. Gathering the requirements needed for a use case is a relatively sim-

ple process, but it takes considerable practice. A good place to look for potential use cases

is the activity diagram representation of the business process. In many cases, the activities

identified in the activity diagram will become the use cases in the business process being

modeled. The key thing to remember is that each use case is associated with one and only

one role that users have in the system. For example, a receptionist in a doctor’s office may

“play” multiple roles—he or she can make appointments, answer the telephone, file med-

ical records, welcome patients, and so on. Furthermore, it is possible that multiple users

will play the same role. As such, use cases should be associated with the roles “played” by

the users and not with the users themselves.

Types of Use Case

There are many different types of use cases. We suggest two separate dimensions on which

to classify a use case based on the purpose of the use case and the amount of information

that the use case contains: (1) overview versus detail; and (2) essential versus real.

172 Chapter 6 Functional Modeling

13 Practically speaking, the analyst and users will iterate between the descriptions and diagram. You should not
worry about which comes first. Whichever seems to work with the user community of the current project is the
way that it should be done.
14 This is one key difference between traditional structured analysis and design approaches and object-oriented
approaches. If you have experience using traditional structured approaches (or have taken a course on them) then
this is an important change for you. If you have no experience with structured approaches then you can skip this
footnote. The traditional structured approach is to start with one overall view of the system and to model
processes via functional decomposition—the gradual decomposition of the overall view of the system into the
smaller and smaller parts that make up the whole system. On the surface, this is similar to business process mod-
eling using activity diagrams. However, functional decomposition is not used with object oriented approaches.
Instead, each of the use cases documents one individual piece of the system; there is no overall use case that doc-
uments the entire system in the same way that a level 0 data flow diagram attempts to document the entire sys-
tem. By removing this overall view, object oriented approaches make it easier to decouple the system's objects so
they can be designed, developed and reused independently of the other parts of the system. While this lack of an
overall view may prove unsettling initially, it is very liberating over the long term.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

An overview use case is used to enable the analyst and user to agree on a high-level

overview of the requirements. Typically, they are created very early in the process of under-

standing the system requirements, and they only document basic information about the

use case such as its name, ID number, primary actor, type, and a brief description.

Once the user and the analyst agree upon a high-level overview of the requirements,

the overview use cases can be converted to detail use cases. A detail use case typically doc-

uments, as far as possible, all of the information needed for the use case.

An essential use case is one that only describes the minimum essential issues necessary to

understand the required functionality. A real use case will go further and describe a specific

set of steps. For example, an essential use case in a dentist office might say that the receptionist

should attempt to “Match the Patient’s desired appointment times with the available times,”

while a real use case might say that the receptionist should “Look up the available dates on

the calendar using MS Exchange to determine if the requested appointment times were avail-

able.” The primary difference is that essential use cases are implementation independent,

while real use cases are detailed descriptions of how to use the system once it is implemented.

As such, real use cases tend to be used only in detailed design, implementation, and testing.

Elements of a Use Case Description

A use case description contains all the information needed to build the diagrams that fol-

low, but it expresses it in a less formal way that is usually simpler for users to understand.

Figure 6-4 shows a sample use case description.15 There are three basic parts to a use case

description: overview information, relationships, and the flow of events.

Overview Information The overview information identifies the use case and provides

basic background information about the use case. The use case name of the use case should

be a verb-noun phrase (e.g., Make Appointment). The use case ID number provides a

unique way to find every use case and also enables the team to trace design decisions back

to a specific requirement. As already stated, the use case type is either overview or detail and

essential or real. The primary actor is usually the trigger of the use case—the person or

thing that starts the execution of the use case. The primary purpose of the use case is to

meet the goal of the primary actor. The brief description is typically a single sentence that

describes the essence of the use case.

The importance level can be used to prioritize the use cases. As described in Chapter 2,

object-oriented development tends to follow a RAD-phased development approach, in

which some parts of the system are developed first and other parts are only developed in

later versions. The importance level enables the users to explicitly prioritize which business

functions are most important and need to be part of the first version of the system, and

which are less important and can wait until later versions if necessary.

The importance level can use a fuzzy scale, such as high, medium, and low (e.g., in

Figure 6-4 we have assigned an importance level of high to the Make Appointment use

case). It can also be done more formally using a weighted average of a set of criteria. For

example, Larman16 suggests rating each use case over the following criteria using a scale

from zero to five:

Use Case Descriptions 173

15 Currently, there is no standard set of elements of a use case. The elements described in this section are based on
recommendations contained in Alistair Cockburn, Writing Effective Use Cases (Reading, MA: Addison-Wesley,
2001); Craig Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and the
Unified Process, 2nd Ed. (Englewood Cliffs, NJ: Prentice-Hall, 2002); Brian Henderson-Sellers and Bhuvan
Unhelkar, OPEN modeling with UML (Reading, MA: Addison-Wesley, 2000); Graham, Migrating to Object Tech-
nology; and Alan Dennis and Barbara Haley Wixom, Systems Analysis and Design, 2nd Ed. (New York: Wiley, 2003).
16 Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

■ The use case represents an important business process.
■ The use case supports revenue generation or cost reduction.

■ Technology needed to support the use case is new or risky and therefore will

require considerable research.

174 Chapter 6 Functional Modeling

Use Case Name:

Primary Actor:

Stakeholders and Interests:

Brief Description:

ID: Importance Level:

Trigger:

Normal Flow of Events:

Subflows:

Alternate/Exceptional Flows:

Type: External

Make appointment 2 High

Patient

Patient - wants to make, change, or cancel an appointment

Doctor - wants to ensure patient’s needs are met in a timely manner

Use Case Type: Detail, essential

Patient calls and asks for a new appointment or asks to cancel or change an existing appointment.

Patient

Make Payment Arrangements

Create New Patient

1. The Patient contacts the office regarding an appointment.

2. The Patient provides the Receptionist with their name and address.

3. The Receptionist validates that the Patient exists in the Patient database.

4. The Receptionist executes the Make Payment Arrangements use case.

5. The Receptionist asks Patient if he or she would like to make a new appointment, cancel an existing appointment, or change

 an existing appointment.

S-1: New Appointment

1. The Receptionist asks the Patient for possible appointment times.

2. The Receptionist matches the Patient’s desired appointment times with available dates and times and schedules the

 new appointment.

S-2: Cancel Appointment

1. The Receptionist asks the Patient for the old appointment time.

2. The Receptionist finds the current appointment in the appointment

 file and cancels it.

S-3: Change Appointment

1. The Receptionist performs the S-2: cancel appointment subflow.

2. The Receptionist performs the S-1: new appointment subflow.

S-1, 2a1: The Receptionist proposes some alternative appointment times based on what is available in the appointment schedule.

S-1, 2a2: The Patient chooses one of the proposed times or decides

 not to make an appointment.

3a: The Receptionist executes the Create New Patient use case.

6. The Receptionist provides the results of the transaction to the Patient.

This use case describes how we make an appointment as well as changing or canceling an appointment.

Relationships:

Association:
Include:
Extend:
Generalization:

If the patient wants to make a new appointment,

 the S-1: new appointment subflow is performed.

If the patient wants to cancel an existing appointment,

 the S-2: cancel appointment subflow is performed.

If the patient wants to change an existing appointment,

 the S-3: change appointment subflow is performed.

FIGURE 6-4 Use Case Description Example

TEMPLATE

can be found at
www.wiley.com
/college/dennis

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

■ Functionality described in the use case is complex, risky, and/or time critical.

Depending on a use case’s complexity, it may be useful to consider splitting its

implementation over several different versions.

■ The use case could increase understanding of the evolving design relative to the

effort expended.

A use case may have multiple stakeholders that have an interest in the use case. As such,

each use case lists each of the stakeholders with their interest in the use case (e.g., Patient

and Doctor). The stakeholders’ list always includes the primary actor (e.g., Patient).

Each use case typically has a trigger—the event that causes the use case to begin. For

example, “Patient calls and asks for a new appointment or asks to cancel or change an exist-

ing appointment.” A trigger can be an external trigger, such as a customer placing an order

or the fire alarm ringing, or it can be a temporal trigger, such as a book being overdue at the

library, or time to pay the rent.

Relationships Use-case relationships explain how the use case is related to other use cases

and users. There are four basic types of relationships: association, extend, include, and gener-

alization. An association relationship documents the communication that takes place between

the use case and the actors that use the use case. An actor is the UML representation for the

role that a user plays in the use case. For example, in Figure 6-4, the Make Appointment use

case is associated with the actor, Patient. In this case, a patient makes an appointment. All

actors involved in the use case are documented with the association relationship.

An extend relationship represents the extension of the functionality of the use case to

incorporate optional behavior. In Figure 6-4, the Make Appointment use case condition-

ally uses the Create New Patient use case. This use case is executed only if the patient does

not exist in the patient database. As such, it is not part of the normal flow of events and

should be modeled with an extend relationship and an alternate/exceptional flow.

An include relationship represents the mandatory inclusion of another use case. The

include relationship enables functional decomposition—the breaking up of a complex use

case into several simpler ones. For example, in Figure 6-4, the Make Payment Arrangements

use case was considered to be complex and complete enough to be factored out as a sepa-

rate use case that could be executed by the Make Appointment use case. The include rela-

tionship also enables parts of use cases to be reused by creating them as a separate use case.

The generalization relationship allows use cases to support inheritance. For example,

the use case in Figure 6-4 could be changed such that a new patient could be associated

with a specialized use case called Make New Patient Appointment and an old patient could

be associated with a Make Old Patient Appointment. The common or generalized behav-

ior that both the Make New Patient Appointment and Make Old Patient Appointment use

cases contain would be placed in the generalized Make Appointment use case—for exam-

ple, the include relationship to the Make Payment Arrangements use case. In other words,

the Make New Patient Appointment and Make Old Patient Appointment use cases would

inherit the Make Payment Arrangements use case from the Make Appointment use case.

The specialized behavior would be placed in the appropriate specialized use case. For

example, the extend relationship to the Create New Patient use case would be placed with

the specialized Make New Patient Appointment use case as an included use case.

Flow of Events Finally, the individual steps within the business process are described.

There are three different categories of steps or flows that can be documented: normal flow

of events, subflows, and alternate or exceptional flows:

1. The normal flow of events includes only those steps that normally are executed in a use

case. The steps are listed in the order in which they are performed. In Figure 6-4, the

Use Case Descriptions 175

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Patient and the Receptionist have a conversation regarding the patient’s name, address,

and action to be performed.

2. In some cases, it is recommended to decompose the normal flow of events into a

set of subflows to keep the normal flow of events as simple as possible. In Figure

6-4, we have identified three subflows: New Appointment, Cancel Appointment,

and Change Appointment. Each of the steps of the subflows is listed. These sub-

flows are based on the control flow logic in the activity diagram representation of

the business process (see Figure 6-2). Alternatively, we could replace a subflow

with a separate use case that could be included via the include relationships (see

above). However, this should only be done if the newly created use case makes

sense by itself. For example, in Figure 6-4, does it make sense to factor out a Cre-

ate New Appointment, Cancel Appointment, and/or Change Appointment use

case? If it does, then the specific subflow(s) should be replaced with a call to the

related use case, and the use case should be added to the include relationship list.

3. Alternate or exceptional flows are ones that do happen but are not considered to be

the norm. These must be documented. For example, in Figure 6-4, we have identi-

fied four alternate or exceptional flows. The first one simply addresses the need to

create a new patient before the new patient can make an appointment. Normally,

the patient would already exist in the patient database. Like the subflows, the pri-

mary purpose of separating out alternate or exceptional flows is to keep the Nor-

mal Flow of Events as simple as possible.

Optional Characteristics There are other characteristics of use cases that could be doc-

umented. These include the level of complexity of the use case, the estimated amount of

time it takes to execute the use case, the system with which the use case is associated, spe-

cific data flows between the primary actor and the use case, any specific attribute, con-

straint, or operation associated with the use case, any preconditions that must be satisfied

for the use case to execute, or any guarantees that can be made based on the execution of

the use case. As we noted at the beginning of this section, there is no standard set of char-

acteristics of a use case that must be captured. In this book, we suggest that the informa-

tion contained in Figure 6-4 is the minimal amount to be captured.

Guidelines for Creating Use Case Descriptions

The essence of a use case is the flow of events. Writing the flow of events in a manner that

is useful for later stages of development generally comes with experience. Figure 6-5 pro-

vides a set of guidelines that have proven to be useful.17

First, write each individual step in the form Subject-Verb-Direct Object and option-

ally Preposition-Indirect Object. This form has become known as SVDPI sentences. This

form of sentence has proven to be useful in identifying classes and operations (see Chap-

ter 7). For example, in Figure 6-4, the first step in the Normal Flow of Events, “The Patient

contacts the office regarding an appointment,” suggests the possibility of three classes of

objects: Patient, Office, and Appointment. This approach simplifies the process of identify-

ing the classes in the structural model (described in Chapter 7). Not all steps can use SVDPI

sentences, but they should be used whenever possible.

Second, make clear who or what is the initiator of the action and who is the receiver

of the action in each step. Normally, the initiator should be the subject of the sentence

and the receiver should be the direct object of the sentence. For example, in Figure 6-4,

176 Chapter 6 Functional Modeling

17 These guidelines are based on Cockburn, Writing Effective Use Cases and Graham, Migrating to Object Technology.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

the second step, “Patient provides the Receptionist with their name and address,” clearly

portrays the Patient as the initiator and the Receptionist as the receiver.

Third, write the step from the perspective of an independent observer. To accomplish

this, you may have to write each step from the perspective of both the initiator and the

receiver first. Based on the two points of view, you can then write the bird’s eye view ver-

sion. For example, in Figure 6-4, the “Patient provides the Receptionist with their name and

address.” Neither the patient’s nor the receptionist’s perspective is represented.

Fourth, write each step at the same level of abstraction. Each step should make about

the same amount of progress toward completing the use case as each of the other steps in

the use case. On high-level use cases, the amount of progress could be very substantial,

while in a low-level use case, each step could represent only incremental progress. For

example, in Figure 6-4, each step represents about the same amount of effort to complete.

Fifth, ensure that the use case contains a sensible set of actions. Each use case should

represent a transaction. Therefore, each use case should be comprised of four parts:

1. The primary actor initiates the execution of the use case by sending a request

(and possibly data) to the system.

2. The system ensures that the request (and data) is valid.

3. The system processes the request (and data) and possibly changes its own

internal state.

4. The system sends the primary actor the result of the processing.

For example, in Figure 6-4, (1) the patient requests an appointment (Steps 1 and 2),

(2) the receptionist determines if the patient exists in the database (Step 3), (3) the recep-

tionist sets up the appointment transaction (Steps 4 and 5), and (4) the receptionist gives

the time and date of the appointment to the patient (Step 6).

The sixth guideline is the KISS18 principle. If the use case becomes too complex and/or

too long, the use case should be decomposed into a set of use cases. Furthermore, if the

Normal Flow of Events of the use case becomes too complex, subflows should be used. For

example, in Figure 6-4, the fifth step in the Normal Flow of Events was sufficiently complex

to decompose it into three separate subflows. However, as stated previously, care must be

taken to avoid the possibility of decomposing too much. Most decomposition should be

done with classes (see Chapter 7).

The seventh guideline deals with repeating steps. Normally, in a programming lan-

guage such as Visual Basic or C, we put loop definition and controls at the beginning of the

loop. However, since the steps are written in simple English, it is normally better to simply

write “Repeat steps A through E until some condition is met” after step E. It makes the use

case more readable to people unfamiliar with programming.

Use Case Descriptions 177

18 Keep It Simple, Stupid.

1. Write each set in the form of Subject-Verb-Direct Object (and sometimes Preposition-Indirect Object).

2. Make sure it is clear who the initiator of the step is.

3. Write the steps from the perspective of the independent observer.

4. Write each step at about the same level of abstraction.

5. Ensure the use case has a sensible set of steps.

6. Apply the KISS principle liberally.

7. Write repeating instructions after the set of steps to be repeated.

FIGURE 6-5
Guidelines for Writing

Effective Use Case

Descriptions

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

USE CASE DIAGRAMS

In the previous section, we learned what a use case is and discussed a set of guidelines on

how to write effective use case descriptions. In this section, we will learn how the use case

is the building block for the use case diagram, which summarizes all of the use cases for the

part of the system being modeled together in one picture. An analyst can use the use case

diagram to better understand the functionality of the system at a very high level. Typically,

the use case diagram is drawn early on in the SDLC when gathering and defining require-

ments for the system because it provides a simple, straightforward way of communicating

to the users exactly what the system will do. In this manner, the use case diagram can

encourage the users to provide additional requirements that the written use case may not

uncover. This section describes the elements of a use case diagram.

A use case diagram illustrates in a very simple way the main functions of the system

and the different kinds of users that will interact with it. Figure 6-6 describes the basic syn-

tax rules for a use case diagram. Figure 6-7 presents a use case diagram for a doctor’s office

appointment system. We can see from the diagram that patients, doctors, and management

personnel will use the appointment system to make appointments, record availability, and

produce schedule information, respectively.

Actor

The labeled stick figures on the diagram represent actors (see Figure 6-6). An actor is not a

specific user, but a role that a user can play while interacting with the system. An actor can

also represent another system in which the current system interacts. In this case, the actor

optionally can be represented by a rectangle with <<actor>> and the name of the system.

Basically, actors represent the principal elements in the environment in which the system

operates. Actors can provide input to the system, receive output from the system, or both.

The diagram in Figure 6-7 shows that three actors will interact with the appointment sys-

tem (a patient, a doctor, and management).

Sometimes an actor plays a specialized role of a more general type of actor. For exam-

ple, there may be times when a new patient interacts with the system in a way that is some-

what different than a general patient. In this case, a specialized actor (i.e., new patient) can

be placed on the model, shown using a line with a hollow triangle at the end of the more

general actor (i.e., patient). The specialized actor will inherit the behavior of the more gen-

eral actor and extend it in some way (see Figure 6-8). Can you think of some ways in which

a new patient may behave differently than an existing patient?

Association

Use cases are connected to actors through association relationships, which show with

which use cases the actors interact (see Figure 6-6). A line drawn from an actor to a use

178 Chapter 6 Functional Modeling

Look at the activity diagram for the appointment system
in Figure 6-2 and the use case that was created in Figure
6-4. Create your own use case based on an activity in the

activity diagram or the activity that you created in Your
Turn 6-1. Use Figure 6-5 to guide your efforts.

6-2 Use CasesYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

case depicts an association. The association typically represents two-way communication

between the use case and the actor. If the communication is only one way, then a solid

arrowhead can be used to designate the direction of the flow of information. For exam-

ple, in Figure 6-7 the Patient actor communicates with the Make Appointment use case.

Since there are no arrowheads on the association, the communication is two-way. Finally,

it is possible to represent the multiplicity of the association. Figure 6-7 shows an “*” at

either end of the association between the Patient and the Make Appointment use case.

This simply designates that an individual patient (instance of the Patient actor) executes

Use Case Descriptions 179

An Actor:

■ Is a person or system that derives benefit from and is external to the subject

■ Is depicted as either a stick figure (default) or if a non-human actor is involved, as
a rectangle with <<actor>> in it (alternative)

■ Is labeled with its role

■ Can be associated with other actors using a specialization/superclass association,
denoted by an arrow with a hollow arrowhead

■ Are placed outside the subject boundary

A Use Case:

■ Represents a major piece of system functionality

■ Can extend another use case

■ Can include another use case

■ Is placed inside the system boundary

■ Is labeled with a descriptive verb-noun phrase

A Subject Boundary:

■ Includes the name of the subject inside or on top

■ Represents the scope of the subject, e.g., a system or an individual
business process

An Include Relationship:

■ Represents the inclusion of the functionality of one use case within another

■ The arrow is drawn from the base use case to the included use case

An Extend Relationship:

■ Represents the extension of the use case to include optional behavior

■ The arrow is drawn from the extension use case to the base use case

A Generalization Relationship:

■ Represents a specialized use case to a more generalized one

■ The arrow is drawn from the specialized use case to the base use case

An Association Relationship:

■ Links an actor with the use case(s) with which it interacts

<<actor>>
Actor/Role

Subject

Actor/Role

Use Case

<<include>>

<<extend>>

* *

FIGURE 6-6 Syntax for Use Case Diagram

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

the Make Appointment use case as many times as they wish and that it is possible for the

Make Appointment use case appointment to be executed by many different patients. In

most cases, this type of many-to-many relationship is appropriate. However, it is possi-

ble to restrict the number of patients that can be associated with the Make Appointment

use case. We will discuss the multiplicity issue in detail in the next chapter in regards to

class diagrams.

180 Chapter 6 Functional Modeling

Appointment System

Patient

Produce schedule
information

Make
appointment

Management

Doctor

Record
availability

* *

* *

* *FIGURE 6-7
Use Case Diagram for

Appointment System

Appointment System

Patient

New Patient

Produce schedule
information

Make
appointment

Management

Doctor

Record
availability

* *

* *

* *FIGURE 6-8
Use Case Diagram with

Specialized Actor

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Use Case

A use case, depicted by an oval in the UML, is a major process that the system will perform

that benefits an actor(s) in some way (see Figure 6-6), and it is labeled using a descriptive

verb-noun phrase. We can tell from Figure 6-7 that the system has three primary use cases:

Make Appointment, Produce Schedule Information, and Record Availability.

There are times when a use case includes, extends, or generalizes the functionality of

another use case on the diagram. These are shown using include, extend, and generaliza-

tion relationships. To increase the ease of understanding a use case diagram, “higher-level”

use cases normally are drawn above the “lower-level” ones. It may be easier to understand

these relationships with the help of examples. Let’s assume that every time a patient makes

an appointment, the patient is asked to verify payment arrangements. However, occasion-

ally it is necessary to actually make new payment arrangements. Therefore, we may want to

have a use case called Make Payment Arrangements that extends the Make Appointment

use case to include this additional functionality. In Figure 6-9, an arrow labeled with extend

Use Case Descriptions 181

Appointment System

Patient

New Patient

Old Patient

Produce schedule
information

Update patient
information

Make payment
arrangements

Make old
patient appt.

Make new
patient appt.

Create new
patient

Make
appointment

Management

Doctor

Record
availability

Manage
schedule

<<ex
te

nd
>>

<<extend>>

<
<

in
cl

u
d
e>

>

<<include>>

<<include>>

* *

*

*

**

**

FIGURE 6-9 Extend and Include Relationships

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

was drawn between Make Payment Arrangements use case and the Make Appointment use

case to denote this special use case relationship. Furthermore, the Make Payment Arrange-

ments use case was drawn lower than the Make Appointment use case.

Similarly, there are times when a single use case contains common functions that are

used by other use cases. For example, suppose there is a use case called Manage Schedule

that performs some routine tasks needed to maintain the doctor’s office appointment

schedule, and the two use cases Record Availability and Produce Schedule Information

both perform the routine tasks. Figure 6-9 shows how we can design the system so that

Manage Schedule is a shared use case that is used by others. An arrow labeled with include

is used to denote the include relationship and the included use case is drawn below the use

cases that contain it.

Finally, there are times that it makes sense to use a generalization relationship to sim-

plify the individual use cases. For example in Figure 6-9, the Make Appointment use case

has been specialized to include a use case for an Old Patient and a New Patient. The Make

Old Patient Appt use case inherits the functionality of the Make Appointment use case

(including the Make Payment Arrangements use case extension) and extends its own func-

tionality with the Update Patient Information use case. The Make New Patient Appt use

case also inherits all of the functionality of the generic Make Appointment use case and

calls the Create New Patient use case, which includes the functionality necessary to insert

the new patient into the patient database. The generalization relationship is represented as

an unlabeled hollow arrow with the more general use case being higher than the lower-use

cases. Also notice that we have added a second specialized actor, Old Patient, and that the

Patient actor is now simply a generalization of the Old and New Patient actors.

Subject Boundary

The use cases are enclosed within a subject boundary, which is a box that defines the scope

of the system and clearly delineates what parts of the diagram are external or internal to it

(see Figure 6-6). One of the more difficult decisions to make is where to draw the subject

boundary. A subject boundary can be used to separate a software system from its environ-

ment, a subsystem from other subsystems within the software system, or an individual

process in a software system. They also can be used to separate an information system,

including both software and internal actors, from its environment. As such, care should be

taken to carefully decide on what the scope of the information system is to include.

The name of the subject can appear either inside or on top of the box. The subject

boundary is drawn based on the scope of the system. In the appointment system, the Man-

agement and Doctor actors may not be drawn. Remember that actors are outside of the

scope of the system. In Figure 6-7, we listed a receptionist as being part of the use case.

However, in this case, we assumed that the receptionist is an “internal” actor that is part of

the Make Appointment use case. As such, the receptionist is not drawn on the diagram.19

CREATING USE CASE DESCRIPTIONS AND USE CASE DIAGRAMS

Use cases are used to describe the functionality of the system and as a model of the dialog

between the actors and the system. As such, they tend to be used to model both the con-

texts of the system and the detailed requirements for the system. Even though the primary

182 Chapter 6 Functional Modeling

19 In other non-UML approaches to object-oriented systems development, it is possible to represent external
actors along with "internal" actors. In this example, the receptionist would be considered an internal actor (see
Graham, Migrating to Object Technology, and Ian Graham, Brian Henderson-Sellers, and Houman Younessi, The
OPEN Process Specification).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

purpose of use cases is to document the functional requirements of the system, they also

are used as a basis for testing the evolving system. In this section, we describe an approach

that supports requirements gathering and documentation with use cases.

It is important to remember that use cases are used for both the as-is and to-be behav-

ioral models. As-is use cases focus on the current system, while to-be use cases focus on the

desired new system. The two most common ways to gather information for the use cases

are through interviews and JAD sessions (observation is also sometimes used for as-is

models). As discussed in Chapter 5, these techniques have advantages and disadvantages.

Regardless of whether interviews or JAD session are used, recent research shows that

some ways to gather the information for use cases are better than others. The most effec-

tive process has thirteen steps to create use case descriptions20 and four additional steps to

create use case diagrams (see Figure 6-10). These thirteen steps are performed in order, but

of course the analyst often cycles among them in an iterative fashion as he or she moves

from use case to use case.

Identify the Major Use Cases

The first step is to review the activity diagram. This helps the analyst to get a complete

overview of the underlying business process being modeled.

Creating Use Case Descriptions and Use Case Diagrams 183

Identify the Major Use Cases

1. Review the activity diagram.

2. Find the subject's boundaries.

3. Identify the primary actors and their goals.

4. Identify and write the overviews of the major use cases for the above.

5. Carefully review the current use cases. Revise as needed.

Expand the Major Use Cases

6. Choose one of the use cases to expand.

7. Start filling in the details of the chosen use case.

8. Write the Normal Flow of Events of the use case.

9. If the Normal Flow of Events is too complex or long, decompose into subflows.

10. List the possible alternate or exceptional flows.

11. For each alternate or exceptional flow, list how the actor and/or system should react.

Confirm the Major Use Cases

12. Carefully review the current set of use cases. Revise as needed.

13. Start at the top again.

Create the Use Case Diagram

1. Draw the subject boundary.

2. Place the use cases on the diagram.

3. Place the actors on the diagram.

4. Draw the associations.

FIGURE 6-10
Steps for Writing

Effective Use-Case

Descriptions and Use-

Case Diagrams

20 The approach in this section is based on the work of Alistair Cockburn, Writing Effective Use Cases; Graham,
Migrating to Object Technology; George Marakas and Joyce Elam, “Semantic Structuring in Analyst Acquisition
and Representation of Facts in Requirements Analysis,” Information Systems Research 9(1) (1998), 37-63 as well
as our own: Alan Dennis, Glenda Hayes, and Robert Daniels, “Business Process Modeling with Group Support
Systems,” Journal of MIS 15(4) (1999), 115–142.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

The second step is to identify the subject’s boundaries. This helps the analyst to iden-

tify the scope of the system. However, as we work through the SDLC, the boundary of the

system will change.

The third step is to identify the primary actors and their goals. The primary actors

involved with the system will come from a list of stakeholders and users. However, you

should remember that an actor is a role that a stakeholder or user plays, not a specific user

(e.g., doctor, not Dr. Jones). The goals represent the functionality that the system must pro-

vide the actor for the system to be a success. Identifying what the tasks are that each actor

must perform can facilitate this. For example, does the actor need to create, read, update,

or delete (CRUD) any information currently in the system, are there any external changes

that an actor must inform the system, or is there any information that the system should

notify the actor? Steps two and three are intertwined. As actors are identified and their goals

are uncovered, the boundary of the system will change.

The fourth step is to identify and write the major use cases, with basic information

about each, rather than jumping into one use case and describing it completely (i.e., only

an overview use case). Recall from the previous description of the elements of a use case

that overview use cases only contain the use case name, ID number, type, primary actor,

importance level, and brief description. Creating only overview use cases at this time pre-

vents the users and analysts from forgetting key use cases and helps the users explain the

overall set of business processes for which they are responsible. It also helps them under-

stand how to describe the use cases and reduces the chance of overlap between use cases.

It is important at this point to understand and define acronyms and jargon so that the

project team and others from outside the user group can clearly understand the use

cases. Again, the activity diagram is a very useful beginning point for this step.

The fifth step is to carefully review the current set of use cases. It may be necessary

to split some of them into multiple use cases or merge some of them into a single use

case. Also, based on the current set, a new use case may be identified. You should remem-

ber that identifying use cases is an iterative process, with users often changing their

minds about what is a use case and what it includes. It is very easy to get trapped in the

details at this point, so you need to remember that the goal at this step is to identify the

major use cases and that you are only creating overview use cases. For example, in the

doctor’s office example in Figure 6-9, we defined one use case as Make Appointment.

This use case included the cases for both new patients and existing patients, as well as

when the patient changes or cancels the appointment. We could have defined each of

these activities (makes an appointment, changes an appointment, or cancels an appoint-

ment) as separate use cases, but this would have created a huge set of “small” use cases.

The trick is to select the right “size” so that you end up with three to nine use cases in

each system. If the project team discovers many more than eight use cases, this suggests that

the use cases are “too small” or that the system boundary is too big. There should be no

more than three to nine use cases on the model, so if you identify more than nine, you

should group together the use cases into packages (i.e., logical groups of use cases) to make

the diagrams easier to read and keep the models at a reasonable level of complexity. It is

simple at that point to sort the use cases and group together these “small” use cases into

“larger” use cases that include several small ones or to change the system boundaries.21

Expand the Major Use Cases

The sixth step is to choose one of the major use cases to expand. Using the importance level

of the use case can do this. For example, in Figure 6-4, the Make Appointment use case has

184 Chapter 6 Functional Modeling

21 For those familiar with structured analysis and design, packages serve a similar purpose as the leveling and bal-
ancing processes used in data flow diagramming. Packages are described in Chapter 9.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

an importance level of high. As such, it would be one of the earlier use cases to be

expanded. You could also use the criteria suggested by Larman22 to set the prioritization of

the use cases as noted earlier.

The seventh step is to start filling in the details on the use case template. For example,

list all of the identified stakeholders and their interests in the use case, the level of impor-

tance of the use case, brief description of the use case, the trigger information for the use

case, and the relationships in which the use case participates.

The eighth step is to fill in the steps of the normal flow of events required to describe

each use case. The steps focus on what the business process does to complete the use case,

as opposed to what actions the users or other external entities do. In general, the steps

should be listed in the order in which they are performed, from first to last. Remember to

write the steps in an SVDPI form whenever possible.

The ninth step is to ensure that the steps listed in the normal flow of events are not too

complex or too long. Each step should be about the same size as the others. For example,

if we were writing steps for preparing a meal, steps such as “take fork out of drawer” and

“put fork on table” are much smaller than “prepare cake using mix.” If you end up with

more than seven steps or steps that vary greatly in size, you should go back and review each

step carefully and possibly rewrite the steps.

One good approach to produce the steps for a use case is to have the users visualize

themselves actually performing the use case and to have them write down the steps as if

they were writing a recipe for a cookbook. In most cases the users will be able to quickly

define what they do in the as-is model. Defining the steps for to-be use cases may take a bit

more coaching. In our experience, the descriptions of the steps change greatly as users work

through a use case. Our advice is to use a blackboard or whiteboard (or paper with pencil)

that can be easily erased to develop the list of steps, and then write it on the use case form.

You should write it on the use case form only after the set of steps is fairly well defined.

The tenth step focuses on identifying the alternate or exceptional flows. Alternate or

exceptional flows are those flows of success that represent optional or exceptional behav-

ior. They tend to occur infrequently or as a result of a normal flow failing. They should be

labeled in a way that there is no doubt as to which normal flow of event to which it is

related. For example in Figure 6-4, Alternate/Exceptional flow 3a executes when step 3 fails

(i.e., the Patient does not exist in the Patient database).

The eleventh step is simply to write the description of the alternate or exceptional flow.

In other words, if the alternate or exceptional flow is to be executed, describe the response

that the actor or system should produce. Like the normal flows and subflows,

alternate/exceptional flows should be written in the SVDPI form whenever possible.

Confirm the Major Use Cases

The twelfth step is to carefully review the current set of use cases and to confirm that the

use case is correct as written, which means reviewing the use case with the users to make

sure each step is correct. The review should look for opportunities to simplify a use case by

decomposing it into a set of smaller use cases, merging it with others, looking for common

aspects in both the semantics and syntax of the use cases, and identifying new use cases.

This is also the time to look into adding the include, extend, or generalization relationships

between use cases. The most powerful way to confirm the use case is to ask the user to role

play, or execute the process using the written steps in the use case. The analyst will hand the

user pieces of paper labeled as the major inputs to the use case, and will have the user fol-

low the written steps like a recipe to make sure that those steps really can produce the out-

puts defined for the use case using its inputs.

Creating Use Case Descriptions and Use Case Diagrams 185

22 Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

The thirteenth and final step is to iterate over the entire set of steps again. Users will often

change their minds about what is a use case and what it includes. It is very easy to get trapped

in the details at this point, so you need to remember that the goal is to just address the major

use cases. Therefore, you should continue to iterate over these steps until you and the users

believe that a sufficient number of use cases have been documented to begin identifying can-

didate classes for the structural model (see next chapter). As you identify candidate classes, it

is likely that additional use cases will be uncovered. Remember, object-oriented systems

development is both iterative and incremental. As such, you should not worry about identi-

fying each and every possible use case at this point in the development of the system.

Create the Use Case Diagram

Basically, drawing the use case diagram is very straightforward once you have detailed use

cases. The actual use case diagram encourages the use of information hiding. The only

information that is drawn on the use case diagram are the system boundary, the use cases

themselves, the actors, and the various associations between these components. The major

strength of the use case diagram is that it provides the user with an overview of the detailed

use cases. However, you must remember that anytime a use case changes, it could impact

the use case diagram.

There are four major steps to drawing the use case diagram. First, the use case diagram

starts with the subject boundary. This forms the border of the subject; separating use cases

(i.e., the subject’s functionality) from actors (i.e., the roles of the external users).

Second, the use cases are drawn on the diagram. These are taken directly from the

detailed use case descriptions. Special use case associations (include, extend, or generaliza-

tion) are also added to the model at this point. Be careful in laying out the diagram. There

is no formal order to the use cases so they can be placed in whatever fashion is needed to

make the diagram easy to read and to minimize the number of lines that cross. It often is

necessary to redraw the diagram several times with use cases in different places to make the

diagram easy to read. Also, for understandability purposes, there should be no more than

three to nine use cases on the model to the diagram as simple as possible. This includes

those use cases that have been factored out and now are associated with another use case

through the include, extend, or generalization relationships.

Third, the actors are placed on the diagram. The actors are taken directly from the pri-

mary actor element on the detailed use case description. Like use case placement, to mini-

mize the number of lines that will cross on the diagram, the actors should be placed near

the uses cases with which they are associated.

The fourth and last step is to draw lines connecting the actors to the use cases with which

they interact. No order is implied by the diagram, and the items you have added along the

way do not have to be placed in a particular order; therefore, you may want to rearrange the

symbols a bit to minimize the number of lines that cross so the diagram is less confusing.

REFINING PROJECT SIZE AND EFFORT ESTIMATION USING USE CASE POINTS23

Back in Chapter 4, we used function points and the COCOMO method to estimate the size

and effort of a systems development project, respectively. However, neither of these

approaches were developed nor validated with object-oriented systems in mind. As such,

186 Chapter 6 Functional Modeling

23 The material in this section is based on descriptions of use case points contained in Raul R. Reed, Jr., Develop-
ing Applications with Java and UML (Reading, MA: Addison-Wesley, 2002), Geri Schneider and Jason P. Winters,
Applying Use Cases: A Practical Guide (Reading, MA: Addison-Wesley, 1998), and Kirsten Ribu, Estimating Object-
Oriented Software Projects with Use Cases, Masters Thesis, Department of Informatics, University of Oslo, 2001.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

even though they are very popular approaches to estimation, their application to object-

oriented systems is questionable. Since you now know about use cases, we introduce a size

and effort estimation technique that was developed around their use. This technique,

known as use case points, was originally developed by Gustav Karner of Objectory AB.24

Use case points are based on the same ideas that function points were developed. However,

they have been refined to take into consideration of the unique features of use cases and

object orientation.

To estimate size and effort using use case points, first you must have created at least the

set of essential use cases and the use case diagram. Otherwise, the information required will

not be available. Once the use cases and use case diagram have been created, you need to

classify the actors and use cases as being simple, average, or complex.

Simple actors are separate systems that the current system must communicate through

a well-defined application program interface (API). Average actors are separate systems that

interact with the current system using standard communication protocols, such as TCP/IP,

FTP, or HTTP, or an external database that can be accessed using standard SQL. Complex

actors are typically end users communicating with the system using some type of GUI.

Once all of the actors have been classified, the appropriate numbers should be entered into

the Unadjusted Actor Weighting Table contained in the Use Case Point estimation work-

sheet (see Figure 6-11). For example, reviewing the Make Appointment use case (see Fig-

ure 6-4) and the use case diagram for the Appointment system (see Figure 6-9) we see that

we have four human actors that interact with the system giving an Unadjusted Actor Weight

Total (UAW) of 12.

Depending on the number of unique transactions that the use case must address, a

use case is classified as a simple use case (1–3), an average use case (4–7), or a complex use

case (>7). In the original formulation of use case point estimation, Karner suggested

that included and extended use cases should be ignored. However, today the recom-

mendation is to use all use cases, regardless of their type in the estimation calculation.

For example, the Make Appointment use case described in Figure 6-4 must deal with a

set of activities including making a new appointment, canceling an existing appoint-

ment, changing an existing appointment, creating a new patient, and making payment

arrangements. In this case, since the Make Appointment use case has to deal with five

separate transactions, it would be classified as an average use case (see the Unadjusted

Use Case Weighting Table in Figure 6-11). Based on the Appointment System use case

diagram (see Figure 6-9), we have three simple use cases (Produce Schedule, Make Old

Patient Appointment, and Record Availability), four average use cases (Make Appoint-

ment, Make New Patient Appointment, Manage Schedule, and Make Payment Arrange-

ments), and one complex use case (Update Patient Information) giving an Unadjusted

Use Case Weight Total (UUCW) of 70.

Refining Project Size and Effort Estimation using Use Case Points 187

Look at the Use Case Diagram in Figure 6-9. Consider if a
use case were added to maintain patient insurance infor-

mation. Make assumptions about the details of this use case
and add it to the existing use case diagram in Figure 6-9.

6-3 Use Case DiagramYOUR

TURN

24 Objectory AB was acquired by Rational back in 1995. Rational is now part of IBM.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

188 Chapter 6 Functional Modeling

Unadjusted Actor Weighting Table:

Actor Type Description Weighting Factor Number Result

Simple External System with well-defined API 1

Average External System using a protocol-based 2
interface, e.g., HTTP, TCT/IP, or a database

Complex Human 3

Unadjusted Actor Weight Total (UAW)

Unadjusted Use Case Weighting Table:

Use Case Type Description Weighting Factor Number Result

Simple 1–3 transactions 5

Average 4–7 transactions 10

Complex >7 transactions 15

Unadjusted Use Case Weight Total (UUCW)

Unadjusted Use Case Points (UUCP) = UAW + UUCW

Technical Complexity Factors:

Factor Number Description Weight Assigned Value (0–5) Weighted Value Notes

T1 Distributed system 2.0

T2 Response time or throughput 1.0
performance objectives

T3 End-user online efficiency 1.0

T4 Complex internal processing 1.0

T5 Reusability of code 1.0

T6 Easy to install 0.5

T7 Ease of use 0.5

T8 Portability 2.0

T9 Ease of change 1.0

T10 Concurrency 1.0

T11 Special security objectives included 1.0

T12 Direct access for third parties 1.0

T13 Special User training required 1.0

Technical Factor Value (TFactor)

Technical Complexity Factor (TCF) = 0.6 + (0.01 * TFactor)

Environmental Factors:

Factor Number Description Weight Assigned Value (0 – 5) Weighted Value Notes

E1 Familiarity with system 1.5
development process being used

E2 Application experience 0.5

E3 Object-oriented experience 1.0

E4 Lead analyst capability 0.5

E5 Motivation 1.0

E6 Requirements stability 2.0

E7 Part time staff –1.0

E8 Difficulty of programming language –1.0

Environmental Factor Value (EFactor)

Environmental Factor (EF) = 1.4 + (–0.03 * EFactor)
Adjusted Use Case Points (UCP) = UUCP * TCF * ECF
Effort in Person Hours = UCP * PHM

FIGURE 6-11 Use Case Point Estimation Worksheet

TEMPLATE

can be found at
www.wiley.com
/college/dennis

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

The value of the Unadjusted Use Case Points (UUCP) is simply the sum of the Unad-

justed Actor Weight Total (12) and the Unadjusted Use Case Weight Total (70). As such,

UUCP is equal to 82.

In the spirit of function point analysis, use case point–based estimation also has a set

of factors that are used to adjust the use case point value. In this case, there are two set of

factors: technical complexity factors (TCF) and environmental factors (EF). There are thir-

teen separate technical factors and eight separate environmental factors. The purpose of

these factors is to allow the project as a whole to be evaluated for complexity and experi-

ence levels of the staff, respectively. Obviously, these types of factors can impact the effort

required by a team to develop a system. Each of these factors are assigned a value between

0 and 5; 0 representing that the factor is irrelevant to the system under consideration and

5 representing that the factor is essential for the system to be successful. The assigned val-

ues are then multiplied by their respective weights. These weighted values are then summed

up to create a technical factor value (TFactor) and an environmental factor value (EFactor).

The technical factors include the following:

■ Whether the system was going to be a distributed system

■ The importance of response time

■ The efficiency level of the end user using the system

■ The complexity of the internal processing of the system

■ The importance of code reuse

■ How easy the installation process had to be

■ The importance of the ease of using the system

■ How important it was for the system to be able to be ported to another platform

■ Whether system maintenance is important

■ Whether the system is going to have to handle parallel and concurrent processing

■ The level of special security required

■ The level of system access by third parties

■ Whether special end user training was to be required (see Figure 6-11)

The environmental factors include the following:

■ The level of experience the development staff has with the development process

being used

■ The application being developed

■ The level of object-oriented experience

■ The level of capability of the lead analyst

■ The level of motivation of the development team to deliver the system

■ The stability of the requirements

■ Whether part-time staff have to be included as part of the development team

■ The difficulty of the programming language being used to implement the system

(see Figure 6-11)

Continuing the appointment example, the values for the technical factors were T1 (0),

T2 (5), T3 (3), T4 (1), T5 (1), T6 (2), T7 (4), T8 (0), T9 (2), T10 (0), T11 (0), T12 (0), T13

(0), giving a TFactor of 15. Plugging this value into the TCF equation of the Use Case Point

Worksheet gives a value of 0.75 for the TCF of the appointment system.

The values for the environmental factors were E1 (4), E2 (4), E3 (4), E4 (5), E5 (5), E6

(5), E7 (0), and E8 (3), giving a EFactor of 26.5. Using the EF equation of the Use Case

Point Worksheet produces a value of 0.605 for the EF of the appointment system. Plugging

Refining Project Size and Effort Estimation using Use Case Points 189

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

the TCF and EF values, along with the UUCP value computed earlier, into the Adjusted Use

Case Points equation of the Worksheet computes a value of 37.2075 Adjusted Use Case

Points (UCP).

Now that we know the estimated size of the system by means of the value of the

adjusted use case points, we are ready to estimate the effort required to build the system.

In Karner’s original work, he suggested simply multiplying the number of use case

points by 20 to estimate the number of person hours required to build the system. How-

ever, based on additional experiences using use case points, a decision rule to determine

the value of the person hours multiplier (PHM) has been created that suggests using

either 20 or 28, based on the values assigned to the individual environmental factors.

The decision rule is:

If sum of (Number of Efactors E1 through E6 Assigned Value < 3) and

(Number of Efactors E7 and E8 Assigned Value > 3)

<= 2

PHM = 20

Else—If sum of (Number of Efactors E1 through E6 Assigned Value < 3) and

(Number of Efactors E7 and E8 Assigned Value > 3)

= 3 or 4

PHM = 28

Else

Rethink project; it has too high of a risk for failure

Based on these rules, the appointment system should use a PHM of 20. This gives an esti-

mated number of person hours of effort of 744.15 hours (20 × 37.2075).

The primary advantages of using use case points over traditional estimation tech-

niques are that they are based in object-oriented systems development and use cases,

rather than traditional approaches to systems development. However, there is a risk of

using use case points in that there has not been as much history using them in compar-

ison to the traditional approaches described in Chapter 4. As such, the suggested classi-

fications used for simple, average, and complex actors and use cases, the weighting

factors for simple, average, and complex actors and use cases, and the weightings associ-

ated with the computation of the technical complexity and environmental factors may

need to be modified in the future. However, at this point the suggested values seem to be

the best available.

APPLYING THE CONCEPTS AT CD SELECTIONS

The basic functional and nonfunctional requirements for the CD Selections Internet sales

system were developed in the previous chapters. At this point, you should go back and care-

fully review these requirements (see Figures 3-2, 3-12, 4-24, and 5-13).

190 Chapter 6 Functional Modeling

Consider the use case you created in Your Turn 6-2.
Using the worksheet in Figure 6-11, estimate the project

size and effort for your use case.

6-4 Estimating Using Use Case PointsYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Business Process Modeling with Activity Diagrams

Based on the functional requirements identified for the Internet sales system, Alec and his

team decided that there were at least four high-level activities that needed to be addressed:

Place CD Orders, Maintain CD Information, Maintain CD Marketing Information, and Fill

Mail Orders. As a first step toward developing a functional model of the functional require-

ments, Alec decided to model the overall flow of execution of the business processes as an

activity diagram. Upon close review of the Place CD Orders requirements, the team iden-

tified a decision and two additional activities: Place InStore Hold and Place Special Order.

These activities were based on the requirements laid out in point 3.5 of Figure 5-13. Fur-

thermore, the team noticed that there seemed to be three separate, concurrent paths of exe-

cution implied in the requirements. The first path dealt with orders, the second addressed

the maintenance of marketing information, and the third focused on maintaining the

information about the CDs. Based on these new insights, Alec and his team drew the activ-

ity diagram for the Internet sales system shown in Figure 6-12.

Identify the Major Use Cases

The first four steps in writing use cases deal with reviewing the activity diagram, finding

the subject boundaries, listing the primary actors and their goals, and identifying and writ-

ing overviews of the major use cases based on these results. These use cases will form the

basis of the use cases that are contained on the use case diagram. Before you continue read-

ing, take a minute and review the requirements identified in Figure 5-13 and the activity

diagram we just completed (see Figure 6-12) to identify the three to nine major use cases.

Applying the Concepts at CD Selections 191

[Mail Order][In Store Hold]

Maintain CD Marketing InformationPlace Order

Special Order

Maintain CD Information

Place InStore Hold Fill Mail Order

FIGURE 6-12 Activity Diagram for the CD Selections To-Be Internet Sales System

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

To begin with, it seems that the subject boundary should be drawn in such a manner

that anything that is not part of CD Selections’ Internet sales system, such as the vendors

and customers, should be identified as primary actors. Therefore, these are considered out-

side of the scope of the system. The other potential actors identified could be the distribu-

tion system, Electronic Marketing (EM) manager, and the current CD Selections stores.

Upon closer review of Figure 5-13, it seems that the distribution system and the current

CD Selections stores should be outside the scope of the Internet sales system. As such, they

also should be identified as primary actors. In the case of the EM manager, it seems that the

EM manager should be considered as part of the Internet sales system and therefore should

not be identified as a primary actor. Remember, primary actors are only those that can be

viewed as being outside of the scope of the system. The decision on whether the EM man-

ager, the current CD Selections stores, or the distribution system is inside or outside of the

system is somewhat arbitrary. From a customer’s perspective, the distribution system and

the current CD Selections stores could be seen as being inside of the overall system and it

could be argued that the EM manager is a primary user of the Internet sales system.

At this point in the process, it is important to make a decision and move on. During

the process of writing use cases, there are ample opportunities to revisit this decision to

determine whether the set of use cases identified are necessary and sufficient to describe the

requirements of the Internet sales system for CD Selections. As you can see, finding the sys-

tems boundaries and listing the primary actors are heavily intertwined.

Based on the functional requirements and the activity diagram, Alec and his team

identified four overview major use cases: Maintain CD Information, Maintain CD Mar-

keting Information, Place Order, and Fill Order. You might have considered adding new

CDs to the database, deleting old ones, and changing information about CDs as three sep-

arate use cases, which in fact they are. If you think about it, you should see that in addition

to these three, we also need to have use cases for finding CD information and printing

reports about CDs. However, our goal at this point is to develop a small set of essential use

cases for the Internet sales system.

You should see the same pattern for the marketing materials. We have the same processes

for recording new marketing material for a CD, changing it, deleting it, finding it, and print-

ing it. These five activities (creating, changing, deleting, finding, and printing) are the stan-

dard processes usually required anytime that you have information to be stored in a database.

The project team at CD Selections identified these same four major use cases. At this

point in the process, the project team began writing the overview use cases for these four.

Remember, that an overview use case only has five pieces of information: use case name, ID

number, primary actor, type, and a brief description. We have already identified the primary

actors and have associated them with the four use cases. Furthermore, since we are just

beginning the development process, all four use cases type will be Overview and Essential.

Since the ID numbers are simply used for identification purposes (i.e., they act as a key in a

database), their values can be assigned in a sequential manner. This only leaves us with two

pieces of information for each use case to write. The use case name should be an action

verb/noun phrase combination (e.g., Make Appointment). In the CD Selections Internet

sales situation, Maintain CD Information, Maintain CD Marketing Information, Place

Order, and Fill Order seem to capture the essence of each of the use cases. Finally, a brief

description is written to describe the purpose of the use case or the goal of the primary actor

using the use case. This description can range from a sentence to a short essay. The idea is to

capture the primary issues in the use case and make them explicit. (See Figure 6-13.)

The fifth step is to carefully review the current set of use cases. Take a moment to

review the use cases and make sure you understand them. Based on the descriptions of all

four use cases, there seems to be an obvious missing use case: Maintain Order. Since the

192 Chapter 6 Functional Modeling

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

project team did not include language in the brief description of the Place Order use case,

it seems that the project team believes that maintaining an order is sufficiently different

from placing an order that it should have its own use case to describe it. Furthermore, it

does not seem reasonable that a customer would see placing an order and maintaining an

order as the same use case. This type of process goes on until the project team feels that

they have identified the major use cases for the Internet sales system.

Applying the Concepts at CD Selections 193

Use Case Name:

Primary Actor:

Stakeholders and Interests:

Brief Description:

ID: Importance Level:

Trigger:

Normal Flow of events:

Subflows:

Alternate/exceptional flows:

Maintain CD information 1

Distribution system Use Case Type: Overview, essential

This adds, deletes, and modifies the basic information about the CDs

we have available for sale (e.g., album name, artist(s), price, quantity

on hand, etc.).

Relationships:

Use Case Name:

Primary Actor:

Stakeholders and Interests:

Brief Description:

ID: Importance Level:

Trigger:

Normal Flow of events:

Subflows:

Alternate/exceptional flows:

Use Case Type:

Relationships:

Use Case Name:

Primary Actor:

Stakeholders and interests:

Brief Description:

ID: Importance Level:

Trigger:

Normal Flow of events:

Subflows:

Alternate/exceptional flows:

Use Case Type:

Relationships:

Maintain marketing information 2

Vendor Overview, essential

Overview, essential

This adds, delete, and modifies the additional marketing

material available for some CDs (e.g., reviews).

This use case describes how customers can search the Web

site and place orders.

Place order 3

Customer

Use Case Name:

Primary Actor:

Stakeholders and Interests:

Brief Description:

ID: Importance Level:

Trigger:

Normal Flow of Events:

Use Case Type:

Relationships:

Association:
Include:
Extend:
Generalization:

Fill order 4

Distribution system

Type:

Overview, essential

This describes how orders move from the Internet Sales

System into the distribution system and how status

information will be updated from the distribution system.

Subflows:

FIGURE 6-13 Overview Major Use Cases for CD Selections

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Expanding the Major Use Cases

The sixth step is to choose one of the major use cases to expand. To help the project team

to make this choice, they identified the trigger and the stakeholders and their interests for

each of the major use cases.

The first use case, maintain CD information, was triggered by the distribution system

distributing new information for use in the CD database. Besides the distribution system,

another stakeholder was identified: EM manager. The second use case, maintain marketing

materials, has a similar structure. The receipt of marketing materials received from vendors

triggers it. And again, it seemed to the project team that the EM manager was an interested

stakeholder. The third use case, place order, is more interesting. The trigger is the cus-

tomer’s actions. Again, the EM manager is an interested stakeholder. This use case has

many more inputs. The fourth use case, fill order, is based on the decision logic identified

in the activity diagram. However, upon further reflection, the team decided to replace this

use case with three separate use cases. One for each approach to fill an order: Place Special

Order, Place InStore Hold, and Fill Mail Order. The first two are controlled by actions of

the customer. However, the Fill Mail Order use case has a temporal trigger: every hour the

Internet sales system downloads orders into the distribution system. The final use case,

maintain order, is triggered by the customer’s action. However, on close review, it seems

that it also has much in common with the other maintenance related use cases: maintain

CD information and maintain marketing information. And like all of the other use cases,

the EM manager has an interest.

Based on their review of the major use cases, the project team decided that the Place

Order use case was the most interesting. The next step, number seven, is to start filling in the

details of the chosen use case. At this point in time, the project team had the information to

fill in the stakeholders and interests, the trigger, and the Association relationship. Remem-

ber that the association relationship is simply the communication link between the primary

actor and the use case. In this use case, the Association relationship is with the Customer.

The project team then needed to gather the information needed to define the place

order use case in more detail. Specifically, they needed to begin writing the Normal Flow of

Events, that is, they should perform the eighth step for writing effective use cases (see Fig-

ure 6-10). This was done based on the results of the earlier analyses described in Chapter

5, as well as through a series of JAD meetings with the project sponsor and the key mar-

keting department managers and staff who would ultimately operate the system.

The goal at this point is to describe how the use case operates. In this example, we will

focus on the most complex and interesting use case, place order. The best way to begin to

understand how the customer works through this use case is to visualize yourself placing a CD

order over the Web, and to think about how other electronic commerce Web sites work—that

is, role play. The techniques of visualizing yourself interacting with the system and of thinking

about how other systems work (informal benchmarking) are important techniques that help

analysts and users understand how systems work and how to write the use case. Both tech-

niques (visualization and informal benchmarking) are commonly used in practice. It is impor-

tant to remember that at this point in the development of the use case, we are only interested

in the typical successful execution of the use case. If you try to think of all of the possible com-

binations of activities that could go on, you will never get anything written down.

In this situation, after you connect to the Web site, you probably begin searching, per-

haps for a specific CD, perhaps for a category of music, but in any event, you enter some

information for your search. The Web site presents a list of CDs matching your request,

along with some basic information about the CDs (e.g., artist, title, and price). If one of the

CDs is of interest to you, you might seek more information about it, such as the list of songs,

liner notes, or reviews. Once you, the customer, find a CD you like, you will add it to your

194 Chapter 6 Functional Modeling

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

order and perhaps continue looking for more CDs. When you are done—perhaps immedi-

ately—you will “check out” by presenting your order with information on the CDs you want

and giving additional information such as mailing address and credit card number.

When you write the use case, be sure to remember the seven guidelines described earlier.

One might argue that the first step is to present the customer with the home page or a form

to fill in to search for an album. This is correct, but this type of step is usually very “small”

compared to other steps that follow.25 It is analogous to making the first step “hand the user

a piece of paper.” At this point, we are only looking for the three to seven major steps.

The first major step performed by the system is to respond to the customer’s search

inquiry, which might include a search for a specific album name or albums by a specific artist.

Or, it might be the customer wanting to see all the classical or alternative CDs in stock. Or, it

might be a request to see the list of special deals or CDs on “sale.” In any event, the system

finds all the CDs matching the request, and shows a list of CDs in response. The user will view

this response, and perhaps will decide to seek more information about one or more CDs. He

or she will click on it, and the system will provide additional information. Perhaps the user

will also want to see any extra marketing material that is available. The user will then select

one or more CDs for purchase, decide how to take delivery of each CD, and perhaps continue

with a new search. These steps correspond to events 1 through 7 in Figure 6-14.

The user may later make changes to the CDs selected, either by dropping some or

changing the number ordered. This seems to be similar to an already identified separate use

case: maintain order. As such, we will simple reuse that use case to handle those types of

details. At some point the user will “check-out” by verifying the CDs he or she has selected

for purchase, and providing information about him or herself (e.g., name, mailing address,

credit card). The system will calculate the total payment and verify the credit card infor-

mation with the credit card center. At this point in the transaction, the system will send an

order confirmation to the customer, and the customer typically leaves the Web site. Figure

6-14 shows the use case at this point. Note that the Normal Flow of Events has been added

to the form, but nothing else has changed.

The ninth step for writing uses cases (see Figure 6-10) is basically to try and simplify

the current normal flow of events. Currently, we have 12 events, which is a little high.

Therefore, we need to see if there are any steps that we can merge, delete, rearrange, and if

there are any that we have left out. Based on this type of review, we have decided to create

a separate use case that can handle the “checkout” process (events 9, 10, and 11). We also

see that events 5 and 6 could be viewed as a part of the “maintain order” use case. As such,

we delete events 5 and 6 and move event 8 into its place. Now we have eight events. This

seems to be a reasonable number for this particular use case.

The next two steps in writing a use case addresses the handling of alternate or excep-

tional flows. If you remember, the Normal Flow of Events only captures the typical set of

events that end in a successful transaction. In this case, CD Selections has defined success

as a new order being placed. In our current use case, the project team has identified two

sets of events that are exceptions to the normal flow. First, event 3 assumes that the list of

recommended CDs are acceptable to the customer. However, as one of the team members

pointed out, that is an unrealistic assumption. As such, two exceptional flows have been

identified and written (3a-1 and 3a-2 in Figure 6-15) to handle this specific situation. Sec-

ond, a customer may want to abort the entire order instead of going through the checkout

process. In this case, exceptional flow 7a was created.26

Applying the Concepts at CD Selections 195

25 Since it is so small, it violates the fourth principle (see Figure 6-5).
26 Another approach would be to force the customer through the “maintain order” or “checkout” use cases. How-
ever, the marketing representatives on the project team were concerned with customer frustration. As such, the
project team included it in the “place order” use case.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Confirming the Major Use Cases

Once all the use cases had been defined, the final step in the JAD session was to confirm

that they were accurate. The project team had the users role play the use cases. A few minor

problems were discovered and easily fixed. However, one major problem was discovered:

how does a new customer get created? This was easily fixed by creating a new use case, Cre-

ate New Customer, and adding it as an extension to the checkout use case. Figure 6-16

shows the revised use cases. Now the use case development process can actually start all

over again or we can move on to drawing the use case diagram.

196 Chapter 6 Functional Modeling

Use Case Name:

Primary Actor:

Stakeholders and Interests:

Brief Description:

ID: Importance Level:

Trigger:

Type:

Normal Flow of Events:

Subflows:

Alternate/exceptional Flows:

Place Order 3 High

Customer

External

Customer

Maintain order

Use Case type: Detail, Essential

This use case describes how customers can search the Web

site and place orders.

Customer visits Web site and places order

Customer - wants to search Web site to purchase CD

EM manager - wants to maximize customer satisfaction

Relationships:

Association:
Include:
Extend:
Generalization:

1. The Customer submits a search request to the system.

2. The System provides the Customer a list of recommended CDs.

3. The Customer chooses one of the CDs to find out additional information.

4. The System provides the Customer with basic information and reviews on the CD.

5. The Customer adds the CD to their shopping cart.

6. The Customer decides how to “fill” the order.

7. The Customer iterates over 3 through 5 until done shopping.

8. The Customer executes the Maintain Order use case.

9. The Customer logs in to check out.

10. The System validates the Customer’s credit card information.

11. The System sends an order confirmation to the Customer.

12. The Customer leaves the Web site.

FIGURE 6-14 Places Order Use Case after Step 8

Complete the detailed use cases for the remaining overview use cases in Figure 6-16.

6-5 CD-Selections Internet Sales SystemYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Applying the Concepts at CD Selections 197

Use Case Name:

Primary Actor:

Stakeholders and Interests:

Brief Description:

ID: Importance Level:

Trigger:

Normal Flow of Events:

Subflows:

Alternate/exceptional Flows:

Place Order 3 High

Customer

Customer

Checkout, Maintain Order

Use Case Type: Detail, Essential

This use case describes how customers can search the Web

site and place orders.

Customer visits Web site and places order

Customer–wants to search Web site to purchase CD.

EM manager–wants to maximize customer satisfaction.

Relationships:

Association:
Include:
Extend:
Generalization:

1. Customer submits a search request to the system.

2. The System provides the Customer a list of recommended CDs.

3. The Customer chooses one of the CDs to find out additional information.

4. The System provides the Customer with basic information and reviews on the CD.

5. The Customer calls the Maintain Order use case.

6. The Customer iterates over 3 through 5 until done shopping.

7. The Customer executes the Checkout use case.

8. The Customer leaves the Web site.

3a-1. The Customer submits a new search request to the system.

3a-2. The Customer iterates over steps 2 through 3 until satisfied with search results or gives up.

7a. The Customer aborts the order.

Type: External

FIGURE 6-15 Places Order Use Case after Step 11

Create a set of use cases for the following high-level
processes in a housing system run by the campus hous-
ing service. The campus housing service helps students
find apartments. Apartment owners fill in information
forms about the rental units they have available (e.g.,
location, number of bedrooms, monthly rent), which are
then entered into a database. Students can search

through this database via the Web to find apartments
that meet their needs (e.g., a two-bedroom apartment for
$400 or less per month within 1/2 mile of campus). They
then contact the apartment owners directly to see the
apartment and possibly rent it. Apartment owners call
the service to delete their listing when they have rented
their apartment(s).

6-6 Campus HousingYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

198 Chapter 6 Functional Modeling

Association:
Include:

Materials arrive from vendors, distributors, wholesalers, record companies, and articles from trade magazines

Relationships:

Association:
Include:

Extend:
Generalization :

Vendor

Use Case Name:

Primary Actor:

Stakeholders and Interests:

Brief Description:

ID: Importance Level:

Trigger:

Type: External

Use Case Type:

Relationships:

Use Case Name:

Primary Actor:

Stakeholders and Interests:

Brief Description:

ID: Importance Level:

Trigger:

Maintain Marketing Information 2

Vendor Use Case Type: Detail, Essential

This adds, deletes, and modifies the marketing material available for some CDs (e.g., reviews).

Vendor–wants to ensure marketing information is as current as possible.

EM Manager–wants marketing information to be correct to maximize sales.

High

Maintain CD Information 1

Distribution System

Distribution System

Downloads from the Distribution System

Detail, Essential

This adds, deletes, and modifies the basic information about the CDs we have available for sale (e.g., album

name, artist(s), price, quantity on hand, etc.).

Use Case Name:

Primary Actor:

Stakeholders and Interests:

Brief Description:

ID: Importance Level:

Trigger:

Use Case Type:

Relationships:

Association:
Include:
Extend:
Generalization :

This use case describes how customers can search the Web site and place orders.

Place Order 3 High

Customer

Customer

Checkout, Maintain Order

Detail, Essential

Customer visits Web site and places order.

Customer–wants to search Web site to purchase CD.

EM Manager–wants to maximize Customer satisfaction.

Type: External

Type: External

FIGURE 6-16A Revised Major Use Cases for CD Selections (Continues)

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Last h3 199

Association:
Include:

Extend:
Generalization :

Customer signals the system they want to finalize their order.

Relationships:

Association:
Include:

Extend:
Generalization :

Credit Card Center

Maintain Order

Use Case Name:

Primary Actor:

Stakeholders and Interests:

Brief Description:

ID: Importance Level:

Trigger:

Type: External

Type: External

Use Case Type:

Relationships:

Use Case Name:

Primary Actor:

Stakeholders and Interests:

Brief Description:

ID: Importance Level:

Trigger:

Checkout 6

Customer Use Case Type: Detail, Essential

This use case describes how the customer completes an order including credit card authorization.

Customer–wants to finalize the order.

Credit Card Center–wants to provide effective and efficient service to CD selections.

EM Manager–wants to maximize order closings.

High

Maintain Order 5 High

Customer

Customer visits Web site and requests to modify a current order.

Detail, Essential

This use case describes how a Customer can cancel or modify an open or existing order.

Customer–wants to modify order.

EM Manager–wants to ensure high customer satisfaction.

Use Case Name:

Primary Actor:

Stakeholders and Interests:

Brief Description:

ID: Importance Level:

Trigger:

Use Case Type:

Relationships:

Association:
Include:
Extend:
Generalization :

This use case describes how a customer is added to the Customer database.

Create New Customer 7 High

Customer

Customer

Detail, Essential

An unknown Customer attempts to checkout.

Customer–wants to be able to purchase CDs from CD selections.

EM Manager–wants to increase CD selections Customer base.

Type: External

FIGURE 6-16B Revised Major Use Cases for CD Selections (Continues)

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

200 Chapter 6 Functional Modeling

Association:
Include:

Extend:
Generalization :

Customer selects CD on order for an in store hold to be picked up at bricks and mortar store.

Relationships:

Association:
Include:

Extend:
Generalization :

Bricks and mortar store

Use Case Name:

Primary Actor:

Stakeholders and Interests:

Brief Description:

ID: Importance Level:

Trigger:

Type: External

Bricks and mortar store

Type: External

Use Case Type:

Relationships:

Use Case Name:

Primary Actor:

Stakeholders and Interests:

Brief Description:

ID: Importance Level:

Trigger:

Place InStore Hold 9

Customer Use Case Type: Detail, Essential

This use case describes how a Customer places an in store hold using the Internet Sales system.

Customer–wants to be able to place an in store hold a CD for In Store pick up.

EM manager–wants to increase sales associated with the Internet Sales system.

Bricks and Mortar Store Manager–wants to increase sales associated with the store.

High

Place Special Order 8 High

Customer

Customer selects CD on order for a special order at bricks and mortar store.

Detail, Essential

This use case describes how a Customer places a special order using the Internet Sales system.

Customer–wants to be able to place a special order of CDs for in store pick up.

EM manager–wants to increase sales associated with the Internet Sales system.

Bricks and Mortar Store Manager–wants to increase sales associated with the store.

Use Case Name:

Primary Actor:

Stakeholders and Interests:

Brief Description:

ID: Importance Level:

Trigger:

Use Case Type:

Relationships:

Association:
Include:
Extend:
Generalization :

This describes how mail orders move from the Internet Sales system into the distribution system and

how status information will be updated from the distribution system.

Fill Mail Order 10 High

Customer

Distribution System

Maintain Order

Detail, Essential

Every hour the Distribution System will initiate a trading of information with the Internet Sales system.

Mail Order Distribution System–wants to complete order processing in a timely manner.

Customer–wants to receive order in a timely manner.

EM Manager–wants to maximize order throughput.

Type: Temporal

FIGURE 6-16C Revised Major Use Cases for CD Selections (Continued)

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Creating the Use Case Diagram

Creating a use case diagram from the detailed use case descriptions is very easy. Since a use

case diagram only shows the subject boundary, the use cases themselves, the actors, and the

various associations between these components, they support information hiding. Use case

diagrams only provide a pictorial overview of the detailed use cases. There are four major

steps to drawing a use case diagram.

Draw the Subject Boundary In this case, place a box on the use case diagram to repre-

sent the Internet sales system, and place the system’s name either inside or on top of the

box. Based on a review of Figure 6-16, be sure to draw the box large enough to contain the

use cases. Also, be sure to leave space on the outside of the box for the actors.

Place the Use Cases on the Diagram The next step is to add the use cases. Place the

number of use cases inside the system boundary to correspond with the number of func-

tions that the system needs to perform. There should be no more than three to nine use

cases on the model. Can you identify the use cases that need to be placed in the system

boundary by examining Figure 6-16?

Identify the Actors Once the use cases are placed on the diagram, you will need to place

the actors on it. Normally, it is fairly easy to place the actors near their respective use cases.

Look at the detailed use cases in Figure 6-16 and see if you can identify the five “actors” that

belong on the use case diagram.

Hopefully you have listed the distribution system, the existing bricks-and-mortar

stores, customer, vendor, and credit card center. At this point, there are no specialized actors

that need to be included.

Add Associations The last step is to draw lines connecting the actors with the use cases

with which they interact. See Figure 6-17 for the use case diagram that we have created.

Applying the Concepts at CD Selections 201

Previously in Your Turn 6-6, you identified use cases
for a campus housing service that helps students find

apartments. Based on those use cases, create a use
case diagram.

6-8 Drawing a Use Case DiagramYOUR

TURN

The use case diagram for the Internet sales systems does
not include any generalization relationships. See if you
can come up with one example for a use case and
another example for an actor that may be helpful for CD

Selections to add to the use case diagram shown in Figure
6-17. Describe how the development effort may benefit
from including your examples.

6-7 Identifying Generalization Associations in Use Cases and Specialized ActorsYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Refine Project Size and Effort Estimation Using Use Case Points

Now that the functional modeling aspect of the system development effort has been com-

pleted, Alec and his team decide that they need to refine the estimation of the size and

effort to build the system. Based on the completed use cases (see Figure 6-16) and the use

case diagram (see Figure 6-17), Alec could now use the use cases as the basis for the esti-

mation using use case points.

First, Alec had to classify each actor and use case as being simple, average, or complex.

In the case of the actors, Bricks and Mortar store and Distribution System had a well-defined

202 Chapter 6 Functional Modeling

Internet Sales System

Vendor

Customer

Maintain
Marketing Information

<<actor>>
Bricks and

Mortar Store

<<actor>>
Bricks and

Mortar Store

<<actor>>
Distribution

System

PlaceOrder

Checkout

Maintain Order

Fill Mail Order

Create New
Customer

Place InStore
Hold

Place Special
Hold

Maintain CD
Information

<<include>>

<
<

in
cl

u
d
e>

>

<<include>>

<<extend>>

<<
ex

te
nd

>>

<
<
ex

te
nd

>
>

<
<

ex
te

n
d
>

>

FIGURE 6-17 Use Case Diagram for the CD Selections Internet Sales System

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

API. As such they were classified as simple actors. The Credit Card Center was considered to

be average, while the Vendor and Customer actors were classified as being complex. This

gave an Unadjusted Actor Weight Total Value of 10. (See Figure 6-18.)

Second, Alec classified each use case based on the number of unique transactions that

each had to handle. In this case, there were three simple use cases (Place InStore Hold, Place

Special Order, and Fill Mail Order), one average use case (Create New Customer), and five

complex use cases (Place Order, Checkout, Maintain Order, Maintain CD Information, and

Maintain CD Marketing Information). This assigns a value of 100 to the Unadjusted Use

Case Weight Total (see Figure 6-18).

Third, Alec computed a value of 110 for the Unadjusted Use Case Points. Fourth, he

rated each of the technical complexity factors, rated each of the environmental factors, and

computed the values for TCF and EF (see Figure 6-18). Fifth, using the Unadjusted Use

Case Points and the TCF and EF values, Alec calculated a value of 134.992 for Adjusted Use

Case Points. Sixth, based on the decision rule to determine whether to use 20 or 28 as the

value of the person hours multiplier, Alec realized that he should use 28. Finally, Alec was

able to estimate the remaining effort for the project to be 3,779.776 hours. Based on the

new effort estimate, Alec updated the schedule.

SUMMARY

Business Process Modeling with Activity Diagrams

Even from an object-oriented systems development point of view, business process model-

ing has been shown to be valuable. The one major hazard of business process modeling is

that it focuses the systems development process in a functional decomposition direction.

However, if used carefully, it can enhance the development of object-oriented systems.

UML supports process modeling using an activity diagram. Activity diagrams are com-

prised of activities or actions, objects, control flows, object flows, and a set of seven differ-

ent control nodes (initial, final-activity, final-flow, decision, merge, fork, and join).

Furthermore, swimlanes can be used to enhance the readability of the diagrams. The activ-

ity diagram is very useful in aiding the analyst in identifying the relevant use cases for the

information system being developed.

Use Case Descriptions

Use cases are the primary method of documenting requirements for object-oriented sys-

tems. They represent a functional view of the system being developed. There are

overview and detail use cases. Overview use cases comprise the use case name, ID num-

ber, primary actor, type, and a brief description. Detailed use cases extend the overview

use case with the identification and description of the stakeholders and their interest, the

trigger and its type, the relationships in which the use case participates (association,

extend, generalization, and include), the normal flow of events, the subflows, and any

alternate or exception flows to the normal flow of events. There are seven guidelines (see

Figure 6-5) and thirteen steps (see Figure 6-10) to writing effective use cases. The thir-

teen steps can be summed up into three aggregate groups of steps: identify the major use

cases (steps 1 to 5), expand the major use cases (steps 6 to 11), and confirm the major

use cases (steps 12 to 13).

Use Case Diagrams

Use case diagrams are simply a graphical overview of the set of use cases contained in the

system. They illustrate the main functionality of a system and the actors that interact with

Summary 203

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

204 Chapter 6 Functional Modeling

Unadjusted Actor Weighting Table:

Actor Type Description Weighting Factor Number Result

Simple External System with well-defined API 1 2 2

Average External System using a protocol-based 2 1 2
interface, e.g., HTTP, TCT/IP, or a database

Complex Human 3 2 6

Unadjusted Actor Weight Total (UAW) 10

Unadjusted Use Case Weighting Table:

Use Case Type Description Weighting Factor Number Result

Simple 1–3 transactions 5 3 15

Average 4–7 transactions 10 1 10

Complex >7 transactions 15 5 75

Unadjusted Use Case Weight Total (UUCW) 100

Unadjusted Use Case Points (UUCP) = UAW + UUCW 110 = 10 + 100

Technical Complexity Factors:

Factor Number Description Weight Assigned Value (0–5) Weighted Value Notes

T1 Distributed system 2.0 5 10.0

T2 Response time or throughput 1.0 5 5.0
performance objectives

T3 End-user online efficiency 1.0 5 5.0

T4 Complex internal processing 1.0 4 4.0

T5 Reusability of code 1.0 3 3.0

T6 Easy to install 0.5 3 1.5

T7 Ease of use 0.5 5 2.5

T8 Portability 2.0 4 8.0

T9 Ease of change 1.0 3 3.0

T10 Concurrency 1.0 3 3.0

T11 Special security objectives included 1.0 5 5.0

T12 Direct access for third parties 1.0 5 5.0

T13 Special User training required 1.0 3 3.0

Technical Factor Value (TFactor) 58.0

Technical Complexity Factor (TCF) = 0.6 + (0.01 × TFactor) 1.18 = 0.6 + (0.01 × 58)

Environmental Factors:

Factor Number Description Weight Assigned Value (0 – 5) Weighted Value Notes

E1 Familiarity with system 1.5 1 1.5
development process being used

E2 Application experience 0.5 2 1.0

E3 Object-oriented experience 1.0 0 0.0

E4 Lead analyst capability 0.5 3 1.5

E5 Motivation 1.0 4 4.0

E6 Requirements stability 2.0 4 8.0

E7 Part time staff –1.0 0 0.0

E8 Difficulty of programming language –1.0 4 –4.0

Environmental Factor Value (EFactor) 12.0

Environmental Factor (EF) = 1.4 + (–0.03 * EFactor) 1.04 = 1.4 + (–.03 × 12)
Adjusted Use Case Points (UCP) = UUCP * TCF * ECF 134.992 = 110 × 1.18 × 1.04
Person Hours Multiplier (PHM) PHM = 28
Person Hours = UPC × PHM 3,779.776 = 134.992 × 28

FIGURE 6-18 Use Case Points Estimation for the Internet Sales Systems

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

the system. The diagram includes actors, which are people or things that derive value from

the system, and use cases that represent the functionality of the system. The actors and use

cases are separated by a subject boundary and connected by lines representing associa-

tions. At times, actors are specialized versions of more general actors. Similarly, use cases

can extend or include other use cases. Creating use-case diagrams is a four-step process

(see Figure 6-10) whereby the analyst draws the subject boundary, adds the use cases to

the diagram, identifies the actors, and finally adds appropriate associations to connect use

cases and actors together. This process is simple because the written description of the use

cases is created first.

Refine Project Size and Effort Estimation with Use Case Points

Use case points are a relatively new size and effort estimation technique that is based on

ideas similar to function point analysis. Use case points are founded on the two primary

constructs associated with use case analysis: actors and use cases. Like function points, use

case points have a set of factors used to modify their raw value: technical complexity fac-

tors and environmental factors. Technical complexity factors address the complexity of the

project under consideration while the environmental factors deal with the level of experi-

ence of the development staff. Based on the number of use case points, the estimated effort

required can be computed.

Key Terms 205

Action

Activity

Activity diagram

Actor

Adjusted use case points (UCP)

Alternate flows

Application program interface (API)

Association relationship

Average actors

Average use cases

Black-hole activities

Brief description

Complex actors

Complex use cases

Control flow

Control node

Decision node

Detail use case

Effort

Environmental factor (EF)

Environmental factor value (EFactor)

Essential use case

Estimation

Exceptional flows

Extend relationship

External trigger

Final-activity node

Final-flow node

Flow of events

Fork node

Generalization relationship

Guard condition

Importance level

Include relationship

Inherit

Inheritance

Initial node

Iterate

Join node

Logical model

Merge node

Miracle activity

Object flow

Object node

Overview use case

Normal flow of events

Packages

Person hours multiplier (PHM)

Physical model

Primary actor

Process models

Real use case

Relationships

Role

Scenario

Simple actors

Simple use cases

Specialized actor

Stakeholders

Standard processes

Subflows

Subject boundary

SVDPI

Swimlanes

Technical complexity factor (TCF)

Technical factor value (TFactor)

Temporal trigger

Trigger

Unadjusted actor weight total (UAW)

Unadjusted use case points (UUCP)

Unadjusted use case weight total

(UUCW)

Use case

Use-case description

Use-case diagram

Use-case ID number

Use-case name

Use-case points

Use-case type

KEY TERMS

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

206 Chapter 6 Functional Modeling

QUESTIONS

1. Why is business process modeling important?

2. What is the purpose of an activity diagram?

3. What is the difference between an activity and an action?

4. What is the purpose of a fork node?

5. What are the different types of control nodes?

6. What is the difference between a control flow and an

object flow?

7. What is an object node?

8. How is use case diagramming related to functional

modeling?

9. Explain the following terms. Use layman’s language as

though you were describing them to a user: (a) actor;

(b) use case; (c) subject boundary; (d) relationship.

10. Every association must be connected to at least one

_______ and one _________. Why?

11. What is CRUD? Why is this useful?

12. How does a detail use case differ from an overview use

case?

13. How does an essential use case differ from a real

use case?

14. What are the major elements of an overview use case?

15. What are the major elements of a detail use case?

16. Describe how to create use cases.

17. Why do we strive to have about three to nine major

use cases in a business process?

18. Describe how to create use case diagrams.

19. What are some heuristics for creating a use case diagram?

20. Why is iteration important in creating use cases?

21. What is the viewpoint of a use case, and why is it

important?

22. What are some guidelines for designing a set of use

cases? Give two examples of the extend associations

on a use case diagram. Give two examples for the

include association.

23. Which of the following could be an actor found on a

use case diagram? Why?

Ms. Mary Smith

Supplier

Customer

Internet customer

Mr. John Seals

Data entry clerk

Database administrator

24. What is a use case point? What is it used for?

25. Describe the process to estimate systems development

based on use cases.

EXERCISES

A. Investigate the Web site for Rational Software

(www.rational.com) and its repository of information

about UML. Write a paragraph news brief on the cur-

rent state of UML (e.g., the current version and when

it will be released; future improvements; etc.).

B. Investigate the Object Management Group. Write a brief

memo describing what it is, its purpose, and its influ-

ence on UML and the object approach to systems devel-

opment. (Hint: A good resource is www.omg.org.)

C. Create an activity diagram and a set of detail use case

descriptions for the process of buying glasses from the

viewpoint of the patient, but do not bother to identify

the flow of events within each use case. The first step is

to see an eye doctor who will give you a prescription.

Once you have a prescription, you go to a glasses store,

where you select your frames and place the order for

your glasses. Once the glasses have been made, you

return to the store for a fitting and pay for the glasses.

D. Draw a use case diagram for the process of buying

glasses in Exercise C.

E. Create an activity diagram and a set of detail use case

descriptions for the following dentist office system,

but do not bother to identify the flow of events within

each use case. Whenever new patients are seen for the

first time, they complete a patient information form

that asks their name, address, phone number and

brief medical history, which are stored in the patient

information file. When a patient calls to schedule a

new appointment or change an existing appoint-

ment, the receptionist checks the appointment file for

an available time. Once a good time is found for the

patient, the appointment is scheduled. If the patient

is a new patient, an incomplete entry is made in the

patient file; the full information will be collected

when they arrive for their appointment. Because

appointments are often made so far in advance, the

receptionist usually mails a reminder postcard to each

patient two weeks before their appointment.

F. Draw a use case diagram for the dentist office system

in Exercise E.

G. Complete the detail use case descriptions for the den-

tist office system in Exercise E by identifying the nor-

mal flow of events, subflows, and alternate/exceptional

flows within the use cases.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Exercises 207

H. Create an activity diagram and a set of detail use case

descriptions for an online university registration system.

The system should enable the staff of each academic

department to examine the courses offered by their

department, add and remove courses, and change the

information about them (e.g., the maximum number of

students permitted). It should permit students to exam-

ine currently available courses, add and drop courses to

and from their schedules, and examine the courses for

which they are enrolled. Department staff should be able

to print a variety of reports about the courses and the

students enrolled in them. The system should ensure that

no student takes too many courses and that students who

have any unpaid fees are not permitted to register.

I. Draw a use case diagram for the online university reg-

istration system in Exercise H.

J. Create an activity diagram and a set of detail use case

descriptions for the following system. A Real Estate Inc.

(AREI) sells houses. People who want to sell their houses

sign a contract with AREI and provide information on

their house. This information is kept in a database by

AREI and a subset of this information is sent to the city-

wide multiple listing service used by all real estate

agents. AREI works with two types of potential buyers.

Some buyers have an interest in one specific house. In

this case, AREI prints information from its database,

which the real estate agent uses to help show the house

to the buyer (a process beyond the scope of the system

to be modeled). Other buyers seek AREI’s advice in find-

ing a house that meets their needs. In this case, the buyer

completes a buyer information form that is entered into

a buyer data base, and AREI real estate agents use its

information to search AREI’s data base and the multiple

listing service for houses that meet their needs. The

results of these searches are printed and used to help the

real estate agent show houses to the buyer.

K. Draw a use case diagram for the real estate system in

Exercise J.

L. Create an activity diagram and a set of detail use case

descriptions for the following system. A Video Store

(AVS) runs a series of fairly standard video stores. Before

a video can be put on the shelf, it must be cataloged and

entered into the video database. Every customer must

have a valid AVS customer card in order to rent a video.

Customers rent videos for three days at a time. Every

time a customer rents a video, the system must ensure

that they do not have any overdue videos. If so, the over-

due videos must be returned and an overdue fee paid

before customer can rent more videos. Likewise, if the

customer has returned overdue videos, but has not paid

the overdue fee, the fee must be paid before new videos

can be rented. Every morning, the store manager prints a

report that lists overdue videos. If a video is two or more

days overdue, the manager calls the customer to remind

them to return the video. If a video is returned in dam-

aged condition, the manager removes it from the video

database and may sometimes charge the customer.

M.Draw a use case diagram for the video system in

Exercise L.

N. Create an activity diagram and a set of detail use case

descriptions for a health club membership system. When

members join the health club, they pay a fee for a certain

length of time. Most memberships are for one year, but

memberships as short as two months are available.

Throughout the year, the health club offers a variety of

discounts on their regular membership prices (e.g., two

memberships for the price of one for Valentine’s Day). It

is common for members to pay different amounts for the

same length of membership. The club wants to mail out

reminder letters to members asking them to renew their

memberships one month before their memberships

expire. Some members have become angry when asked

to renew at a much higher rate then their original mem-

bership contract, so the club wants to track the price paid

so that the manager can override the regular prices with

special prices when members are asked to renew. The sys-

tem must track these new prices so that renewals can be

processed accurately. One of the problems in the health

club industry is the high turnover rate of members.

While some members remain active for many years,

about half of the members do not renew their member-

ships. This is a major problem, because the health club

spends a lot in advertising to attract each new member.

The manager wants the system to track each time a

member comes into the club. The system will then iden-

tify the heavy users, and generate a report so the manager

can ask them to renew their memberships early, perhaps

offering them a reduced rate for early renewal. Likewise,

the system should identify members who have not visited

the club in more than a month, so the manager can call

them and attempt to re-interest them in the club.

O. Draw a use case diagram for the system in Exercise N.

P. Create an activity diagram and a set of detail use case

descriptions for the following system. Picnics R Us

(PRU) is a small catering firm with five employees. Dur-

ing a typical summer weekend, PRU caters fifteen picnics

with twenty to fifty people each. The business has grown

rapidly over the past year and the owner wants to install

a new computer system for managing the ordering and

buying process. PUR has a set of ten standard menus.

When potential customers call, the receptionist describes

the menus to them. If the customer decides to book a

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

208 Chapter 6 Functional Modeling

picnic, the receptionist records the customer information

(e.g., name, address, phone number, etc.) and the infor-

mation about the picnic (e.g., place, date, time, which

one of the standard menus, total price) on a contract.

The customer is then faxed a copy of the contract and

must sign and return it along with a deposit (often a

credit card or by check) before the picnic is officially

booked. The remaining money is collected when the pic-

nic is delivered. Sometimes, the customer wants some-

thing special (e.g., birthday cake). In this case, the

receptionist takes the information and gives it to the

owner who determines the cost; the receptionist then

calls the customer back with the price information.

Sometimes the customer accepts the price, other times,

the customer requests some changes that have to go back

to the owner for a new cost estimate. Each week, the

owner looks through the picnics scheduled for that

weekend and orders the supplies (e.g., plates) and food

(e.g., bread, chicken) needed to make them. The owner

would like to use the system for marketing as well. It

should be able to track how customers learned about

PUR, and identify repeat customers, so that PUR can mail

special offers to them. The owner also wants to track the

picnics on which PUR sent a contract, but the customer

never signed the contract and actually booked a picnic.

Q. Draw a use case diagram for the system in Exercise P.

R. Create an activity diagram and a set of detail use case

descriptions for the following system. Of-the-Month

Club (OTMC) is an innovative young firm that sells

memberships to people who have an interest in certain

products. People pay membership fees for one year and

each month receive a product by mail. For example,

OTMC has a coffee-of-the-month club that sends mem-

bers one pound of special coffee each month. OTMC

currently has six memberships (coffee, wine, beer, cigars,

flowers, and computer games) each of which costs a dif-

ferent amount. Customers usually belong to just one,

but some belong to two or more. When people join

OTMC, the telephone operator records the name, mail-

ing address, phone number, e-mail address, credit card

information, start date, and membership service(s) (e.g.,

coffee). Some customers request a double or triple

membership (e.g., two pounds of coffee, three cases of

beer). The computer game membership operates a bit

differently from the others. In this case, the member

must also select the type of game (action, arcade, fan-

tasy/science-fiction, educational, etc.) and age level.

OTMC is planning to greatly expand the number of

memberships it offers (e.g., video games, movies, toys,

cheese, fruit, and vegetables) so the system needs to

accommodate this future expansion. OTMC is also

planning to offer 3-month and 6-month memberships.

S. Draw a use case diagram for the system in Exercise R.

T. Create an activity diagram and a set of detail use case

descriptions for a university library borrowing system (do

not worry about catalogue searching, etc.). The system

will record the books owned by the library and will record

who has borrowed what books. Before someone can bor-

row a book, he or she must show a valid ID card, which is

checked to ensure that it is still valid against the student

database maintained by the registrar’s office (for student

borrowers), the faculty/staff database maintained by the

personnel office (for faculty/staff borrowers), or against

the library’s own guest database (for individuals issued a

“guest” card by the library). The system must also check

to ensure that the borrower does not have any overdue

books or unpaid fines before he or she can borrow

another book. Every Monday, the library prints and mails

postcards to those people with overdue books. If a book is

overdue by more than two weeks, a fine will be imposed

and a librarian will telephone the borrower to remind

him or her to return the book(s). Sometimes books are

lost or are returned in damaged condition. The manager

must then remove them from the database and will some-

times impose a fine on the borrower.

U. Draw a use case diagram for the system in Exercise T.

V. Consider the application that is used at your school to reg-

ister for classes. Complete a use case point worksheet to

estimate the effort to build such an application. You will

need to make some assumptions about the application’s

interfaces and the various factors that affect its complexity.

W.For exercises G, H, J, L, N, P, R, and T, complete a use

case point worksheet to estimate the effort to build

such an application.

MINICASES

1. Williams Specialty Company is a small printing and
engraving organization. When Pat Williams, the owner,
brought computers into the business office five years
ago, the business was very small and very simple. Pat
was able to utilize an inexpensive PC-based accounting

system to handle the basic information processing
needs of the firm. As time has gone on, however, the
business has grown and the work being performed has
become significantly more complex. The simple
accounting software still in use is no longer adequate to

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Minicases 209

keep track of many of the company’s sophisticated
deals and arrangements with its customers.

Pat has a staff of four people in the business office
who are familiar with the intricacies of the company’s
record-keeping requirements. Pat recently met with her
staff to discuss her plan to hire an IS consulting firm to
evaluate their information system needs and recom-
mend a strategy for upgrading their computer system.
The staff is excited about the prospect of a new system,
since the current system causes them much aggrava-
tion. No one on the staff has ever done anything like
this before, however, and they are a little wary of the
consultants who will be conducting the project.

Assume that you are a systems analyst on the con-
sulting team assigned to the Williams Specialty Co.
engagement. At your first meeting with the Williams
staff, you want to be sure that they understand the
work that your team will be performing, and how they
will participate in that work.
a. Explain in clear, nontechnical terms, the goals of

the Analysis phase of the project.
b. Explain in clear, nontechnical terms, how use cases

and use case diagram will be used by the project team.
Explain what these models are, what they represent in
the system, and how they will be used by the team.

2. Professional and Scientific Staff Management (PSSM) is
a unique type of temporary staffing agency. Many orga-
nizations today hire highly skilled, technical employees
on a short-term, temporary basis, to assist with special
projects or to provide a needed technical skill. PSSM
negotiates contracts with its client companies in which
it agrees to provide temporary staff in specific job cate-
gories for a specified cost. For example, PSSM has a con-
tract with an oil and gas exploration company in which
it agrees to supply geologists with at least a master’s
degree for $5,000 per week. PSSM has contracts with a
wide range of companies and can place almost any type
of professional or scientific staff members, from com-
puter programmers to geologists to astrophysicists.

When a PSSM client company determines that it
will need a temporary professional or scientific
employee, it issues a staffing request against the con-
tract it had previously negotiated with PSSM. When a
staffing request is received by PSSM’s contract man-
ager, the contract number referenced on the staffing
request is entered into the contract database. Using

information from the database, the contract manager
reviews the terms and conditions of the contract and
determines whether the staffing request is valid. The
staffing request is valid if the contract has not expired,
the type of professional or scientific employee
requested is listed on the original contract, and the
requested fee falls within the negotiated fee range. If
the staffing request is not valid, the contract manager
sends the staffing request back to the client with a let-
ter stating why the staffing request cannot be filled, and
a copy of the letter is filed. If the staffing request is
valid, the contract manager enters the staffing request
into the staffing request database as an outstanding
staffing request. The staffing request is then sent to the
PSSM placement department.

In the Placement Department, the type of staff
member, experience, and qualifications requested on
the staffing request are checked against the database of
available professional and scientific staff. If a qualified
individual is found, he or she is marked “reserved” in
the staff database. If a qualified individual cannot be
found in the database, or is not immediately available,
the Placement Department creates a memo that
explains the inability to meet the staffing request and
attaches it to the staffing request. All staffing requests
are then sent to the Arrangements Department.

In the Arrangement Department the prospective
temporary employee is contacted and asked to agree to
the placement. After the placement details have been
worked out and agreed to, the staff member is marked
“placed” in the staff database. A copy of the staffing
request and a bill for the placement fee is sent to the
client. Finally, the staffing request, the “unable to fill”
memo (if any), and a copy of the placement fee bill is
sent to the contract manager. If the staffing request was
filled, the contract manager closes the open staffing
request in the staffing request database. If the staffing
request could not be filled the client is notified. The
staffing request, placement fee bill, and “unable to fill”
memo are then filed in the contract office.
a. Create an activity diagram for the business process

described above.
b. Develop a use case for each major activity identified

in the activity diagram.
c. Create a use case diagram for the system described

above.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

A structural, or conceptual, model describes the structure of the data that supports the busi-

ness processes in an organization. During the analysis phase, the structural model presents the

logical organization of data without indicating how the data are stored, created, or manipu-

lated so that analysts can focus on the business without being distracted by technical details.

Later, during the design phase, the structural model is updated to reflect exactly how the data

will be stored in databases and files. This chapter describes Class-Responsibility-Collaboration

(CRC) cards, class diagrams, and object diagrams that are used to create the structural model.

OBJECTIVES

■ Understand the rules and style guidelines for creating CRC cards, class diagrams, and

object diagrams.
■ Understand the processes used to create CRC cards, class diagrams, and object diagrams.
■ Be able to create CRC cards, class diagrams, and object diagrams.
■ Understand the relationship between the structural and use-case models.

CHAPTER OUTLINE

INTRODUCTION

During the analysis phase, analysts create functional models to represent how the business

system will behave. At the same time, analysts need to understand the information that is

used and created by the business system (e.g., customer information, order information).

In this chapter, we discuss how the data underlying the behavior modeled in the use cases

are organized and presented.

A structural model is a formal way of representing the objects that are used and created by

a business system. It illustrates people, places, or things about which information is captured,

and how they are related to each other. The structural model is drawn using an iterative process

in which the model becomes more detailed and less “conceptual” over time. In the analysis

Introduction

Structural Models

Classes, Attributes, and Operations

Relationships

Class-Responsibility-Collaboration Cards

Responsibilities and Collaborations

Elements of a CRC Card

Class Diagrams

Elements of a Class Diagram

Simplifying Class Diagrams

Object Diagrams

Creating CRC Cards and Class Diagrams

Object Identification

Building CRC Cards and Class Diagrams

Applying the Concepts at CD Selections

Summary

C H A P T E R 7

Structural Modeling

210

C
op

yr
ig

ht
ed

 M
at

er
ia

l

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

phase, analysts draw a conceptual model, which shows the logical organization of the objects

without indicating how the objects are stored, created, or manipulated. Because this model is

free from any implementation or technical details, the analysts can focus more easily on

matching the model to the real business requirements of the system.

In the design phase, analysts evolve the conceptual structural model into a design model

that reflects how the objects will be organized in databases and files. At this point, the model

is checked for redundancy and the analysts investigate ways to make the objects easy to

retrieve. The specifics of the design model will be discussed in detail in the design chapters.

In this chapter, we focus on creating a conceptual structural model of the objects using

CRC cards and class diagrams. Using these techniques, it is possible to show all of the

objects of a business system. We first describe structural models and their elements. Then,

we describe CRC cards, class diagrams, and object diagrams. Finally, we describe how to

create structural models using CRC cards and class diagrams and how the structural model

relates to the use cases and use case diagram that you learned about in Chapter 6.

STRUCTURAL MODELS

Every time a systems analyst encounters a new problem to solve, he or she must learn the

underlying problem domain. The goal of the analyst is to discover the key objects contained

in the problem domain and to build a structural model of the objects. Object-oriented mod-

eling allows the analyst to reduce the “semantic gap” between the underlying problem

domain and the evolving structural model. However, the real world and the world of soft-

ware are very different. The real world tends to be messy, whereas the world of software must

be neat and logical. As such, an exact mapping between the structural model and the prob-

lem domain may not be possible. In fact, it may not even be desirable.

One of the primary purposes of the structural model is to create a vocabulary that can

be used by both the analyst and users. Structural models represent the things, ideas, or con-

cepts, that is, the objects, contained in the domain of the problem. They also allow the rep-

resentation of the relationships between the things, ideas, or concepts. By creating a

structural model of the problem domain, the analyst creates the vocabulary necessary for

the analyst and users to communicate effectively.

One important thing to remember is that, at this stage of development, the structural

model does not represent software components or classes in an object-oriented program-

ming language, even though the structural model does contain analysis classes, attributes,

operations, and relationships among the analysis classes. The refinement of these initial

classes into programming level objects comes later. Nonetheless, the structural model at

this point should represent the responsibilities of each class and the collaborations between

the classes. Typically, structural models are depicted using CRC cards, class diagrams, and,

in some cases, object diagrams. However, before describing CRC cards, class diagrams, and

object diagrams, we discuss the basic elements of structural models: classes, attributes,

operations, and relationships.

Classes, Attributes, and Operations

As stated in Chapter 2, a class is a general template that we use to create specific instances,

or objects, in the application domain. All objects of a given class are identical in structure

and behavior but contain different data in their attributes. There are two different general

kinds of classes of interest during the analysis phase: concrete and abstract. Normally, when

analysts describe the application domain classes, they are referring to concrete classes; that

is, concrete classes are used to create objects. Abstract classes, on the other hand, simply are

Structural Models 211

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

useful abstractions. For example, from an employee class and a customer class, we may

identify a generalization of the two classes and name the abstract class person. We may not

actually instantiate the Person class in the system itself, but rather only create and use

employees and customers. We will describe generalization in more detail with relationships

later in this chapter.

A second classification of classes is the type of real-world thing that it represents.

There are application domain classes, user interface classes, data structure classes, file

structure classes, operating environment classes, document classes, and various types of

multimedia classes. At this point in the development of our evolving system, we are inter-

ested only in application domain classes. Later in design and implementation, the other

types of classes will become more relevant.

An attribute of an analysis class represents a piece of information that is relevant to the

description of the class within the application domain of the problem being investigated. An

attribute contains information that the analyst or user feels the system should store. For

example, a possible relevant attribute of an employee class is employee name, while one that

may not be as relevant is hair color. Both describe something about an employee, but hair

color probably is not all that useful for most business applications. Only those attributes that

are important to the task should be included in the class. Finally, one should only add attrib-

utes that are primitive or atomic types, that is, integers, strings, doubles, date, time, boolean,

and so on. Most complex or compound attributes are really placeholders for relationships

between classes. Therefore, they should be modeled as relationships, not attributes.

An operation, or service, of an analysis class is where the behavior of the class will be

defined. In later phases, the operations will be converted to methods (see Chapter 2). How-

ever, since methods are more related to implementation, at this point in the development we

use the term operation to describe the actions to which the instances of the class will be

capable of responding. Like attributes, only problem domain-specific operations that are

relevant to the problem being investigated should be considered. For example, classes are

normally required to provide the means to create instances, delete instances, access individ-

ual attribute values, set individual attribute values, access individual relationship values, and

remove individual relationship values. However, at this point in the development of the

evolving system, the analyst should avoid cluttering up the definition of the class with these

basic types of operations and only focus on relevant problem domain-specific operations.

Relationships

Many different types of relationships can be defined, but all can be classified into three

basic categories of data abstraction mechanisms: generalization relationships, aggregation

relationships, and association relationships. These data abstraction mechanisms allow the

analyst to focus on the important dimensions while ignoring nonessential dimensions. Like

attributes, the analyst must be careful to include only relevant relationships.

Generalization Relationships The generalization abstraction enables the analyst to create

classes that inherit attributes and operations of other classes. The analyst creates a superclass

that contains the basic attributes and operations that will be used in several subclasses. The sub-

classes inherit the attributes and operations of their superclass and can also contain attributes

and operations that are unique just to them. For example, a customer class and an employee

class can be generalized into a person class by extracting the attributes and operations they

have in common and placing them into the new superclass, Person. In this way, the analyst can

reduce the redundancy in the class definitions so that the common elements are defined once

and then reused in the subclasses. Generalization is represented with the a-kind-of relationship,

so that we say that an employee is a-kind-of person.

212 Chapter 7 Structural Modeling

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

The analyst also can use the flip side of generalization, specialization, to uncover additional

classes by allowing new subclasses to be created from an existing class. For example, an employee

class can be specialized into a secretary class and an engineer class. Furthermore, generalization

relationships between classes can be combined to form generalization hierarchies. Based on the

previous examples, a secretary class and an engineer class can be subclasses of an employee class,

which in turn could be a subclass of a person class. This would be read as, “a secretary and an

engineer are a-kind-of employee and a customer and an employee are a-kind-of person.”

The generalization data abstraction is a very powerful mechanism that encourages the

analyst to focus on the properties that make each class unique by allowing the similarities

to be factored into superclasses. However, to ensure that the semantics of the subclasses are

maintained, the analyst should apply the principle of substitutability. By this we mean that

the subclass should be capable of substituting for the superclass anywhere that uses the

superclass (e.g., anywhere we use the employee superclass, we could also logically use its

secretary subclass). By focusing on the a-kind-of interpretation of the generalization rela-

tionship, the principle of substitutability will be applied.

Aggregation Relationships Many different types of aggregation or composition relation-

ships have been proposed in data modeling, knowledge representation, and linguistics. For

example, a-part-of (logically or physically), a-member-of (as in set membership), contained-

in, related-to, and associated-with. However, generally speaking, all aggregation relationships

relate parts to wholes or parts to assemblies. For our purposes, we use the a-part-of or has-parts

semantic relationship to represent the aggregation abstraction. For example, a door is a-part-

of a car, an employee is a-part-of a department, or a department is a-part-of an organization.

Like the generalization relationship, aggregation relationships can be combined into aggrega-

tion hierarchies. For example, a piston is a-part-of an engine, while an engine is a-part-of a car.

Aggregation relationships are bidirectional in nature. The flip side of aggregation is

decomposition. The analyst can use decomposition to uncover parts of a class that should

be modeled separately. For example, if a door and engine are a-part-of a car, then a car has-

parts door and engine. The analyst can bounce around between the various parts to

uncover new parts. For example, the analyst can ask, “What other parts are there to a car?”

or “To which other assemblies can a door belong?”

Association Relationships There are other types of relationships that do not fit neatly

into a generalization (a-kind-of) or aggregation (a-part-of) framework. Technically speak-

ing, these relationships are usually a weaker form of the aggregation relationship. For

example, a patient schedules an appointment. It could be argued that a patient is a-part-of

an appointment. However, there is a clear semantic difference between this type of rela-

tionship and one that models the relationship between doors and cars or even workers and

unions. As such, they are simply considered to be associations between instances of classes.

CLASS-RESPONSIBILITY-COLLABORATION CARDS

Class-Responsibility-Collaboration cards, most commonly called CRC cards, are used to

document the responsibilities and collaborations of a class. We use an extended form of the

CRC card to capture all relevant information associated with a class.1 We describe the ele-

ments of our CRC cards below after we explain responsibilities and collaborations.

Class-Responsibility-Collaboration Cards 213

1 Our CRC cards are based on the work of D. Bellin and S.S. Simone, The CRC Card Book (Reading, MA: Addison-
Wesley, 1997), I. Graham, Migrating to Object Technology (Wokingham, England: Addison-Wesley, 1995), and B.
Henderson-Sellers and B. Unhelkar OPEN Modeling with UML (Harlow, England: Addison-Wesley, 2000).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Responsibilities and Collaborations

The responsibilities of a class can be divided into two separate types: knowing and doing.

Knowing responsibilities are those things that an instance of a class must be capable of

knowing. An instance of a class typically knows the values of its attributes and its rela-

tionships. Doing responsibilities are those things that an instance of a class must be capa-

ble of doing. In this case, an instance of a class can execute its operations, or it can

request a second instance that it knows about to execute one of its operations on behalf

of the first instance.

The structural model describes the objects necessary to support the business processes

modeled by the use cases. Most use cases involve a set of several classes, not just one class.

This set of classes forms a collaboration. Collaborations allow the analyst to think in terms

of clients, servers, and contracts.2 A client object is an instance of a class that sends a request

to an instance of another class for an operation to be executed. A server object is the instance

that receives the request from the client object. A contract formalizes the interactions

between the client and server objects. For example, a patient makes an appointment with a

doctor. This sets up an obligation for both the patient and doctor to appear at the appointed

time. Otherwise, consequences, such as billing the patient for the appointment regardless of

whether the patient appears, can be dealt out. The contract should also spell out what the

benefits of the contract will be, such as a treatment being prescribed for whatever ails the

patient and a payment to the doctor for the services provided. Chapter 10 provides a more

detailed explanation of contracts and examples of their use.

The analyst can use the idea of class responsibilities and client-server-contract collab-

orations to help identify the classes, along with the attributes, operations, and relation-

ships, involved with a use case. One of the easiest ways in which to use CRC cards in

developing a structural model is through anthropomorphism—pretending that the classes

have human characteristics. This is done by having the analyst and/or the user role-play and

pretend that they are an instance of the class being considered. They then can either ask

questions of themselves or be asked questions by other members of the development team.

For example,

Who or what are you?

What do you know?

What can you do?

The answers to the questions are then used to add detail to the evolving CRC cards.

Elements of a CRC Card

The set of CRC cards contains all the information necessary to build a logical structural

model of the problem under investigation. Figure 7-1 shows a sample CRC card. Each card

captures and describes the essential elements of a class. The front of the card allows the

recording of the class’s name, ID, type, description, list of associated use cases, responsibil-

ities, and collaborators. The name of a class should be a noun (but not a proper noun such

as the name of a specific person or thing). Just like the use cases, in later stages of develop-

ment, it is important to be able to trace back design decisions to specific requirements. In

214 Chapter 7 Structural Modeling

2 For more information, see K. Beck and W. Cunningham,“A Laboratory for Teaching Object-Oriented Thinking,”
Proceedings of OOPSLA, SIGPLAN Notices 24, no. 10 (1989): 1–6; Henderson-Sellers and Unhelkar, OPEN Model-
ing with UML: C. Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design,
(Englewood Cliffs, NJ; Prentice-Hall, 1998); B. Meyer, Object-Oriented Software Construction (Englewood Cliffs,
NJ: Prentice Hall, 1994); and R. Wirfs-Brock, B. Wilkerson, and L. Wiener, Designing Object-Oriented Software
(Englewood Cliffs, NJ: Prentice Hall, 1990).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

conjunction with the list of associated use cases, the ID number for each class can be used

to accomplish this. The description is simply a brief statement that can be used as a textual

definition for the class. The responsibilities of the class tend to be the operations that the

class must contain, that is, the doing responsibilities.

The back of a CRC card contains the attributes and relationships of the class. The

attributes of the class represent the knowing responsibilities that each instance of the class

will have to meet. Typically, the data type of each attribute is listed with the name of the

attribute; for example, the amount attribute is double, and the insurance carrier is text.

Three types of relationships are typically captured at this point in time: generalization,

aggregation, and other associations. In Figure 7-1, we see that a Patient is a-kind-of Person

and that a Patient is associated with Appointments.

Again, CRC cards are used to document the essential properties of a class. However,

once the cards are filled out, the analyst can use the cards and anthropomorphism in role-

playing to uncover missing properties.

Class-Responsibility-Collaboration Cards 215

Front:

Class Name: Patient ID: 3

Calculate last visit

Make appointment

Change status

Provide medical history

Responsibilities

Associated Use Cases: 2Description: An Individual that needs to receive or has received
medical attention

Type: Concrete, Domain

Appointment

Medical history

Collaborators

Back:

Attributes:

Insurance carrier (text)

Amount (double)

Relationships:

Generalization (a-kind-of): Person

Aggregation (has-parts): Medical History

Other Associations: Appointment

FIGURE 7-1
Example CRC Card

TEMPLATE

can be found at
www.wiley.com
/college/dennis

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

CLASS DIAGRAMS

The class diagram is a static model that shows the classes and the relationships among

classes that remain constant in the system over time. The class diagram depicts classes,

which include both behaviors and states, with the relationships between the classes. The

following sections will first present the elements of the class diagram, followed by the way

in which a class diagram is drawn.

Elements of a Class Diagram

Figure 7-2 shows a class diagram that was created to reflect the classes and relationships

that are needed for the set of use cases that describe the appointment system in Chapter 6.

Class The main building block of a class diagram is the class, which stores and manages

information in the system (see Figure 7-3). During analysis, classes refer to the people,

places, events, and things about which the system will capture information. Later, during

design and implementation, classes can refer to implementation-specific artifacts like win-

dows, forms, and other objects used to build the system. Each class is drawn using three-

part rectangles with the class’s name at the top, attributes in the middle, and operations at

the bottom. For example, you should be able to identify Person, Doctor, Patient, Medical

History, Appointment, Bill, and Symptom as some of the classes in Figure 7-2. The attrib-

utes of a class and their values define the state of each object that is created from the class,

and the behavior is represented by the operations.

Attributes are properties of the class about which we want to capture information (see

Figure 7-3). Notice that the Person class in Figure 7-2 contains the attributes lastname,

firstname, address, phone, and birthdate. At times, you may want to store derived attributes,

which are attributes that can be calculated or derived; these special attributes are denoted

by placing a slash (/) before the attribute’s name. Notice how the Person class contains a

derived attribute called “/age,” which can be derived by subtracting the patient’s birthdate

from the current date. It is also possible to show the visibility of the attribute on the dia-

gram. Visibility relates to the level of information hiding (see Chapter 2) to be enforced for

the attribute. The visibility of an attribute can be public (+), protected (#), or private (–).

A public attribute is one that is not hidden from any other object. As such, other objects can

modify its value. A protected attribute is one that is hidden from all other classes except its

immediate subclasses. A private attribute is one that is hidden from all other classes. The

default visibility for an attribute is normally private.

Operations are actions or functions that a class can perform (see Figure 7-3). The func-

tions that are available to all classes (e.g., create a new instance, return a value for a partic-

ular attribute, set a value for a particular attribute, or delete an instance) are not explicitly

shown within the class rectangle. Instead, only those operations that are unique to the class

are included, such as the “cancel without notice” operation in the Appointment class and

the “generate cancellation fee” operation in the Bill class in Figure 7-2. Notice that both of

the operations are followed by parentheses that contain the parameter(s) needed by the

operation. If an operation has no parameters, the parentheses are still shown but are empty.

As with attributes, the visibility of an operation can be designated as public, protected, or

private. The default visibility for an operation is normally public.

A class can contain three kinds of operations: constructor, query, and update. A con-

structor operation creates a new instance of a class. For example, the patient class may have a

method called “insert ()” that creates a new patient instance as patients are entered into the

system. As we just mentioned, if a method is available to all classes (e.g., create a new

instance), it is not explicitly shown on the class diagram, so typically you will not see con-

structor methods explicitly on the class diagram.

216 Chapter 7 Structural Modeling

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

A query operation makes information about the state of an object available to other

objects, but it will not alter the object in any way. For instance, the “calculate last visit ()”

operation that determines when a patient last visited the doctor’s office will result in the

object being accessed by the system, but it will not make any change to its information. If

a query method merely asks for information from attributes in the class (e.g., a patient’s

name, address, or phone), then it is not shown on the diagram because we assume that all

objects have operations that produce the values of their attributes.

Class-Responsibility-Collaboration Cards 217

Person

-lastname
-firstname
-address
-phone
-birthdate
-/ age

Patient

-amount
-insurance carrier

+make appointment()
+calculate last visit()
+change status()
+provide medical history()

provides

0..1

0..*

0..* 0..*

0..*

0..*

0..*

0..*

0..*

1..*

1..*

1..*
*
*

0..1

1

1

1
1

Appointment

-time
-date
-reason

+cancel without notice()

+primary
insurance
carrier

Bill

-date
-amount
-purpose

+generate cancellation fee()

Medical History

-heart disease
-high blood pressure
-diabetes
-allergies

Nurse

Doctor

Employee

Health Team

Administrative
Staff

Symptom

-name

Illness

-description

Treatment

-medication
-instructions
-symptom severity

suffer

has scheduled

leads to

schedules

FIGURE 7-2 Example Class Diagram

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

An update operation will change the value of some or all of the object’s attributes,

which may result in a change in the object’s state. Consider changing the status of a patient

from new to current with a method called “change status ()”, or associating a patient with

a particular appointment with “schedule appointment (appointment).”

Relationships A primary purpose of the class diagram is to show the relationships, or asso-

ciations, that classes have with one another. These are depicted on the diagram by drawing

lines between classes (see Figure 7-3). When multiple classes share a relationship (or a class

shares a relationship with itself), a line is drawn and labeled with either the name of the rela-

tionship or the roles that the classes play in the relationship. For example, in Figure 7-2 the

two classes Patient and Appointment are associated with one another whenever a patient

schedules an appointment. Thus, a line labeled “schedules” connects patient and appoint-

ment, representing exactly how the two classes are related to each other. Also notice that there

is a small solid triangle beside the name of the relationship. The triangle allows a direction to

be associated with the name of the relationship. In Figure 7-2, the schedules relationship

includes a triangle, indicating that the relationship is to be read as “patient schedules appoint-

ment.” Inclusion of the triangle simply increases the readability of the diagram.

Sometimes a class is related to itself, as in the case of a patient being the primary insur-

ance carrier for other patients (e.g., their spouse, children). In Figure 7-2, notice that a

line was drawn between the Patient class and itself, and is called “primary insurance car-

rier” to depict the role that the class plays in the relationship. Notice that a plus “+” sign is

placed before the label to communicate that it is a role as opposed to the name of the rela-

tionship. When labeling an association, use either a relationship name or a role name (not

both), whichever communicates a more thorough understanding of the model.

218 Chapter 7 Structural Modeling

FIGURE 7-3 Class Diagram Syntax

A CLASS

• Represents a kind of person, place, or thing about which the system will need to capture and
store information

• Has a name typed in bold and centered in its top compartment Class1

• Has a list of attributes in its middle compartment –attribute1

• Has a list of operations in its bottom compartment +operation1()

• Does not explicitly show operations that are available to all classes

AN ATTRIBUTE

• Represents properties that describe the state of an object attribute name

• Can be derived from other attributes, shown by placing a slash before the attribute’s name
/derived attribute name

AN OPERATION

• Represents the actions or functions that a class can perform

• Can be classified as a constructor, query, or update operation operation name ()

• Includes parentheses that may contain parameters or information needed to perform the operation

AN ASSOCIATION

• Represents a relationship between multiple classes, or a class and itself

• Is labeled using a verb phrase or a role name, whichever better represents the relationship 1..*
verb phrase

0..1

• Can exist between one or more classes

• Contains multiplicity symbols, which represent the minimum and maximum times a class instance
can be associated with the related class instance

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Relationships also have multiplicity, which documents how an instance of an object can

be associated with other instances. Numbers are placed on the association path to denote the

minimum and maximum instances that can be related through the association in the for-

mat minimum number . . maximum number (see Figure 7-4). The numbers specify the rela-

tionship from the class at the far end of the relationship line to the end with the number. For

example, in Figure 7-2, there is a “0. .*” on the appointment end of the “patient schedules

appointment” relationship. This means that a patient can be associated with zero through

many different appointments. At the patient end of this same relationship there is a “1,”

meaning that an appointment must be associated with one and only one (1) patient.

There are times when a relationship itself has associated properties, especially when its

classes share a many-to-many relationship. In these cases, a class is formed, called an asso-

ciation class, that has its own attributes and operations. It is shown as a rectangle attached

by a dashed line to the association path, and the rectangle’s name matches the label of the

association. Think about the case of capturing information about illnesses and symptoms.

An illness (e.g., the flu) can be associated with many symptoms (e.g., sore throat, fever),

and a symptom (e.g., sore throat) can be associated with many illnesses (e.g., the flu, strep

throat, the common cold). Figure 7-2 shows how an association class can capture infor-

mation about remedies that change depending on the various combinations. For example,

a sore throat caused by the strep bacterium will require antibiotics, whereas treatment for

a sore throat from the flu or a cold could be throat lozenges or hot tea. Most often, classes

are related through a “normal” association; however, two special cases of an association will

appear quite often: generalization and aggregation.

Generalization and Aggregation Generalization shows that one class (subclass) inherits

from another class (superclass), meaning that the properties and operations of the superclass

are also valid for objects of the subclass. The generalization path is shown with a solid line from

the subclass to the superclass and a hollow arrow pointing at the superclass. For example, Fig-

ure 7-2 tells us that doctors, nurses, and administrative personnel are all kinds of employees and

that those employees and patients are kinds of persons. Remember that the generalization rela-

tionship occurs when you need to use words such as “is a-kind-of” to describe the relationship.

Class-Responsibility-Collaboration Cards 219

Exactly one 1 Department
1

Boss A department has one and only
one boss.

Zero or more 0..* Employee
0..*

Child An employee has zero to many
children.

One or more 1..* Boss
1..*

Employee A boss is responsible for one or
more employees.

Zero or one 0..1 Employee
0..1

Spouse An employee can be married to
zero or no spouse.

Specified range 2..4 Employee
2..4

Vacation An employee can take between
two to four vacations each year.

Multiple, disjoint ranges 1..3, 5 Employee
1..3, 5

Committee An employee is a member of one
to three or five committees.

FIGURE 7-4 Multiplicity

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Aggregation is used when classes actually comprise other classes. For example, think

about a doctor’s office that has decided to create health care teams that include doctors,

nurses, and administrative personnel. As patients enter the office, they are assigned to a

health care team that cares for their needs during their visits. Figure 7-2 shows how this

relationship is denoted on the class diagram. A diamond is placed nearest the class repre-

senting the aggregation (health care team), and lines are drawn from the arrow to connect

the classes that serve as its parts (doctors, nurses, and administrative staff). Typically, you

can identify these kinds of associations when you need to use words like “is a part of” or

“is made up of” to describe the relationship.

Simplifying Class Diagrams

When a class diagram is fully populated with all of the classes and relationships for a real-

world system, the class diagram can become very difficult to interpret, that is, very complex.

When this occurs, it is sometimes necessary to simplify the diagram. Using a view mechanism

can simplify the class diagram. Views were developed originally with relational database man-

agement systems and are simply a subset of the information contained in the database. In this

case, the view would be a useful subset of the class diagram, such as a use-case view that shows

only the classes and relationships that are relevant to a particular use case. A second view

could be to show only a particular type of relationship: aggregation, association, or general-

ization. A third type of view is to restrict the information shown with each class, for example,

only show the name of the class, the name and attributes, or the name and operations. These

view mechanisms can be combined to further simplify the diagram.

A second approach to simplify a class diagram is through the use of packages (i.e., log-

ical groups of classes). To make the diagrams easier to read and to keep the models at a rea-

sonable level of complexity, you can group the classes together into packages. Packages are

general constructs that can be applied to any of the elements in UML models. In Chapter

6, we introduced them to simplify use-case diagrams. In the case of class diagrams, it is sim-

ple to sort the classes into groups based on the relationships they share.3

Object Diagrams

Although class diagrams are necessary to document the structure of the classes, at times,

an object diagram, can be useful. An object diagram is essentially an instantiation of all or

part of a class diagram. (Instantiation means to create an instance of the class with a set of

appropriate attribute values.)

Object diagrams can be very useful when one is trying to uncover details of a class. Gen-

erally speaking, it is easier to think in terms of concrete objects (instances) rather than

abstractions of objects (classes). For example, in Figure 7-5, a portion of the class diagram in

Figure 7-2 has been copied and instantiated. The top part of the figure simply is a copy of a

small view of the overall class diagram. The lower portion is the object diagram that instan-

tiates that subset of classes. By reviewing the actual instances involved, John Doe, Appt1, and

Dr. Smith, we may discover additional relevant attributes, relationships, and/or operations or

possibly misplaced attributes, relationships, and/or operations. For example, an appointment

has a reason attribute. Upon closer examination, the reason attribute may have been better

modeled as an association with the Symptom class. Currently, the Symptom class is associ-

ated with the Patient class. After reviewing the object diagram, this seems to be in error. As

such, we should modify the class diagram to reflect this new understanding of the problem.

220 Chapter 7 Structural Modeling

3 For those familiar with structured analysis and design, packages serve a similar purpose as the leveling and bal-
ancing processes used in data flow diagramming. Packages and package diagrams are described in more detail in
Chapter 9.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

CREATING CRC CARDS AND CLASS DIAGRAMS

Creating a structural model is an iterative process whereby the analyst makes a roughcut of

the model and then refines it over time. Structural models can become quite complex. In

fact, some systems have class diagrams that contain hundreds of classes. In this section, we

take you through one iteration of creating a structural model, but the model can be

expected to change dramatically as you communicate with users and fine-tune your under-

standing of the system. First, however, we present a set of approaches to identify and refine

a set of candidate objects, and provide a set of steps based on these approaches that can be

used to create the initial roughcut structural model.

Object Identification

Many different approaches have been suggested to aid the analyst in identifying a set of

candidate objects for the structural model. The three most common approaches are textual

analysis, common object lists, and patterns. Most analysts use a combination of all three

Creating CRC Cards and Class Diagrams 221

John Doe: Patient

lastname = “Doe”
firstname = “John”
address = “1000 Main Street”
phone = “555-555-5555”
birthdate = 01/01/72
/ age = 32
amount = $0.00
insurance carrier = “JD Health Insurance”

Appt1: Appointment Dr. Smith: Doctor

time = 3:00
date = 7/7/2004
reason = “pain in neck”

Symptom1: Symptom

name = “muscle pain”

lastname = “Smith”
firstname = “Jane”
address = “Doctor’s Clinic”
phone = “999-555-5555”
birthdate : 12/12/64
/ age = 39

Patient

-amount
-insurance carrier

+make appointment()
+calculate last visit()
+change status()
+provide medical history()

0..*

0..*

0..*0..*

1..*

1..*

1

1

Appointment

-time
-date
-reason

+cancel without notice()

+primary
insurance
carrier

Symptom

-name

Doctor

suffer

schedules

has scheduled

FIGURE 7-5 Example Object Diagram

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

techniques to make sure that no important objects and object attributes, operations, and

relationships have been overlooked.

Textual Analysis Textual analysis is an analysis of the text in the use-case descriptions.

The analyst starts by reviewing the use-case descriptions and the use-case diagrams. The

text in the descriptions is examined to identify potential objects, attributes, operations, and

relationships. The nouns in the use case suggest possible classes, whereas the verbs suggest

possible operations. Figure 7-6 presents a summary of guidelines we have found useful.

The textual analysis of use-case descriptions has been criticized as being too simple, but

because its primary purpose is to create an initial roughcut structural model, its simplicity

is a major advantage.

Common Object List As its name implies, a common object list is simply a list of objects

that are common to the business domain of the system. In addition to looking at the spe-

cific use cases, the analyst also thinks about the business separately from the use cases.

Several categories of objects have been found to help the analyst in creation of the list,

such as physical or tangible things, incidents, roles, and interactions.4 Analysts should first

look for physical or tangible things in the business domain. These could include books,

desks, chairs, and office equipment. Normally, these types of objects are the easiest to

identify. Incidents are events that occur in the business domain, such as meetings, flights,

performances, or accidents. Reviewing the use cases can readily identify the roles that the

people “play” in the problem, such as doctor, nurse, patient, or receptionist. Typically, an

interaction is a transaction that takes place in the business domain, such as a sales trans-

action. Other types of objects that can be identified include places, containers, organiza-

tions, business records, catalogs, and policies. In rare cases, processes themselves may need

information stored about them. In these cases, processes may need an object, in addition

to a use case, to represent them.

222 Chapter 7 Structural Modeling

• A common or improper noun implies a class of objects.

• A proper noun or direct reference implies an instance of a class.

• A collective noun implies a class of objects made up of groups of instances of another class.

• An adjective implies an attribute of an object.

• A doing verb implies an operation.

• A being verb implies a classification relationship between an object and its class.

• A having verb implies an aggregation or association relationship.

• A transitive verb implies an operation.

• An intransitive verb implies an exception.

• A predicate or descriptive verb phrase implies an operation.

• An adverb implies an attribute of a relationship or an operation.

Source: These guidelines are based on Russell J. Abbott, “Program Design by Informal English Descriptions,” Com-

munications of the ACM 26, no. 11 (1983): 882–894; Peter P-S Chen, “English Sentence Structure and

Entity-Relationship Diagrams,” Information Sciences: An International Journal 29, no. 2–3 (1983): 127–149; and

Graham, Migrating to Object Technology.

FIGURE 7-6

Textual Analysis

Guidelines

4 For example, see Larman, Applying UML and Patterns, and Sally Shlaer and Stephen J. Mellor, Object-Oriented
Systems Analysis: Modeling the World in Data (Englewood Cliffs, NJ: Yourdon Press, 1988).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Patterns The idea of using patterns is relatively new in object-oriented systems develop-

ment.5 There have been many definitions of exactly what a pattern is. From our perspec-

tive, a pattern is simply a useful group of collaborating classes that provide a solution to a

commonly occurring problem. Since patterns provide a solution to commonly occurring

problems, they are reusable.

An architect, Christopher Alexander, has inspired much of the work associated

with using patterns in object-oriented systems development. According to Alexander

and his colleagues,6 very sophisticated buildings can be constructed by stringing

together commonly found patterns, rather than creating entirely new concepts and

designs. In a very similar manner, it is possible to put together commonly found

object-oriented patterns to form elegant object-oriented information systems. For

example, many business transactions involve the same type of objects and interactions.

Virtually all transactions would require a transaction class, a transaction line item

class, an item class, a location class, and a participant class. By simply reusing these

existing patterns of classes, we can define the system more quickly and more com-

pletely than by starting with a blank piece of paper.

Many different types of patterns have been proposed, ranging from high-level business-

oriented patterns to more low-level design patterns. Figure 7-7 lists some common business

domains for which patterns have been developed, as well as their source. If you are develop-

ing a business information system in one of these business domains, then the patterns devel-

oped for that domain may be a very useful starting point in identifying needed classes and

their attributes, operations, and relationships.

Building CRC Cards and Class Diagrams

It is important to remember that although CRC cards and class diagrams can be used to

describe both the As-Is and To-Be structural model of the evolving system, they are

most often used for the To-Be model. There are many different ways to identify a set of

candidate objects and to create CRC cards and class diagrams. Today most object iden-

tification begins with the use cases identified for the problem (see Chapter 6). In this

section, we describe a seven-step process used to create the structural model of the

problem (see Figure 7-8).

Create CRC Cards We could begin creating the structural model with a class diagram

instead of CRC cards. However, due to the ease of role playing with CRC cards, we pre-

fer to create the CRC cards first and then transfer the information from the CRC cards

into a class diagram later. As a result, the first step of our recommended process is to

create CRC cards. This is done by performing textual analysis on the use case descrip-

tions. If you recall, the normal flow of events, subflows, and alternate/exceptional flows

written as part of the use case were written in a special form called Subject Verb Direct

object Preposition Indirect object (SVDPI). By writing use-case events in this form, it is

Creating CRC Cards and Class Diagrams 223

5 Many books have been devoted to this topic: for example, see Peter Coad, David North, and Mark Mayfield,
Object Models: Strategies, Patterns, & Applications, 2nd ed., (Englewood Cliffs, NJ: Prentice Hall, 1997); Hans-Erik
Eriksson and Magnus Penker, Business Modeling with UML: Business Patterns at Work, (New York: John Wiley &
Sons, 2000); Martin Fowler, Analysis Patterns: Reusable Object Models, (Reading, MA: Addison-Wesley, 1997);
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software, (Reading, MA: Addison-Wesley, 1995); and David C. Hay, Data Model Patterns: Conventions of
Thought (New York, NY: Dorset House, 1996).
6 Christopher Alexander, Sara Ishikawa, Murray Silverstein, Max Jacobson, Ingrid Fiksdahl-King, and Shlomo
Angel, A Pattern Language (New York: Oxford University Press, 1977).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

easier to use the guidelines for use-case analysis in Figure 7-6 to identify the objects.

Reviewing the primary actors, stakeholders, and interests, and giving a brief description

of each use case allow additional candidate objects to be identified. Furthermore, it is

useful to go back and review the original requirements to look for information that was

not included in the text of the use cases. Record all information uncovered for each can-

didate object on a CRC card.

224 Chapter 7 Structural Modeling

FIGURE 7-7

Useful Patterns

Accounting 3, 4

Actor-Role 2

Assembly-Part 1

Container-Content 1

Contract 2, 4

Document 2, 4

Employment 2, 4

Financial Derivative Contracts 3

Geographic Location 2, 4

Group-Member 1

Interaction 1

Material Requirements Planning 4

Organization and Party 2, 3

Plan 1, 3

Process Manufacturing 4

Trading 3

Transactions 1, 4

1. Peter Coad, David North, and Mark Mayfield, Object Models: Strate-

gies, Patterns, & Applications, 2nd ed., (Englewood Cliffs, NJ: Prentice

Hall, 1997).

2. Hans-Erik Eriksson and Magnus Penker, Business Modeling with UML:

Business Patterns at Work, (New York: John Wiley & Sons, 2000).

3. Martin Fowler, Analysis Patterns: Reusable Object Models (Reading,

MA: Addison-Wesley, 1997).

4. David C. Hay, Data Model Patterns: Conventions of Thought (New

York, NY, Dorset House, 1996).

Business Domains Sources of Patterns

1. Create CRC cards by performing textual analysis on the use cases.

2. Brainstorm additional candidate classes, attributes, operations, and relationships by using the com-
mon object list approach.

3. Role-play each use case using the CRC cards.

4. Create the class diagram based on CRC cards.

5. Review the structural model for missing and/or unnecessary classes, attributes, operations, and
relationships.

6. Incorporate useful patterns.

7. Review the structural model.

FIGURE 7-8

Steps for Object

Identification and

Structural Modeling

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Examine Common Object Lists The second step is to brainstorm additional candidate

objects, attributes, operations, and relationships using the common object list approach.

What are the tangible things associated with the problem? What are the roles played by the

people in the problem domain? What incidents and interactions take place in the problem

domain? As you can readily see, by beginning with the use cases, many of these questions

already have partial answers to them. For example, the primary actors and stakeholders are

the roles that are played by the people in the problem domain. However, it is possible to

uncover additional roles that were not thought of previously. This obviously would cause

the use cases and the use-case model to be modified and possibly expanded. As in the pre-

vious step, be sure to record all information uncovered onto the CRC cards. This includes

any modifications uncovered for any previously identified candidate objects and any infor-

mation regarding any new candidate objects identified.

Role-Play the CRC Cards The third step is to role-play each use case using the CRC

cards.7 Each CRC Card should be assigned to an individual, who will perform the oper-

ations for the class on the CRC card. As the “performers” play out their roles, the “sys-

tem” will tend to break down. When this occurs, additional objects, attributes,

operations, or relationships will be identified. Again, like the previous steps, anytime any

new information is discovered, new CRC cards are created or modifications to existing

CRC cards are made.

Create the Class Diagram The fourth step is to create the class diagram based on the

CRC cards. This is equivalent to creating the use-case diagram from the use case descrip-

tions. Information contained on the CRC cards is simply transferred to the class diagrams.

The responsibilities are transferred as operations, and the attributes as attributes, and the

relationships are drawn as generalization, aggregation, or association relationships. How-

ever, the class diagram also requires that the visibility of the attributes and operations be

known. As a general rule of thumb, attributes are private and operations are public. There-

fore, unless the analyst has a good reason to change the default visibility of these proper-

ties, then the defaults should be accepted. Finally, the analyst should examine the model for

additional opportunities to use aggregation or generalization relationships. These types of

relationships can simplify the individual class descriptions. As in the previous steps, any

and all changes must be recorded on the CRC cards.

Review the Class Diagram The fifth step is to review the structural model for missing

and/or unnecessary classes, attributes, operations, and relationships. Up until this step, the

focus of the process has been on adding information to the evolving model. At this point

in time, the focus begins to switch from only adding information to also challenging the

reasons for including the information contained in the model.

Incorporate Patterns The sixth step is to incorporate useful patterns into the evolving

structural model. A useful pattern is one that would allow the analyst to more fully describe

the underlying domain of the problem being investigated. We can do so by looking at the col-

lection of patterns available (Figure 7-7) and comparing the classes contained in the patterns

with those in the evolving class diagram. After identifying the useful patterns, the analyst

incorporates the identified patterns into the class diagram and modifies the affected CRC

cards. This includes adding and removing classes, attributes, operations, and/or relationships.

Creating CRC Cards and Class Diagrams 225

7 For more information on role-playing, see Bellin and Simone, The CRC Card Book and Dean Leffingwell and
Don Widrig, Managing Software Requirements: A Unified Approach (Reading, MA: Addison-Wesley, 2000).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Review the Model The seventh and final step is to review the structural model, includ-

ing both the CRC cards and the class diagram. This is best accomplished during a formal

review meeting using a walkthrough approach in which an analyst presents the model to a

team of developers and users. The analyst “walks through” the model explaining each part

of the model and all of the reasoning that went into the decision to include each class in

the structural model. This explanation includes justifications for the attributes, operations,

and relationships associated with the classes. Finally, each class should be linked back to at

least one use case; otherwise, the purpose of including the class in the structural model will

not be understood. It is often best for the review team to also include people outside the

development team that produced the model because these individuals can bring a fresh

perspective to the model and uncover missing objects.

Applying the Concepts at CD Selections

The previous chapter described the CD Selections Internet sales system (see Figures 6-12

through 6-18). In this section, we demonstrate the process of structural modeling using

one of the use cases identified: Place Order (see Figure 6-15). Even though we are using just

one of the use cases for our structural model, you should remember that to create a com-

plete structural model all use cases should be used.

Create CRC Cards The first step was to create the set of CRC cards by performing tex-

tual analysis on the use cases. To begin with, Alec chose the Place Order use case (see Fig-

ure 6-15). He and his team then used the textual analysis rules (see Figure 7-6) to identify

the candidate classes, attributes, operations, and relationships. Using these rules on the

Normal Flow of Events, they identified Customer, Search Request, CD, List, and Review as

candidate classes. They uncovered three different types of search requests: Title Search,

Artist Search, and Category Search. By applying the textual analysis rules to the Brief

Description, an additional candidate class was discovered: Order. By reviewing the verbs

contained in this use case, they saw that a Customer places an Order and that a Customer

makes a Search Request.

To be as thorough as possible, Alec and his team also reviewed the original require-

ments used to create the use case. The original requirements are contained in Figure 5-13.

After reviewing this information, they identified a set of attributes for the Customer (name,

address, e-mail, and credit card) and Order (CDs to purchase and quantity) classes and

uncovered additional candidate classes: CD Categories and Credit Card Center. Further-

more, they realized that the Category Search class used the CD Categories class. Finally,

they also identified three subclasses of CD Categories: Rock, Jazz, and Classical. Alec’s goal,

at this point in time, was to be as complete as possible. As such, he realized that they may

have identified many candidate classes, attributes, operations, and relationships that may

not be included in the final structural model.

Examine Common Object Lists The second step for Alec and his team was to brain-

storm additional candidate classes, attributes, operations, and relationships. He asked the

team members to take a minute and think about what information they would like to keep

about CDs. The information that they thought of was a set of attributes, for example, title,

artist, quantity on hand, price, and category.

He then asked them to take another minute and think about the information that they

should store about orders and an order’s responsibilities. The responsibilities they identi-

fied were a set of operations, including calculate tax, calculate extension price, calculate

shipping, and calculate total. Currently, the attributes (CDs to purchase and quantity) of

Order implied that a customer should be allowed to order multiple copies of the same CD

226 Chapter 7 Structural Modeling

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

and allow different CDs to be ordered on the same order. However, the current structural

model did not allow this. As such, they created a new class that was associated with both

the Order class and the CD class: Order Line Item. This new class only had one attribute,

quantity, but it had two relationships: one with Order and the other with CD.

When they reviewed the Customer class, they decided that the name and address

attributes needed to be expanded; name should become last name, first name, and mid-

dle initial, and address should become street address, city, state, country, and zip code.

The updated Customer class and Order class CRC cards are shown in Figures 7-9 and

7-10, respectively.

Role-Play the CRC Cards The third step was to role-play the classes recorded on the

CRC cards. The purpose of this step was to validate the current state of the evolving struc-

tural model. Alec handed out the CRC cards to different members of his team. Using the

Creating CRC Cards and Class Diagrams 227

Front:

Class Name: Customer ID: 1

Responsibilities

Associated Use Cases: 3Description: An Individual that may or has purchased merchan-
dise from the CD Selections Internet sales system

Type: Concrete, Domain

Collaborators

Back:

Attributes:

Last name

First name

Street address

City

State

Zip code

Country

E-mail

Credit card

Relationships:

Generalization (a-kind-of):

Aggregation (has-parts):

Other Associations: Order; Search Request

Middle Initial

FIGURE 7-9
Customer Class

CRC Card

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

CRC cards, they began executing the different use cases, one at a time, to see if the current

structural model could support each use case or whether the use case caused the “system”

to crash. Anytime the “system” crashed, there was something missing: a class, an attribute,

a relationship, or an operation. They would then add the missing information to the struc-

tural model and try executing the use case again.

First, they decided that the customer had requested the system to perform a search for

all of the CDs associated with a specific artist. Based on the current CRC cards, the team

228 Chapter 7 Structural Modeling

Front:

Class Name: Order ID: 2

Calculate shipping

Calculate tax

Calculate total

Responsibilities

Associated Use Cases: 3Description: An Individual that needs to receive or has received
medical attention

Type: Concrete, Domain

Collaborators

Back:

Attributes:

Shipping

Tax

Total

Relationships:

Generalization (a-kind-of):

Aggregation (has-parts):

Other Associations: Order Item; Customer

FIGURE 7-10
Order Class

CRC Card

Complete the CRC cards for the remaining identified classes.

7-1 CD-Selections Internet Sales SystemYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

felt that the system would produce an accurate list of CDs. They then tried to ask the sys-

tem for a set of reviews of the CD. At this point in the exercise, the system crashed. The

CRC cards did not have the Review class associated with the CD class. Therefore, there was

no way to retrieve the requested information. This observation raised another question.

Was there other marketing information that should be made available to the customer, for

example, artist information and sample clips?

Next, they realized that vendor information should be a separate class that was associ-

ated with a CD rather than an additional attribute of a CD. This was because vendors had

additional information and operations themselves. If they had modeled the vendor infor-

mation as an attribute of CD, then the additional information and operations would have

been lost. They continued role-playing each of the use cases until they were comfortable

with the structural model’s ability to support each and every one.

Create the Class Diagram The fourth step was to create the class diagram from the CRC

cards. Figure 7-11 shows the current state of the evolving structural model as depicted in a

class diagram based on the Place Order use case.

Review the Class Diagram The fifth step was to review the structural model for missing

and/or unnecessary classes, attributes, operations, and relationships. At this point, the team

challenged all components of the model (class, attribute, relationship, or operation) that did

not seem to be adding anything useful to the model. If a component could not be justified suf-

ficiently, then they removed it from the structural model. By carefully reviewing the current

state of the structural model, they were able to challenge over a third of the classes contained

in the class diagram (see Figure 7-11). It seemed that the CD categories, and their subclasses,

were not really necessary. There were no attributes or operations for these classes. As such, the

idea of CD categories was modeled as an attribute of a CD. The category attribute for the CD

class was previously uncovered during the brainstorming step. Also, upon further review of the

Search Request class and its subclasses, it was decided that the subclasses were really nothing

more than a set of operations of the Search Request class. This was an example of process

decomposition creeping into the modeling process. From an object-oriented perspective, we

must always be careful to not allow this to occur. However, during the previous steps in the

modeling process, Alec wanted to include as much information as possible in the model. It was

more beneficial to remove this type of information after it had crept into the model than to

take a chance on not capturing the information required to solve the problem.

Incorporate Patterns The sixth step was to incorporate any useful pattern into the

structural model. One pattern that could be useful is the Contract pattern listed in Figure

7-7. By reviewing this pattern (see Figure 7-12), Alec and his team uncovered two sub-

classes of the Customer class: Individual and Organizational.8 Furthermore, Peter Coad

has identified twelve transaction patterns that also could be useful for Alec and his team

to investigate further.9

Review the Model The seventh and final step is to carefully review the structural model.

Figure 7-13 shows the Places Order use case view of the structural model as portrayed in a

class diagram developed by Alec and his team. This version of the class diagram incorpo-

rates all of the modification described previously.

Creating CRC Cards and Class Diagrams 229

8 This pattern is based on the Sales Order contract pattern described in David C. Hay, Data Model Patterns: Con-
ventions of Thought (New York, NY: Dorset House, 1996).
9 See Peter Coad, David North, and Mark Mayfield, Object Models: Strategies, Patterns, & Applications, 2nd Ed.
(Englewood Cliffs, NJ: Prentice Hall, 1997).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

230 Chapter 7 Structural Modeling

Customer Order Order Item

Title Search Rock Jazz ClassicalArtist Search

Search Req CD Categories

Category Search

CD

CD List

Mkt Info

Vendor

Artist Into

Credit Card Center

Review

Sample Clip

0..*

0..*

0..1

1..*

0..*

0..**1 *1 *

*

*

**

*

*

*

*

*

*

1 1

1

1

1

1

1

checks

classifies

distributes

places

makes

uses

includes contains

consists of

results in

promotes

FIGURE 7-11 Preliminary CD Selections Internet Sales Class Diagram (Place Order Use-Case View)

Product Type Line Item

**

3 contains Sales Order

1*

3 includes Party

Person Organization

**

3 places

FIGURE 7-12 Sales Order Contract Pattern10

10 Adapted from David C. Hay, Data Model Patterns: Conventions of Thought.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Creating CRC Cards and Class Diagrams 231

Customer Order Order Item

Individual Organizational

Search Req

CD

CD List

Mkt Info

Vendor

Artist Info

Credit Card Center

Review

Sample Clip
0..1

*

* *

*1 * *

*

*

*

*

*

*

*

*

1

1

1

1

1

checks
distributes

places

makes

includes contains

consists of

results in

promotes

FIGURE 7-13 CD Selections Internet Sales System Class Diagram (Place Order Use-Case View)

In Your Turn 7-1, you completed the detailed use cases for
the CD Selections Internet sales system. Using these
detailed use cases, complete the structural model (CRC

cards and class diagram) for the remaining use cases in
Figure 6-16.

7-2 CD Selections Internet Sales SystemYOUR

TURN

In Your Turn 6-6, you created a set of the use cases from
the campus housing service that helps students find apart-
ments. Using the same use cases, create a structural
model (CRC cards and class diagram). See if you can

identify at least one potential derived attribute, aggrega-
tion relationship, generalization relationship, and associ-
ation relationship for the model.

7-3 Campus HousingYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

SUMMARY

Structural Models

Structural models describe the underlying data structure of an object-oriented system.
Where use-case models provide an external functional view of the evolving system (i.e.,
what the system does), structural models provide an internal static view of the evolving
system (i.e., how the objects are organized in the system). At this point in the develop-
ment of the system, the structural model only represents a logical model of the under-
lying problem domain. One of the primary purposes of the structural model is to create
a vocabulary that allows the users and developers to effectively communicate about the
problem under investigation. Structural models are comprised of classes, attributes,
operations, and relationships. The three basic types of relationships that normally are
depicted on structural models are aggregation, generalization, and association. Struc-
tural models typically are represented by CRC cards, class diagrams, and, in some cases,
object diagrams.

CRC Cards

CRC cards model the classes, their responsibilities, and their collaborations. There are
two different types of responsibilities: knowing and doing. Knowing responsibilities
are associated mostly with attributes of instances of the class, while doing responsibil-
ities are associated mostly with operations of instances of the class. Collaborations
support the concepts of clients, servers, and contracts between objects. CRC cards cap-
ture all of the essential elements of the instances of a class. The front of the card allows
the recording of the class’s name, ID, type, description, list of associated use cases,
responsibilities, and collaborators, while the back of the card contains the attributes
and relationships.

Class and Object Diagrams

The class diagram is a graphical description of the information contained on the CRC
cards. It shows the classes and the relationships between the classes. The visibility of
the attributes and operations and the multiplicity of the relationships are additional
information that the class diagram portrays, which is not included on the CRC cards.
Also, at times a relationship itself contains information. In this case, an association
class is created.

In real-world systems that can have over 100 classes, the class diagram can become
overly complicated. To allow for the simplification of the diagram, a view mechanism
can be used. A view restricts the amount of information portrayed on the diagram.
Some useful views are: hiding all information about the class except for its name and
relationships, showing only the classes that are associated with a particular use case, and
limiting the relationships included to only one specific type (aggregation, generaliza-
tion, or association).

When attempting to uncover additional information about the details of a class, it is
useful to portray specific instances of a class instead of the classes themselves. An object
diagram is used to depict a set of objects that represent an instantiation of all or part of a
class diagram.

Creating CRC Cards and Class Diagrams

Creating a structural model is an iterative process. The process described is a seven-step
process. The steps include textual analysis of use cases, brainstorming additional objects
using common object lists, role-playing each use case using the CRC cards, creating class
diagrams, and incorporating useful patterns.

232 Chapter 7 Structural Modeling

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Questions 233

A-kind-of

A-part-of

Abstract class

Aggregation relationship

Anthropomorphism

Assemblies

Association relationship

Association class

Attribute

Behavior

Class

Class diagram

Client

Collaboration

Common object list

Conceptual model

Concrete class

Constructor operation

Contract

CRC cards

Decomposition

Derived attribute

Doing responsibility

Generalization relationship

Has-parts

Incidents

Instances

Instantiation

Interaction

Knowing responsibility

Maximum number

Minimum number

Multiplicity

Objects

Object diagram

Operation

Package

Parts

Pattern

Private

Protected

Public

Query operation

Responsibility

Role-play

Roles

Server

Specialization

Static model

Structural model

Subclass

Substitutability

Superclass

SVDPI

Tangible things

Textual analysis

Update operation

View

Visibility

Wholes

KEY TERMS

1. Describe to a businessperson the multiplicity of a rela-

tionship between two classes.

2. Why are assumptions important to a structural model?

3. What is an association class?

4. Contrast the following sets of terms:

object; class; instance

property; method; attribute

superclass; subclass

concrete class; abstract class

5. Give three examples of derived attributes that may

exist on a class diagram. How would they be denoted

on the class diagram?

6. What are the different types of visibility? How would

they be denoted on a class diagram?

7. Draw the relationships that are described by the fol-

lowing business rules. Include the multiplicities for

each relationship.

A patient must be assigned to only one doctor, and

a doctor can have one or many patients.

An employee has one phone extension, and a

unique phone extension is assigned to an employee.

A movie theater shows at least one movie, and a

movie can be shown at up to four other movie the-

aters around town.

A movie either has one star, two co-stars, or more

than ten people starring together. A star must be in

at least one movie.

8. How do you designate the reading direction of a rela-

tionship on a class diagram?

9. For what purpose is an association class used in a class

diagram? Give an example of an association class that

may be found in a class diagram that captures students

and the courses they have taken.

10. Give two examples of aggregation, generalization, and

association relationships. How is each type of associa-

tion depicted on a class diagram?

11. Identify the following operations as constructor, query,

or update. Which operations would not need to be

shown in the class rectangle?

Calculate employee raise (raise percent)

Calculate sick days ()

Increment number of employee vacation days ()

Locate employee name ()

Place request for vacation (vacation day)

Find employee address ()

Insert employee ()

Change employee address ()

Insert spouse ()

QUESTIONS

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

234 Chapter 7 Structural Modeling

A. Draw class diagrams for the following classes:

Movie (title, producer, length, director, genre)

Ticket (price, adult or child, showtime, movie)

Patron (name, adult or child, age)

B. Create an object diagram based on the class diagram

you drew for Exercise A.

C. Draw a class diagram for the following classes. Con-

sider that the entities represent a system for a patient

billing system. Include only the attributes that would

be appropriate for this context.

Patient (age, name, hobbies, blood type, occupation,

insurance carrier, address, phone)

Insurance carrier (name, number of patients on plan,

address, contact name, phone)

Doctor (specialty, provider identification number,

golf handicap, age, phone, name)

D. Create an object diagram based on the class diagram

you drew for Exercise C.

E. Draw the following relationships:

1. A patient must be assigned to only one patient, and

a doctor can have many patients.

2. An employee has one phone extension, and a

unique phone extension is assigned to an employee.

3. A movie theater shows many different movies, and

the same movie can be shown at different movie

theaters around town.

F. Draw a class diagram for the following situations:

1. Whenever new patients are seen for the first time,

they complete a patient information form that asks

their name, address, phone number, and insurance

carrier, which are stored in the patient information

file. Patients can be signed up with only one carrier,

but they must by signed up to be seen by the doctor.

Each time a patient visits the doctor, an insurance

claim is sent to the carrier for payment. The claim

must contain information about the visit such as the

date, purpose, and cost. It would be possible for a

patient to submit two claims on the same day.

2. The state of Georgia is interested in designing a system

that will track its researchers. Information of interest

includes researcher name, title, position; university

name, location, enrollment; and research interests.

Researchers are associated with one institution, and

each researcher has several research interests.

3. A department store has a bridal registry. This reg-

istry keeps information about the customer (usually

the bride), the products that the store carries, and

the products each customer registers for. Customers

typically register for a large number of products,

and many customers register for the same products.

4. Jim Smith’s dealership sells Fords, Hondas, and

Toyotas. The dealership keeps information about

each car manufacturer with whom it deals so that

it can get in touch with them easily. The dealership

also keeps information about the models of cars

that it carries from each manufacturer. It keeps

information such as list price, the price the dealer-

ship paid to obtain the model, and the model

name and series (e.g., Honda Civic LX). The deal-

ership also keeps information on all sales that it

has made (for instance, it will record the buyer’s

name, the car bought, and the amount paid for the

car). In order to contact the buyers in the future,

contact informations is also stored (e.g., address,

phone number).

G. Create object diagrams based on the class diagrams

that you drew for Exercise F.

H. Examine the class diagrams that you created for Exer-

cise F. How would the models change (if at all) based

on these new assumptions?

1. Two patients have the same first and last names.

2. Researchers can be associated with more than one

institution.

3. The store would like to keep track of purchase items.

4. Many buyers have purchased multiple cars from

Jim over time because he is such a good dealer.

I. Visit a Web site that allows customers to order a prod-

uct over the Web (e.g., Amazon.com). Create a struc-

tural model (CRC cards and class diagram) that the

site must need to support its business process. Include

classes to show what they need information about. Be

sure to include the attributes and operations to repre-

sent the type of information they use and create.

Finally, draw relationships, making assumptions about

how the classes are related.
J. Create a structural model (CRC cards and class dia-

gram) for Exercise C in Chapter 6.

K. Create a structural model for Exercise E in Chapter 6.

L. Create a structural model for Exercise H in Chapter 6.

M. Create a structural model for Exercise J in Chapter 6.

N. Create a structural model for Exercise L in Chapter 6.

O. Create a structural model for Exercise N in Chapter 6.

P. Create a structural model for Exercise P in Chapter 6.

Q. Create a structural model for Exercise R in Chapter 6.

R. Create a structural model for Exercise T in Chapter 6.

EXERCISES

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Minicases 235

1. West Star Marinas is a chain of twelve marinas that

offer lakeside service to boaters, service and repair of

boats, motors, and marine equipment, and sales of

boats, motors, and other marine accessories. The sys-

tems development project team at West Star Marinas

has been hard at work on a project that eventually will

link all the marina’s facilities into one unified, net-

worked system.

The project team has developed a use-case diagram

of the current system. This model has been carefully

checked. Last week, the team invited a number of sys-

tem users to role-play the various use cases, and the

use cases were refined to the users’ satisfaction. Right

now, the project manager feels confident that the As-

Is system has been adequately represented in the use-

case diagram.

The Director of Operations for West Star is the spon-

sor of this project. He sat in on the role playing of the

use cases, and was very pleased by the thorough job the

team had done in developing the model. He made it

clear to you, the project manager, that he was anxious to

see your team begin work on the use cases for the To-Be

system. He was a little skeptical that it was necessary for

your team to spend any time modeling the current sys-

tem in the first place, but grudgingly admitted that the

team really seemed to understand the business after

going through that work.

The methodology you are following, however, spec-

ifies that the team should now turn its attention to

developing the structural models for the As-Is system.

When you stated this to the project sponsor, he

seemed confused and a little irritated. “You are going

to spend even more time looking at the current sys-

tem? I thought you were done with that! Why is this

necessary? I want to see some progress on the way

things will work in the future!”

What is your response to the Director of Operations?

Why do we perform structural modeling? Is there any

benefit to developing a structural model of the current

system at all? How does the use cases and use-case dia-

gram help us develop the structural model?

2. Holiday Travel Vehicles sells new recreational vehicles

and travel trailers. When new vehicles arrive at Holiday

Travel Vehicles, a new vehicle record is created. Included

in the new vehicle record is a vehicle serial number,

name, model, year, manufacturer, and base cost.

When a customer arrives at Holiday Travel Vehicles,

he/she works with a salesperson to negotiate a vehicle

purchase. When a purchase has been agreed to, a sales

invoice is completed by the salesperson. The invoice

summarizes the purchase, including full customer

information, information on the trade-in vehicle (if

any), the trade-in allowance, and information on the

purchased vehicle. If the customer requests dealer-

installed options, they will be listed on the invoice as

well. The invoice also summarizes the final negotiated

price, plus any applicable taxes and license fees. The

transaction concludes with a customer signature on the

sales invoice.

a. Identify the classes described in the above scenario

(you should find six). Create CRC cards for each of

the classes.

Customers are assigned a customer ID when they

make their first purchase from Holiday Travel Vehicles.

Name, address, and phone number are recorded for

the customer. The trade-in vehicle is described by a

serial number, make, model, and year. Dealer-installed

options are described by an option code, description,

and price.

b. Develop a list of attributes for each of the classes.

Place the attributes onto the CRC cards.

Each invoice will list just one customer. A person

does not become a customer until they purchase a

vehicle. Over time, a customer may purchase a number

of vehicles from Holiday Travel Vehicles.

Every invoice must be filled out by only one sales-

person. A new salesperson may not have sold any vehi-

cles, but experienced salespeople have probably sold

many vehicles.

Each invoice only lists one new vehicle. If a new

vehicle in inventory has not been sold, there will be no

invoice for it. Once the vehicle sells, there will be just

one invoice for it.

A customer may decide to have no options added to

the vehicle, or may choose to add many options. An

option may be listed on no invoices, or it may be listed

on many invoices.

A customer may trade in no more than one vehicle

on a purchase of a new vehicle. The trade-in vehicle

may be sold to another customer, who later trades it in

on another Holiday Travel Vehicle.

c. Based on the above business rules in force at Holi-

day Travel Vehicles, and CRC cards draw a class dia-

gram and document the relationships with the

appropriate multiplicities. Remember to update the

CRC cards.

MINICASES

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Behavioral models describe the internal dynamic aspects of an information system that

supports the business processes in an organization. During the analysis phase, behavioral

models describe what the internal logic of the processes is without specifying how the

processes are to be implemented. Later, in the design and implementation phases, the

detailed design of the operations contained in the object is fully specified. In this chapter,

we describe three UML 2.0 diagrams that are used in behavioral modeling: sequence dia-

grams, communication diagrams, and behavioral state machines.

OBJECTIVES

■ Understand the rules and style guidelines for sequence and communication diagrams

and behavioral state machines.
■ Understand the processes used to create sequence and communication diagrams and

behavioral state machines.
■ Be able to create sequence and communication diagrams and behavioral state machines.
■ Understand the relationship between the behavioral models and the structural and

functional models.

CHAPTER OUTLINE

INTRODUCTION

The previous two chapters discussed functional models and structural models. Systems

analysts utilize functional models to describe the external behavioral view of an informa-

tion system, while they use structural models to depict the static view of an information

system. In this chapter, we discuss how analysts use behavioral models to represent the

internal behavior or dynamic view of an information system.

There are two types of behavioral models. First, there are behavioral models that

are used to represent the underlying details of a business process portrayed by a use

case model. In UML, interaction diagrams (sequence and communication) are used

for this type of behavioral model. Second, there is a behavioral model that is used to

Introduction

Behavioral Models

Interaction Diagrams

Objects, Operations, and Messages

Sequence Diagrams

Communication Diagrams

Behavioral State Machines

States, Events, Transitions, Actions, and

Activities

Elements of a Behavioral State Machine

Building Behavioral State Machines

Applying the Concepts at CD Selections

Summary

C H A P T E R 8

Behavioral Modeling

236

C
op

yr
ig

ht
ed

 M
at

er
ia

l

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

represent the changes that occur in the underlying data. UML uses behavioral state

machines for this.

During the analysis phase, analysts use behavioral models to capture a basic understanding

of the dynamic aspects of the underlying business process. Traditionally, behavioral models have

been used primarily during the design phase where analysts refine the behavioral models to

include implementation details (see Chapter 9). For now, our focus is on what the dynamic view

of the evolving system is and not on how the dynamic aspect of the system will be implemented.

In this chapter, we concentrate on creating behavioral models of the underlying busi-

ness process. Using the interaction diagrams (sequence and communication diagrams) and

behavioral state machines, it is possible to give a complete view of the dynamic aspects of

the evolving business information system. We first describe behavioral models and their

components. We then describe each of the diagrams, how they are created, and how they

are related to the use case model and class diagram that are described in Chapters 6 and 7.

BEHAVIORAL MODELS

When an analyst is attempting to understand the underlying domain of a problem, he or

she must consider both structural and behavioral aspects of the problem. Unlike other

approaches to information systems development, object-oriented approaches attempt to

view the underlying application domain in a holistic manner. By viewing the problem

domain as a set of use cases that are supported by a set of collaborating objects, object-

oriented approaches allow the analyst to minimize the semantic gap between the real-

world set of objects and the evolving object-oriented model of the problem domain.

However, as pointed out in the previous chapter, the real world tends to be messy, which

makes perfectly modeling the problem domain practically impossible in software. This is

because software must be neat and logical to work.

One of the primary purposes of behavioral models is to show how the underlying

objects in the problem domain will collaborate to support each of the use cases. Whereas

structural models represent the objects and the relationships between them, behavioral

models depict the internal view of the business process that a use case describes. The

process can be shown by the interaction that takes place between the objects that collabo-

rate to support a use case through the use of interaction (sequence and communication)

diagrams. It is also possible to show the effect that the set of use cases that make up the sys-

tem has on the objects in the system through the use of behavioral state machines.

Creating behavioral models is an iterative process that not only iterates over the indi-

vidual behavioral models (e.g., interaction (sequence and communication) diagrams and

behavioral state machines) but also over the functional (see Chapter 6) and structural

models (see Chapter 7). As the behavioral models are created, it is not unusual to make

changes to the functional and structural models. In the next three sections, we describe

interaction diagrams and behavioral state machines and when to use each.

INTERACTION DIAGRAMS

One of the primary differences between the class diagrams and the interaction diagrams,

besides the obvious difference that one describes structure and the other behavior, is that

the modeling focus on the class diagram is at the class level, while the interaction diagrams

focus on the object level. In this section we review objects, operations, and messages and

we cover the two different diagrams (sequence and communication) that can be used to

model the interactions that take place between the objects in an information system.

Interaction Diagrams 237

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Objects, Operations, and Messages

In Chapter 2, we defined an object as an instantiation of a class, that is, an actual person,

place, event, or thing about which we want to capture information. If we were building an

appointment system for a doctor’s office, classes might include doctor, patient, and

appointment. The specific patients like Jim Maloney, Mary Wilson, and Theresa Marks are

considered objects—that is, instances of the patient class.

Each object has attributes that describe information about the object, such as a

patient’s name, birth date, address, and phone number. Each object also has behaviors. At

this point in the development of the evolving system, the behaviors are described by oper-

ations. An operation is nothing more than an action that an object can perform. For exam-

ple, an appointment object likely can schedule a new appointment, delete an appointment,

and locate the next available appointment.

Each object also can send and receive messages. Messages are information sent to

objects to tell an object to execute one of its behaviors. Essentially, a message is a function

or procedure call from one object to another object. For example, if a patient is new to the

doctor’s office, the system will send an insert message to the application. The patient object

will receive the instruction (the message) and do what it needs to do to go about inserting

the new patient into the system (the behavior).

Sequence Diagrams

Sequence diagrams are one of two types of interaction diagrams. They illustrate the objects

that participate in a use case and the messages that pass between them over time for one use

case. A sequence diagram is a dynamic model that shows the explicit sequence of messages

that are passed between objects in a defined interaction. Since sequence diagrams empha-

size the time-based ordering of the activity that takes place among a set of objects, they are

very helpful for understanding real-time specifications and complex use cases.

The sequence diagram can be a generic sequence diagram that shows all possible sce-

narios1 for a use case, but usually each analyst develops a set of instance sequence diagrams,

each of which depicts a single scenario within the use case. If you are interested in under-

standing the flow of control of a scenario by time, you should use a sequence diagram to

depict this information. The diagrams are used throughout both the analysis and design

phases. However, the design diagrams are very implementation-specific, often including

database objects or specific GUI components as the classes. The following section presents

the elements of a sequence diagram.

Elements of a Sequence Diagram Figure 8-1 shows an instance sequence diagram that

depicts the objects and messages for the Make Appointment use case, which describes the

process by which a patient creates a new appointment, cancels, or reschedules an appoint-

ment for the doctor’s office appointment system. In this specific instance, the make

appointment process is portrayed.

Actors and objects that participate in the sequence are placed across the top of the dia-

gram using actor symbols from the use case diagram, and object symbols from the object

diagram (see Figure 8-2). Notice that the actors and objects in Figure 8-1 are aPatient, aRe-

ceptionist, Patients, UnpaidBills, Appointments, and anAppt.2 They are not placed in any

particular order, although it is nice to organize them in some logical way, such as the order

in which they participate in the sequence. For each of the objects, the name of the class that

238 Chapter 8 Behavioral Modeling

1 Remember that a scenario is a single executable path through a use case.
2 In some versions of the sequence diagram, object symbols are used as surrogates for the actors. However, for
purposes of clarity, we recommend using actor symbols for actors instead.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

they are an instance of is given after the object’s name (e.g., Patients:List means that

Patients is an instance of the List class that contains individual patient objects).

A dotted line runs vertically below each actor and object to denote the lifeline of the

actors/objects over time (see Figure 8-1).3 Sometimes an object creates a temporary object,

and in this case an X is placed at the end of the lifeline at the point the object is destroyed

(not shown). For example, think about a shopping cart object for a Web commerce applica-

tion. The shopping cart is used for temporarily capturing line items for an order, but once

the order is confirmed, the shopping cart is no longer needed. In this case, an X would be

located at the point at which the shopping cart object is destroyed. When objects continue

to exist in the system after they are used in the sequence diagram, then the lifeline continues

to the bottom of the diagram (this is the case with all of the objects in Figure 8-1).

A thin rectangular box, called the execution occurrence, is overlaid onto the lifeline to

show when the classes are sending and receiving messages (see Figure 8-2). A message is a

communication between objects that conveys information with the expectation that activ-

ity will ensue. There are many different types of messages that can be portrayed on a

sequence diagram. However, in the case of using sequence diagrams to model use cases, two

types of messages are typically used: Operation Call and Return. Operation call messages

passed between classes are shown using solid lines connecting two objects with an arrow on

the line showing which way the message is being passed. Argument values for the message

are placed in parentheses next to the message’s name. The order of messages goes from the

top to the bottom of the page, so messages located higher on the diagram represent messages

Interaction Diagrams 239

sd Make Appt Use Case

Request Appt()

NewCancelChangeAppt?()

ApptTimes?()

aPatient

LookUpPatient()

aReceptionist Patients:List

[aPatient Exists] LookUpBills()

MatchAppts()

UnPaidBills:List Appointments:List

CreateAppt()
anAppt:Appointment

FIGURE 8-1 Example Sequence Diagram

3 Technically speaking, in UML 2.0 the lifeline actually refers to both the object (actor) and the dashed line drawn
vertically underneath the object (actor). However, we prefer to use the older terminology because it is more
descriptive of what is actually being represented.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

that occur earlier on in the sequence, versus the lower messages that occur later. A return

message is depicted as a dashed line with an arrow on the end of the line portraying the

direction of the return. The information being returned is used to label the arrow. However,

since adding return messages tends to clutter the diagram, unless the return messages add a

lot of information to the diagram, they should be omitted. In Figure 8-1, “LookUpPatient”

is a message sent from the actor aReceptionist to the object Patients, which is a container for

the current patients to determine whether the aPatient actor is a current patient.

At times a message is sent only if a condition is met. In those cases, the condition is

placed between a set of [] (e.g., [aPatient Exists] LookupBills()). The condition is placed in

front of the message name. However, when using a sequence diagram to model a specific

240 Chapter 8 Behavioral Modeling

An Actor:

■ Is a person or system that derives benefit from and is external to the system

■ Participates in a sequence by sending and/or receiving messages

■ Are placed across the top of the diagram

■ Is depicted as either a stick figure (default) or if a non-human actor is involved, as
a rectangle with <<actor>> in it (alternative)

An Object:

■ Participates in a sequence by sending and/or receiving messages

■ Are placed across the top of the diagram

A Lifeline:

■ Denotes the life of an object during a sequence

■ Contains an “X” at the point at which the class no longer interacts

An Execution Occurrence:

■ Is a long narrow rectangle placed atop a lifeline

■ Denotes when an object is sending or receiving messages

A Message:

■ Conveys information from one object to another one

■ An operation call is labeled with the message being sent and a solid arrow, while
a return is labeled with the value being returned and shown as a dashed arrow

Object Destruction:

■ An X is placed at the end of an object’s lifeline to show that it is going out
of existence

A Frame:

■ Indicates the context of the sequence diagram

anObject : aClass

<<actor>>
Actor/Role

anActor

aMessage()

Return Value

X

Context

FIGURE 8-2 Sequence Diagram Syntax

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

scenario, conditions typically are not shown on any single sequence diagram. Instead, con-

ditions are implied only through the existence of different sequence diagrams. There are

times that a message is repeated. This is designated with an * in front of the message name

(e.g., * Request CD). An object can send a message to itself. This is known as self-delegation.

Sometimes, an object will create another object. This is shown by the message being

sent directly to an object instead of its lifeline. In Figure 8-1, the actor aReceptionist creates

an object anAppt.

Building a Sequence Diagram In this section we describe a six-step process used to create

a sequence diagram4 (see Figure 8-3). The first step in the process is to determine the context

of the sequence diagram. The context of the diagram can be a system, a use case, a scenario of

a use case, or an operation of a class. The context of the diagram is depicted as a labeled frame

around the diagram (see Figures 8-1 and 8-2). Most commonly, it is one use case scenario.

The second step is to identify the objects that participate in the sequence being mod-

eled—that is, the objects that interact with each other during the use case scenario. The

objects are identified during the development of the structural model (see Chapter 7).

These are the classes on which the objects of the sequence diagram for this scenario will be

based. However, during this process, it is likely that new classes, and hence new objects, will

be uncovered. Don’t worry too much about identifying all the objects perfectly; remember

that the behavioral modeling process is iterative. Usually, the sequence diagrams are revised

multiple times during the structural and behavioral modeling processes.

The third step is to set the lifeline for each object. To do this, you need to draw a vertical

dotted line below each class to represent the class’s existence during the sequence. An X should

be placed below the object at the point on the lifeline where the object goes out of existence.

The fourth step is to add the messages to the diagram. This is done by drawing arrows

to represent the messages being passed from object to object, with the arrow pointing in

the message’s transmission direction. The arrows should be placed in order from the first

message (at the top) to the last (at the bottom) to show time sequence. Any parameters

passed along with the messages should be placed in parentheses next to the message’s

name. If a message is expected to be returned as a response to a message, then the return

message is not explicitly shown on the diagram.

The fifth step is to place the execution occurrence on each object’s lifeline by drawing

a narrow rectangle box over top of the lifelines to represent when the classes are sending

and receiving messages.

The sixth and final step is to validate the sequence diagram. The purpose of this step is

to guarantee that the sequence diagram completely represents the underlying process(es).

This is done by guaranteeing that the diagram depicts all of the steps in the process.

Interaction Diagrams 241

1. Set the context.

2. Identify which objects will participate.

3. Set the lifeline for each object.

4. Layout the messages from the top to the bottom of the diagram based on the order in which
they are sent.

5. Add the execution occurrence to each object‘s lifeline.

6. Validate the sequence diagram.
FIGURE 8-3
Steps for Building

Sequence Diagrams

4 The approach described in this section are adapted from Grady Booch, James Rumbaugh, Ivar Jacobson, The
Unified Modeling Language User Guide (Reading, MA: Addison-Wesley, 1999).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Applying the Concepts at CD Selections The best way to learn how to build a sequence

diagram is to draw one. In this section we apply the steps just described to the CD Selec-

tions case used in the previous chapters.

The first step in the process is to determine the context of the sequence diagram. We will

use a scenario5 from the Place Order use case that was created in Chapter 6 and illustrated

in Figure 6-15. (Refer to the original use case for the details.) Figure 8-4 lists the Normal

Flow of Events that contains the scenario that this sequence diagram will need to describe.

The second step is to identify the objects that participate in the sequence being mod-

eled. The classes associated with the Place Order use case are shown in Figure 7-13. For

example, the classes used for the Place Order use case include Customer, CD, Marketing

Information, Credit Card Center, Order, Order Item, Vendor, Search Request, CD List,

Review, Artist Information, Sample Clip, Individual, and Organizational.

During the role playing of the CRC Cards, one of the analysts assigned to the CD Selec-

tions Internet System Development Team asked whether a Shopping Cart class should be

included. She stated that every Internet sales site she had been to had a shopping cart that

was used to build an order. However, the instance of the Shopping Cart class only existed

until either an order was placed or the shopping cart was emptied. Based on this obvious

oversight, both the Place Order use case and the class diagram will have to be modified.

Another analyst pointed out that the CDs themselves were going to have to be associated

with some type of searchable storage. Otherwise, it would be impossible to find the CD in

which the customer was interested. However, it was decided that the CD List class would

suffice for both the searchable storage and a temporary instance that is created as a result

of a search request. This again is a fairly typical situation in object-oriented development.

The more the development team learns about the requirements, the more the models

(functional, structural, and behavioral) will evolve. The important thing is to remember

that an object-oriented development process is iterative over all of the models.

The objects that will be needed to describe this scenario are instances of the Search

Request, CD List, CD, Marketing Material, Customer, Review, Artist Information, Sample

Clip, and Shopping Cart classes. We also have an actor (Customer) that interacts with the

scenario. To complete this step, you should lay out the objects on the sequence diagram by

drawing them, from left to right, across the diagram.

The third step is to set the lifeline for each object. To do this, you should draw a verti-

cal dotted line below each of the objects (aSR, aCDL, CDs, aCD, MI, aR, AI, SC, and

anOrder) and the actor (aCustomer). Also, an X should be placed at the bottom of the life-

lines for aCDL and aSC since they go away at the end of this process.

242 Chapter 8 Behavioral Modeling

Normal Flow of Events:

1. Customer submits a search request to the system.

2. The System provides the Customer a list of recommended CDs.

3. The Customer chooses one of the CDs to find out additional information.

4. The System provides the Customer with basic information and reviews on the CD.

5. The Customer calls the Maintain Order use case.

6. The Customer iterates over 3 through 5 until done shopping.

7. The Customer executes the Checkout use case.

8. The Customer leaves the Web site.

FIGURE 8-4
Normal Flow of Events

of the Places Order

Use Case

5 Remember, as stated previously, a scenario is a single executable path through a use case.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

The fourth step is to add the messages to the diagram. Examine the steps in Figure 8-4

and see if you can determine the way in which the messages should be added to the sequence

diagram. Figure 8-5 shows our results. Notice how we did not include messages back to Cus-

tomer in response to “create SR” and “add CD.” In these cases, it is assumed that the cus-

tomer will receive response messages about the requested CD and inserted CD, respectively.

The fifth step is to add the execution occurrence to each object’s and actor’s lifeline.

This is done by drawing a narrow rectangle box over top of the lifelines to represent when

the objects (actors) are sending and receiving messages (e.g., in Figure 8-5 aCustomer is

active during the entire process, while aSR is only active at the beginning of the process [the

top of the diagram]).

Finally, the CD Selections team validated the diagram by ensuring that the diagram

accurately and completely represents the underlying process associated with the Place

Order use case. Figure 8-5 portrays their completed sequence diagram.

Communication Diagrams

Communication diagrams, like sequence diagrams, essentially provide a view of the

dynamic aspects of an object-oriented system. A communication diagram is essentially an

object diagram that shows message passing relationships instead of aggregation or gener-

alization associations. Communication diagrams are very useful to show process patterns

(i.e., patterns of activity that occur over a set of collaborating classes).

Communication diagrams are equivalent to sequence diagrams, but they emphasize

the flow of messages through a set of objects, while the sequence diagrams focus on the

time ordering of the messages being passed. Therefore, if you are interested in under-

standing the flow of control over a set of collaborating objects, you should use a commu-

nication diagram. If you are interested in the time ordering of the messages, you should use

a sequence diagram. In some cases, you will want to use both to more fully understand the

dynamic activity of the system.

Elements of a Communication Diagram A communication diagram for the Make

Appointment use case is portrayed in Figure 8-6. Like the sequence diagram in Figure 8-1,

the appointment creation process is portrayed.

Actors and objects that collaborate to execute the use case are placed on the com-

munication diagram in a manner to emphasize the message passing that takes place

between them. Notice that the actors and objects in Figure 8-6 are the same ones in Fig-

ure 8-1: aPatient, aReceptionist, Patients, UnpaidBills, Appointments, and anAppt.6

Again, like the sequence diagram, for each of the objects, the name of the class that they

Interaction Diagrams 243

In Your Turn 6-6, you were asked to create a set of use
cases and a use-case diagram for the campus housing ser-
vice that helps students find apartments. In Your Turn 7-3,
you were asked to create a structural model (CRC Cards

and class diagram) for those use cases. Select one of the
use cases from the use case diagram and create a
sequence diagram that represents the interaction among
classes in the use case.

8-1 Drawing a Sequence DiagramYOUR

TURN

6 In some versions of the communication diagram, object symbols are used as surrogates for the actors. However,
again we recommend using actor symbols for actors instead.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

2
4
4

C
h
ap

ter 8
B

e
h

a
v
io

r
a
l M

o
d

e
lin

g

sd Place Order Use Case

CreateSR()

aCustomer

aSR:Search Req

CDs:CDList aCD:CD

CreateCDL()

Find CDs()

Get Basic Info()

MI:Mkt Info

Get Mkt Info()

aR:Review

Get Review()

AI:Artist Info

Get Artist Info()

SC:Sample Clip

Get Sample Clip()

aSC:Shopping Cart

add CD()

aCDL:CDList

X X

anOrder:Order
Create Order()

FIGURE 8-5 Sequence Diagram for the Places Order Use Case

C
op

yr
ig

ht
ed

 M
at

er
ia

l
Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

are an instance of is given after the object’s name (e.g., Patients : List). (See Figure 8-7 for

the Communication Diagram Syntax.) Unlike the sequence diagram, the communica-

tion diagram does not have a means to explicitly show an object being deleted or created.

It is assumed that when a delete, destroy, or remove message is sent to an object, it will

go out of existence, and a create or new message will cause a new object to come into

existence. Another difference between the two interaction diagrams is that the commu-

nication diagram never shows returns from message sends, while the sequence diagram

can optionally show them.

An association is shown between actors and objects with an undirected line. For

example, there is an association shown between the aPatient and aReceptionist actors.

Messages are shown as labels on the associations. Included with the labels are lines with

arrows showing the direction of the message being sent. For example, in Figure 8-6, the

aPatient actor sends the RequestAppt() message to the aReceptionist actor and the aRe-

ceptionist actor sends the NewCancelChangeAppt? and the ApptTimes? messages to the

aPatient actor. The sequence of the message sends is designated with a sequence num-

ber. For example, in Figure 8-6, the RequestAppt() message is the first message sent,

while the NewCancelChangeAppt? and the ApptTimes? messages are the fourth and

fifth message sent, respectively.

Like the sequence diagram, the communication diagram can represent conditional

messages. For example in Figure 8-6, the LookupBills() message is only sent if the [aPatient

exists] condition is met. If a message is repeatedly sent, an * is placed after the sequence

number. Finally, an association that loops onto an object shows self-delegation. The mes-

sage is shown as the label of the association.

When a communication diagram is fully populated with all of the objects, it can

become very complex and difficult to understand. When this occurs, it is necessary to sim-

plify the diagram. One approach to simplify a communication diagram, like use case dia-

grams (see Chapter 6) and class diagrams (see Chapter 7), is through the use of packages

Interaction Diagrams 245

sd Make Appt Use Case

aPatient

1: Request Appt()

4: NewCancelChangeAppt?()

5: ApptTimes?()

aReceptionist

Patients:List

UnPaidBills:List

Appointments:List

anAppt:Appointment

2: LookUpPatient()

3: [aPatient Exists] LookupBills()

6: MatchAppts()

7: C
reateA

ppt()

FIGURE 8-6 Example Communication Diagram

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

(i.e., logical groups of classes). In the case of communication diagrams, its objects are

grouped together based on the messages sent to and received from other objects.7

Building a Communication Diagram8 Remember that a communication diagram is

basically an object diagram that shows message-passing relationships instead of aggrega-

tion or generalization associations. In this section, we describe a five-step process used to

build a communication diagram (see Figure 8-8). The first step in the process is to deter-

mine the context of the communication diagram. Like a sequence diagram, the context of

the diagram can be a system, a use case, a scenario of a use case, or an operation of a class.

The context of the diagram is depicted as a labeled frame around the diagram (see Figures

8-6 and 8-7).

The second step is to identify the objects (actors) and the associations that link the

objects (actors) that participate in the collaboration together. Remember, the objects

that participate in the collaboration are instances of the classes identified during the

246 Chapter 8 Behavioral Modeling

An Actor:

■ Is a person or system that derives benefit from and is external to the system

■ Participates in a collaboration by sending and/or receiving messages

An Object:

■ Participates in a collaboration by sending and/or receiving messages

■ Are placed across the top of the diagram

An Association:

■ Shows an association between actors and/or objects

■ Messages are sent over associations

A Message:

■ Conveys information from one object to another one

■ Direction is shown using an arrowhead

■ Sequence is shown by a sequence number

A Frame:

■ Indicates the context of the communication diagram

anObject : aClass

<<actor>>
Actor/Role

anActor

Context

1: a Message()

FIGURE 8-7 Communication Diagram Syntax

7 For those familiar with structured analysis and design, packages serve a similar purpose as the leveling and bal-
ancing processes used in data-flow diagramming. Packages and Package diagrams are described in Chapter 9.
8 The approach described in this section are adapted from Booch, Rumbaugh, and Jacobson, The Unified Model-
ing Language User Guide.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

development of the structural model (see Chapter 7). Like the sequence diagramming

process, it is likely that additional objects, and hence classes, will be discovered. Again,

this is normal since the underlying development process is iterative and incremental.

One useful technique to identify potential collaborations is CRUD analysis.9 CRUD

analysis uses a CRUD matrix in which each interaction among objects is labeled with a letter

for the type of interaction: C for Create, R for Read or Reference, U for update, and D for

Delete. In an object-oriented approach, a class-by-class matrix is used. Each cell in the matrix

represents the interaction between instances of the classes. For example in Figure 8-5, an

instance of SearchReq created an instance of CDList. As such, assuming a Row:Column

ordering, a “C” would be placed in the cell SearchReq:CDList. Also, in Figure 8-5, an instance

of CD references an instance of MktInfo. In this case, an “R” would be placed in the CD:Mkt-

Info cell. Figure 8-9 shows the CRUD matrix based on the Place Order use case.

Once a CRUD matrix is completed for the entire system, the matrix can be scanned

quickly to ensure that each and every class can be instantiated. Furthermore, each type of inter-

action can be validated for each class. For example, if a class only represents temporary objects,

then the column in the matrix should have a D in it somewhere. Otherwise, the instances of

the class will never be deleted. Since a data warehouse contains historical data, objects that are

Interaction Diagrams 247

1. Set the context.

2. Identify which objects (actors) and the associations between the objects participate in the
collaboration.

3. Layout the communication diagram.

4. Add messages.

5. Validate the communication diagram.

FIGURE 8-8
Steps for Building

Communication

Diagrams

 Artist Sample Shopping
 Customer SearchReq CDList CD Mkt Info Review Info Clip Cart Order

Customer R U C

SearchReq CR

CDList

CD R

Mkt Info U U U

Review

Artist Info

Sample Clip

Shopping
Cart

Order

FIGURE 8-9 CRUD Matrix for the Place Order Use Case

9 CRUD analysis has typically been associated with structured analysis and design (see Alan Dennis and Barbara
Haley Wixom, Systems Analysis Design, 2nd Ed., New York: Wiley, 2000) and information engineering (see James
Martin, Information Engineering, Book II Planning and Analysis, Englewood Cliffs, NJ: Prentice Hall, 1990). In our
case, we have simply adapted it to object-oriented systems development.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

to be stored in one should not have any U or D entries in their associated columns. As such,

CRUD analysis can be used as a way to partially validate the interactions among the objects in

an object-oriented system. Finally, the more interactions among a set of classes, the more likely

they should be clustered together in a collaboration. However, the number and type of inter-

actions are only an estimate at this point in the development of the system. As such, care

should be taken when using this technique to cluster classes together to identify collaborations.

The third step is to lay out the objects (actors) and their associations on the commu-

nication diagram by placing them together based on the associations that they have with

the other objects in the collaboration. By focusing on the associations between the objects

(actors) and minimizing the number of associations that cross over one another, we can

increase the understandability of the diagram.

The fourth step is to add the messages to the associations between the objects. We do

this by adding the name of the message(s) to the association link between the objects and

an arrow showing the direction of the message being sent. Furthermore, each message has

a sequence number associated with it to portray the time-based ordering of the message.10

The fifth and final step is to validate the communication diagram. The purpose of this

step is to guarantee that the communication diagram faithfully portrays the underlying

process(es). This is done by ensuring that all steps in the process are depicted on the diagram.

Applying the Concepts at CD Selections Like creating sequence diagrams, the best way

to learn how to create a communication diagram is to draw one. The first step in the

process is to determine the context of the communication diagram. We will use the same

scenario of the Place Order use case that we used previously with the description of creat-

ing sequence diagrams (see Figure 8-10).

By executing the second step, the CD Selections team identifies the objects and the

associations that link the objects together. Since we are using the same scenario as we did

in the sequence diagram previously described, they need to include the same objects:

instances of the Search Request, CD List, CD, Marketing Material, Customer, Review,

Artist Information, Sample Clip, and Shopping Cart classes. And again, we have an actor

(Customer) that interacts with the scenario. Furthermore, the team identified the associ-

ations between the objects (e.g., the instances of CD are associated with instances of Mkt

Info, which, in turn, are associated with instances of Review, Artist Info, and Sample Clip).

During the third step, the team placed the objects on the diagram based on the asso-

ciations that they have with the other objects in the collaboration. This was done to

increase the readability, and hence, the understandability of the diagram (see Figure 8-10).

During the fourth step, the CD Selections team added the messages to the associations

between the objects. For example, in Figure 8-10, the Create SR() message is the first mes-

sage sent and the FindCDs() message is the second message sent. The aCustomer actor

sends the Create SR() message to the aSR object, and the aSR object sends the FindCDs()

message to the CDs object.

Finally, the CD Selections team executed the fifth and final step: validating the diagram.

They accomplished this by ensuring that the underlying process associated with the Place Order

use case was accurately and completely represented by the diagram. See Figure 8-10 for the com-

pleted communication diagram for this particular scenario of the Place Order use case.

At this point in time, you should review Figures 8-5 and 8-10. These two different dia-

grams are simply used to provide two different views of the same scenario. However, as you

can see, it is easier to portray the time ordering of the messages in the sequence diagram

248 Chapter 8 Behavioral Modeling

10 However, remember the sequence diagram portrays the time-based ordering of the messages in a top-down
manner. As such, if your focus is on the time-based ordering of the messages, we recommend that you also use
the sequence diagram.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

than it is in the communication diagram, and it is easier to represent how the objects inter-

act to implement the use case using the communication diagram.

BEHAVIORAL STATE MACHINES

Some of the classes in class diagrams represent a set of objects that are quite dynamic in that

they pass through a variety of states over the course of their existence. For example, a patient

can change over time from being “new” to “current,”“former,” and so on, based on his or her

status with the doctor’s office. A behavioral state machine is a dynamic model that shows the

different states that a single object passes through during its life in response to events, along

with its responses and actions. Typically, behavioral state machines are not used for all

Behavioral State Machines 249

sd Place Order Use Case

1
0
. C

reate O
rd

er()

7: Get Artist Info()

8: G
et Sam

ple C
lip()

3: Create CDL()

2: F
ind C

Ds()

5: Get Mkt Info()
6: G

et
Rev

iew
()

9: add CD()

4: Get Basic Info()

1:
 C

re
at

e
SR

()

aSR:Search Request

aSC:Shopping Cart

aCD:CD

anOrder:Order

MI:Market Info

SC:Sample Clip

aCDL:CDList

CDs:CDList

aR:Review

AI:Artist Info
aCustomer

FIGURE 8-10 Communication Diagram for the Place Order Use Case

In Your Turn 8-1, you were asked to create a sequence
diagram for the campus housing service. Draw a commu-

nication diagram for the same situation.

8-2 Drawing a Communication DiagramYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

objects, but just to further define complex objects to help simplify the design of algorithms

for their methods. CRUD analysis is one technique (see Communication Diagram section)

that can be used to identify complex objects. The more (C)reate, (U)pdate or (D)elete entries

in the column associated with a class, the more likely the instances of the class will have a

complex life cycle. As such, these objects are candidates for state modeling with a behavioral

state machine. The behavioral state machine shows the different states of the object and what

events cause the object to change from one state to another. In comparison to the interaction

diagrams, behavioral state machines should be used if you are interested in understanding the

dynamic aspects of a single class and how its instances evolve over time, and not with how a

particular use case scenario is executed over a set of classes. In this section, we describe states,

events, transitions, actions, and activities and the use of the behavioral state machine to

model the state changes through which complex objects pass.

States, Events, Transitions, Actions, and Activities

The state of an object is defined by the value of its attributes and its relationships with other

objects at a particular point in time. For example, a patient might have a state of “new” or

“current” or “former.” The attributes or properties of an object affect the state that it is in;

however, not all attributes or attribute changes will make a difference. For example, think

about a patient’s address. Those attributes make very little difference as to changes in a

patient’s state. However, if states were based on a patient’s geographic location (e.g., in-

town patients were treated differently than out-of-town patients), changes to the patient’s

address would influence state changes.

An event is something that takes place at a certain point in time and changes a value(s)

that describes an object, which, in turn, changes the object’s state. It can be a designated con-

dition becoming true, the receipt of the call for a method by an object, or the passage of a des-

ignated period of time. The state of the object determines exactly what the response will be.

A transition is a relationship that represents the movement of an object from one state

to another state. Some transitions will have a guard condition. A guard condition is a

Boolean expression that includes attribute values, which allows a transition to occur only

if the condition is true. An object typically moves from one state to another based on the

outcome of an action that is triggered by an event. An action is an atomic, nondecompos-

able process than cannot be interrupted. From a practical perspective, actions take zero

time, and they are associated with a transition. In contrast, an activity is a nonatomic,

decomposable process that can be interrupted. Activities take a long period of time to com-

plete, they can be started and stopped by an action, and they are associated with states.

Elements of a Behavioral State Machine

Figure 8-11 presents an example of a behavioral state machine representing the patient class

in the context of a hospital environment. From this diagram we can tell that a patient enters

a hospital and is admitted after checking in. If a doctor finds the patient to be healthy, he or

she is released, and is no longer considered a patient after two weeks elapses. If a patient is

found to be unhealthy, he or she remains under observation until the diagnosis changes.

A state is a set of values that describes an object at a specific point in time, and it rep-

resents a point in an object’s life in which it satisfies some condition, performs some action,

or waits for something to happen (see Figure 8-12). In Figure 8-11 states include entering,

admitted, released, and under observation. A state is depicted by a state symbol, which is a

rectangle with rounded corners with a descriptive label that communicates a particular

state. There are two exceptions. An initial state is shown using a small solid filled-in circle,

and an object’s final state is shown as a circle surrounding a small solid filled-in circle.

These exceptions depict when an object begins and ceases to exist, respectively.

250 Chapter 8 Behavioral Modeling

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Arrows are used to connect the state symbols, representing the transitions between

states. Each arrow is labeled with the appropriate event name and any parameters or condi-

tions that may apply. For example, the two transitions from admitted to released and under

observation contain guard conditions. As in the other behavioral diagrams, in many cases it

is useful to explicitly show the context of the behavioral state machine using a frame.

Building a Behavioral State Machine

Behavioral state machines are drawn to depict a single class from a class diagram. Typically

the classes are very dynamic and complex, requiring a good understanding of their states

over time and events triggering changes. You should examine your class diagram to identify

which classes will need to undergo a complex series of state changes and draw a diagram for

each of them. In this section, we describe a five-step process used to build a behavioral state

machine 11 (see Figure 8-13). Like the other behavioral models, the first step in the process

is to determine the context of the behavioral state machine, which is shown in the label of

the frame of the diagram. The context of a behavioral state machine is usually a class. How-

ever, it also could be a set of classes, a subsystem, or an entire system.

The second step is to identify the various states that an order object will have over its

lifetime. This includes establishing the boundaries of the existence of an object by identi-

fying the initial and final states of an order object. We also must identify the stable states of

an object. The information necessary to perform this is gleaned from reading the use case

descriptions, talking with users, and relying on the requirements gathering techniques that

you learned about in Chapter 5. An easy way to identify the states of an object is to write

the steps of what happens to an object over time, from start to finish, similar to how you

would create the Normal Flow of Events section of a use case description.

The third step is to determine the sequence of the states that an object will pass

through during its lifetime. Using this sequence, the states are placed onto the behavioral

state machine, in a left-to-right order.

The fourth step is to identify the events, actions, and guard conditions associated with

the transitions between the states of the object. The events are the triggers that cause an

object to move from one state to the next state. In other words, an event causes an action to

execute that changes the value(s) of an object’s attribute(s) in a significant manner. The

Behavioral State Machines 251

Patient

Entering Admitted

Under Observation

Enters Hospital Checks in
Released

[Diagnosis = Healthy] [> 2 weeks]

[Diagnosis = Unhealthy]

[Diagnosis = Healthy]

FIGURE 8-11 Example Behavioral State Machine Diagram

11 The approach described in this section are adapted from Booch, Rumbaugh, and Jacobson, The Unified Mod-
eling Language User Guide.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

actions are typically operations contained within the object. Also, guard conditions can

model a set of test conditions that must be met for the transition to occur. At this point in

the process, the transitions are drawn between the relevant states and labeled with the event,

action, or guard condition.

The fifth step is to validate the behavioral state machine by making sure that each state is

reachable and that it is possible to leave all states except for final states. Obviously, if an iden-

tified state is not reachable, either a transition is missing or the state was identified in error.

Furthermore, only final states can be a dead end from the perspective of an object-life cycle.

252 Chapter 8 Behavioral Modeling

A State:

■ Is shown as a rectangle with rounded corners

■ Has a name that represents the state of an object

An Initial State:

■ Is shown as a small filled-in circle

■ Represents the point at which an object begins to exist

A Final State:

■ Is shown as a circle surrounding a small solid filled circle (bull’s-eye)

■ Represents the completion of activity

An Event:

■ Is a noteworthy occurrence that triggers a change in state

■ Can be a designated condition becoming true, the receipt of an explicit signal
from one object to another, or the passage of a designated period of time

■ Is used to label a transition

A Transition:

■ Indicates that an object in the first state will enter the second state

■ Is triggered by the occurrence of the event labeling the transition

■ Is shown as a solid arrow from one state to another, labeled by the event name

A Frame:

■ Indicates the context of the behavioral state machine

Context

anEvent

aState

FIGURE 8-12 Behavioral State Machine Diagram Syntax

1. Set the context.

2. Identify the initial, final, and stable states of the object.

3. Determine the order in which the object will pass through the stable states.

4. Identify the events, actions, and guard conditions associated with the transitions.

5. Validate the behavioral state machine.

FIGURE 8-13
Steps for Building

Behavioral State

Machine

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Applying the Concepts at CD Selections

Basically, the only way to really understand the behavioral state machine-creation process

is to attempt to draw one. As in the previous example diagrams, we focus our attention on

the Place Order use case. In this case, we have picked the Order class to investigate.

The second step is to identify the various states that an order will have over its lifetime.

To enable the discovery of the initial, final, and stable states of an order, the CD Selections

team interviewed a customer representative that dealt with processing customer orders on

a regular basis. Based on this interview, the team uncovered the life of an order (see Figure

8-14) from start to finish, from an order’s perspective.

The third step is to determine the sequence of the states that an order object will pass

through during its lifetime. Based on the order’s lifecycle portrayed in Figure 8-14, the team

identified and laid out the states of the order on the behavioral state machine.

Next, the team identified the events, actions, and guard conditions associated with the

transitions between the states of the order. For example, the event “Order is created” moves

the order from the “initial” state to the “In Process” state (see Figure 8-15). During the

“Processing” state, a credit authorization is requested. The guard condition “Authorization

= Approved” prevents the order to move from the “Processing” state to the “Placed” state

unless the credit authorization has been approved. Also, the guard condition “Authoriza-

tion = Denied” prevents the order to move from the “Processing” state to the “Denied” state

unless the credit authorization has been denied. As such, between the two guard condi-

tions, the order is stuck in the processing state until the credit authorization has been either

approved or denied.

The team finally validates the behavioral state machine by ensuring that each

state is reachable and that it is possible to leave all states except for the final states.

Furthermore, the team makes sure that all states and transitions for the order have

been modeled. At this point in time, one of the analysts on the team suggested that

possibly there were multiple types of orders being described in the behavioral state

machine. Specifically, he thought that there were denied and accepted orders. Based

on this discovery, he suggested that two new classes, for each subtype of order, be cre-

ated. However, upon further review by the entire team, it was decided that adding

these classes to the class diagram and modifying all of the other diagrams to reflect

this change would not add anything to the understanding of the problem. Therefore,

it was decided not to add the classes. However, in many cases, modeling the states that

an object will go through during its lifetime may in fact uncover additional useful

subclasses. Figure 8-15 illustrates the behavioral state machine that the CD Selections

team created for an order object.

Behavioral State Machines 253

1. The customer creates an order on the Web

2. The customer submits the order once he or she is finished

3. The credit authorization needs to be approved for the order to be accepted

4. If denied, the order is returned to the customer for changes or deletion

5. If accepted, the order is placed

6. The order is shipped to the customer

7. The customer receives the order

8. The order is closedFIGURE 8-14
The Life of an Order

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

2
5
4

C
h
ap

ter 8
B

e
h

a
v
io

r
a
l M

o
d

e
lin

gOrder

In Process Ordered

Denied

Order is
created

Customer
submits order

[Customer
edits order

information]

[Authorization
= Denied]

Processing

Order sent
for credit

authorization

[Customer
withdraws
order request]

Placed

Order sent
to customer

Customer
accepts

shipment
Shipped Received

[Authorization
= Approved]

Order is
closed

FIGURE 8-15 Behavioral State Machine for the Order Class

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

SUMMARY

Sequence Diagram

The sequence diagram is a dynamic model that illustrates the classes that participate in a

use case and messages that pass between them over time. Classes are placed horizontally

across the top of a sequence diagram, each having a dotted line called a lifeline vertically

below it. The execution occurrence, represented by a thin rectangle, is placed over the life-

line to show when the classes are sending or receiving messages. A message is a communi-

cation between classes that conveys information with the expectation that activity will

ensue, and the messages are shown using an arrow connecting two objects that points in

the direction that the message is being passed.

To create a sequence diagram, first identify the context of the diagram: system, use

case, scenario, or an operation. Next, identify the classes that participate in the context

and then add the messages that pass among them. Finally, you will need to add the life-

line and focus of control. Sequence diagrams are helpful for understanding the time

order of the messages.

Communication Diagram

Like the sequence diagram, the communication diagram provides a dynamic view of an

object-oriented system. A communication diagram is similar to an object diagram except

that it shows message-passing relationships instead of aggregation or generalization asso-

ciations. The layout of the diagram is done in a manner that accentuates the message pass-

ing between the collaborating actors and objects. Undirected lines portray associations that

are used to represent the collaborations between the actors and object. Messages are shown

as labels on the associations.

When building a communication diagram, like a sequence diagram, you should first

identify the context of the diagram: system, use case, scenario, or an operation. Next, iden-

tify the classes that participate in the context and then identify the associations that repre-

sent the collaborations between them. Finally, add the messages to the associations.

Communication diagrams are helpful for understanding how objects collaborate.

Behavioral State Machine

The behavioral state machine shows the different states that a single class passes through

during its life in response to events, along with responses and actions. A state is a set of val-

ues that describes an object at a specific point in time, and it represents a point in an

object’s life in which it satisfies some condition, performs some action, or waits for some-

thing to happen. An event is something that takes place at a certain point in time and

Summary 255

You have been working with the system for the campus
housing service that helps students find apartments.
One of the dynamic classes in this system likely is the
apartment class. Draw a behavioral state machine to

show the various states that an apartment class transi-
tions throughout its lifetime. Can you think of other
classes that would make good candidates for a behav-
ioral state machine?

8-3 Drawing a Behavioral State MachineYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

changes a value(s) that describes an object, which, in turn, changes the object’s state. As

objects move from state to state, they undergo transitions.

When drawing a behavioral state machine, like the other behavioral diagrams, the first

thing is to set the context of the diagram: system, subsystem, set of classes, or an individ-

ual class. Then, rectangles with rounded corners are placed on the model to represent the

various states on which the context will take. Next, arrows are drawn between the rectan-

gles to denote the transitions, and event labels are written above the arrows to describe the

event that causes the transition to occur. Typically, behavioral state machines are used to

portray the dynamic aspect of a complex class.

256 Chapter 8 Behavioral Modeling

KEY TERMS

Action

Activity

Actor

Association

Attributes

Behavior

Behavioral models

Behavior state machines

Class

Class diagram

Collaboration

Communication diagram

Condition

CRC cards

CRUD analysis

CRUD matrix

Dynamic model

Event

Execution occurrence

Final state

Frame

Generic sequence diagram

Guard condition

Initial state

Instance

Instance sequence diagram

Lifeline

Message

Object

Operation

Operation call message

Packages

Return message

Scenario

Self-delegation

Sequence diagram

State

State symbol

Temporary object

Transition

Trigger

Use case

QUESTIONS

1. How is behavioral modeling related to structural

modeling?

2. How does a use case relate to a sequence diagram? A

communication diagram?

3. Contrast the following sets of terms:

state; behavior

class; object

action; activity

use case; scenario

method; message

4. Why is iteration important when creating a behavioral

model?

5. Describe the main building blocks for the sequence

diagram and how they are represented on the model.

6. How do you show that a temporary object is to go out

of existence on a sequence diagram?

7. Do lifelines always continue down the entire page of a

sequence diagram? Explain.

8. Describe the steps used to create a sequence diagram.

9. Describe the main building blocks for the communi-

cation diagram and how they are represented on the

model.

10. How do you show the sequence of messages on a com-

munication diagram?

11. How do you show the direction of a message on a

communication diagram?

12. Describe the steps used to create a communication

diagram.

13. Are states always depicted using rounded rectangles

on a behavioral state machine? Explain.

14. What kinds of events can lead to state transitions on a

behavioral state machine?

15. What are the steps in building a behavioral state

machine?

16. How are guard conditions shown on a behavioral state

machine?

17. Describe the type of class that is best represented by a

behavioral state machine. Give two examples of

classes that would be good candidates for a behav-

ioral state machine.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Exercises 257

18. Identify the model(s) that contains each of the follow-

ing components:

actor

association

class

extends association

final state

guard condition

initial state

links

message

multiplicity

object

state

transition

update operation

EXERCISES

A. Create a sequence diagram for each of the following

scenario descriptions for a video store system. A Video

Store (AVS) runs a series of fairly standard video

stores.

1. Every customer must have a valid AVS customer

card in order to rent a video. Customers rent videos

for three days at a time. Every time a customer

rents a video, the system must ensure that the cus-

tomer does not have any overdue videos. If so, the

overdue videos must be returned and an overdue

fee paid before customer can rent more videos.

2. If the customer has returned overdue videos, but

has not paid the overdue fee, the fee must be paid

before new videos can be rented. If the customer is

a premier customer, the first two overdue fees can

be waived, and the customer can rent the video.

3. Every morning, the store manager prints a report

that lists overdue videos; if a video is two or more

days overdue, the manager calls to remind the cus-

tomer to return the video.

B. Create a communication diagram for the video system

in Exercise A.

C. Create a sequence diagram for each of the following

scenario descriptions for a health club membership

system.

1. When members join the health club, they pay a fee

for a certain length of time. The club wants to mail

out reminder letters to members asking them to

renew their memberships one month before their

memberships expire. About half of the members

do not renew their memberships. These members

are sent follow-up surveys to complete about why

they decided not to renew so that the club can learn

how to increase retention. If the member did not

renew because of cost, a special discount is offered

to that customer. Typically, 25 percent of accounts

are reactivated because of this offer.

2. Every time a member enters the club, an attendant

takes his or her card and scans it to make sure the

person is an active member. If the member is not

active, the system presents the amount of money it

costs to renew the membership. The customer is

given the chance to pay the fee and use the club,

and the system makes note of the reactivation of

the account so that special attention can be given to

this customer when the next round of renewal

notices are dispensed.

D. Create a communication diagram for each of the

health club membership scenarios described in Exer-

cise C.

E. Think about sending a first-class letter to an interna-

tional pen pal. Describe the process that the letter goes

through to get from your initial creation of the letter

to being read by your friend, from the letter’s perspec-

tive. Draw a behavioral state machine that depicts the

states that the letter moves through.

F. Consider the video store that is described in Question

A. Draw a behavioral state machine that describes the

various states that a video goes through from the time

it is placed on the shelf through the rental and return

process.

G. Draw a behavioral state machine that describes the var-

ious states that a travel authorization can have through

its approval process. A travel authorization form is used

in most companies to approve travel expenses for

employees. Typically, an employee fills out a blank form

and sends it to his or her boss for a signature. If the

amount is fairly small (<= $300), then the boss signs

the form and routes it to accounts payable to be input

into the accounting system. The system cuts a check

that is sent to the employee for the right amount, and

after the check is cashed, the form is filed away with the

cancelled check. If the check is not cashed within ninety

days, the travel form expires. When the amount of the

travel voucher is a large amount (> $300), then the boss

signs the form and sends it to the CFO along with a

paragraph explaining the purpose of the travel, and the

CFO will sign the form and pass it along to accounts

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

258 Chapter 8 Behavioral Modeling

payable. Of course, both the boss and the CFO can

reject the travel authorization form if they do not feel

that the expenses are reasonable. In this case, the

employee can change the form to include more expla-

nation, or decide to pay the expenses.

H. Picnics R Us (PRU) was described in Chapter 6. You

have already created an activity diagram (Exercise P of

Chapter 6), the use cases (Exercise P of Chapter 6), a use

case diagram (Exercise Q of Chapter 6), and a struc-

tural model (Exercise P of Chapter 7). For this exercise,

1. Choose one use case and create a sequence diagram.

2. Create a communication diagram for the use case

chosen in question 1.

3. Create a behavioral state machine to depict on of

the classes on the class diagram you created for

Exercise P of Chapter 7.

I. Of-the-Month Club (OTMC) was described in Chap-

ter 6. You have already created an activity diagram

(Exercise R of Chapter 6), the use cases (Exercise R of

Chapter 6), a use case diagram (Exercise S of Chapter

6), and a structural model (Exercise Q of Chapter 7).

For this exercise:

1. Choose one use case and create a sequence diagram.

2. Create a communication diagram for the use case

chosen in question 1.

3. Create a behavioral state machine to depict on of

the classes on the class diagram you created for

Exercise Q of Chapter 7.

J. Think about your school or local library and the

processes involved in checking out books, signing up

new borrowers, and sending out overdue notices from

the library’s perspective. Describe three use cases that

represent these three functions.

1. Create the use case diagram for the library system.

2. Create a class diagram for the library system.

3. Choose one use case and create a sequence diagram.

4. Create a communication diagram for the use case

chosen in question 3.

5. Create a behavioral state machine to depict one of

the classes on the class diagram in question 2.

K. Think about the system that handles student

admissions at your university. The primary func-

tion of the system should be able to track a student

from the request for information through the

admissions process until the student is either

admitted or rejected from attending the school. An

admissions form includes the contents of the form,

SAT information, and references. Additional infor-

mation is captured about students of alumni, such

as their parent’s graduation year, contact informa-

tion, and college major. Pretend that a temporary

student object is used by the system to hold infor-

mation about people before they send in an admis-

sion form. After the form is sent in, these people are

considered “students.”

1. Create an activity diagram that describes this

process.

2. Based on the activity diagram, create a use case

diagram for the process.

3. Choose one of the use cases on the use case dia-

gram and create an essential, detail use case

description of it.

4. Create a sequence diagram for the use case cho-

sen in question 3.

5. Create a communication diagram for the use

case chosen in question 3.

6. Create a class diagram for the admission system.

7. Create a behavioral state machine to depict a

person as he or she moves through the admis-

sions process.

1. Refer to the use case descriptions and use-case diagram

you prepared for Professional and Scientific Staff Man-

agement (PSSM) for Minicase 2 in Chapter 6. PSSM

was so satisfied with your work that they wanted the

behavioral models created so that they could under-

stand the interaction that would take place between the

users and the system in greater detail.

a. Create both a sequence and a communication dia-

gram for each use case.

b. Based on the sequence and communication dia-

grams, create CRC cards for each class identified

and a class diagram.

2. Refer to the structural model that you created for Hol-

iday Travel Vehicles for Minicase 2 in Chapter 7.

a. Choose one of the more complex classes and create

a behavioral state machine for it.

b. Based on the structural model you created, role

play the CRC cards to develop a set of use cases that

describe a typical sales process.

c. Create both a sequence and communication dia-

gram for the use case.

MINICASES

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

C
ontracts

Factored/Partitioned
Behavioral M

odel
Factored/Partitioned

Functional M
odel

H
ardw

are/Softw
are

Specifications
D

eploym
ent

D
iagram

s
U

ser Interface
D

esign
Data Access & M

anipula-
tion Class Design

O
bject

Persistence D
esign

M
ethod

Specifications
C

lass
Specifications

Package
D

iagram
s

Factored/Partitioned
Structural M

odel
D

esign
Plan

PART THREE

Design Phase

The Design Phase decides how the system will oper-

ate. First, the project team creates a Design Plan and

a set of factored and partitioned Analysis models

(Functional, Structural, and Behavioral). The class

and method designs are illustrated using the Class

Specifications (using CRC Cards and Class Dia-

grams), Contracts, and Method Specifications. Next,

the data management layer is addressed by designing

the actual database or file structure to be used for ob-

ject persistence and a set of classes that will map the

Class Specifications into the object persistence format

chosen. Next, the team produces the user interface

layer design using Use Scenarios, Windows Naviga-

tion Diagrams, Real Use Cases, Interface Standards,

and User Interface Templates. The physical architec-

ture layer design is created using a Deployment Dia-

grams and Hardware/Software Specification. This

collection of deliverables is the system specification

that is handed to the programming team for imple-

mentation. At the end of the Design Phase, the feasi-

bility analysis and project plan are reexamined and

revised, and another decision is made by the project

sponsor and approval committee about whether to

terminate the project or continue.

CHAPTER 9

Moving on

 to Design

CHAPTER 10

Class and

 Method Design

CHAPTER 11

Data

Management

Layer Design

CHAPTER 12

Human Computer

Interaction

Layer Design

CHAPTER 13

Physical

Architecture

Layer Design

C
op

yr
ig

ht
ed

 M
at

er
ia

l

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

The design phase in object-oriented system development uses the requirements that were

gathered during analysis to create a blueprint for the future system. A successful design builds

upon what was learned in earlier phases and leads to a smooth implementation by creating a

clear, accurate plan of what needs to be done. This chapter describes the initial transition

from analysis to design and presents three ways to approach the design for the new system.

OBJECTIVES

■ Understand the transition from analysis to design.
■ Understand the use of factoring, partitions, and layers.
■ Be able to create package diagrams.
■ Be familiar with the custom, packaged, and outsource design alternatives.
■ Be able to create an alternative matrix.

CHAPTER OUTLINE

INTRODUCTION

The purpose of the analysis phase is to figure out what the business needs. The purpose of

the design phase is to decide how to build it. The major activity that takes place during the

design phase is evolving the set of analysis representations into design representations.

Throughout the design phase, the project team carefully considers the new system in

respect to the current environment and systems that exist within the organization as a

whole. Major considerations of the “how” of a system are environmental factors like inte-

grating with existing systems, converting data from legacy systems, and leveraging skills

that exist in-house. Although the Planning and Analysis phases are undertaken to develop

Introduction

Evolving the Analysis Models into Design

Models

Factoring

Partitions and Collaborations

Layers

Packages and Package Diagrams

Identifying Packages and Creating

Package Diagrams

Applying the Concepts at CD Selections

Design Strategies

Custom Development

Packaged Software

Outsourcing

Selecting a Design Strategy

Developing the Actual Design

Alternative Matrix

Applying the Concepts at CD Selec-

tions

Summary

C H A P T E R 9

Moving on to Design

261

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

a “possible” system, the goal of the Design phase is to create a blueprint for a system that

makes sense to implement.

An important initial part of the design phase is to examine several design strategies

and decide which will be used to build the system. Systems can be built from scratch, pur-

chased and customized, or outsourced to others, and the project team needs to investigate

the viability of each alternative. The decision to make, to buy, or to outsource influences

the design tasks that are accomplished throughout the rest of the phase.

At the same time, detailed design of the individual classes and methods that are used

to map out the nuts and bolts of the system and how they are to be stored must still be

completed. Techniques like CRC cards, class diagrams, contract specification, method spec-

ification, and database design provide detail in preparation for the implementation phase,

and they ensure that programmers have sufficient information to build the right system

efficiently. These topics are covered in Chapters 10 and 11.

Design also includes activities like designing the user interface, system inputs, and sys-

tem outputs, which involve the ways that the user interacts with the system. Chapter 12

describes these three activities in detail, along with techniques, such as story boarding and

prototyping that help the project team design a system that meets the needs of its users and

is satisfying to use.

Finally, physical architecture decisions are made regarding the hardware and software

that will be purchased to support the new system and the way that the processing of the

system will be organized. For example, the system can be organized so that its processing is

centralized at one location, distributed, or both centralized and distributed, and each solu-

tion offers unique benefits and challenges to the project team. Global issues and security

need to be considered along with the system’s technical architecture because they will influ-

ence the implementation plans that are made. Physical architecture, security, and global

issues will be described in Chapter 13.

The many steps of the design phase are highly interrelated and, as with the steps in the

analysis phase, the analysts often go back and forth among them. For example, prototyp-

ing in the interface design step often uncovers additional information that is needed in the

system. Alternatively, a system that is being designed for an organization that has central-

ized systems may require substantial hardware and software investments if the project team

decides to change to a system in which all of the processing is distributed.

In this chapter, we overview the processes that are used to evolve the analysis models into

design models. Next, we introduce the use of packages and package diagrams. Finally, we exam-

ine the three fundamental approaches to developing new systems: make, buy, or outsource.

EVOLVING THE ANALYSIS MODELS INTO DESIGN MODELS

The purpose of the analysis models was to represent the underlying business problem domain

as a set of collaborating objects. In other words, the analysis activities defined the functional

requirements. To achieve this, the analysis activities ignored nonfunctional requirements such

as performance and the system environment issues (e.g., distributed or centralized processing,

user interface issues, and database issues). In contrast, the primary purpose of the design mod-

els is to increase the likelihood of successfully delivering a system that implements the func-

tional requirements in a manner that is affordable and easily maintainable.

Therefore, in system design, we address both the functional and nonfunctional require-

ments. From an object-oriented perspective, system design models simply refine the system

analysis models by adding system environment (or solution domain) details to them and

refining the problem domain information already contained in the analysis models.

262 Chapter 9 Moving on to Design

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

When evolving the analysis model into the design model, you should first carefully review

the use cases and the current set of classes (their methods and attributes, and the relationships

between them). Are all of the classes necessary? Are there any missing classes? Are the classes

fully defined? Are their any missing attributes or methods? Do the classes have any unneces-

sary attributes and methods? Is the current representation of the evolving system optimal?

In the following sections, we introduce factoring, partitions and collaborations, and

layers as a way to evolve problem domain-oriented analysis models into optimal solution

domain-oriented design models.

Factoring

Factoring is the process of separating out a module into a standalone module in and of

itself. The new module can be a new class or a new method. For example, when reviewing

a set of classes, it may be discovered that they have a similar set of attributes and meth-

ods. As such, it may make sense to factor out the similarities into a separate class. Depend-

ing on whether the new class should be in a superclass relationship to the existing classes

or not, the new class can be related to the existing classes through generalization (A-Kind-

Of) or possibly through aggregation (Has-Parts) relationship. For example, using the

appointment system example in the previous chapters (see Figure 7-2), if the Employee

class had not been identified, we could possibly identify it at this stage by factoring out the

similar methods and attributes from the Nurse, Administrative Staff, and Doctor classes.

Evolving the Analysis Models into Design Models 263

In Chapters 3 and 4, we discussed several classic mis-
takes and how to avoid them. Here, we summarize four
classic mistakes in the design phase, and discuss how to
avoid them.

1. Reducing design time: If time is short, there is a
temptation to reduce the time spent in “unproduc-
tive” activities such as design so that the team can
jump into “productive” programming. This results in
missing important details that have to be investi-
gated later at a much higher time cost (usually at
least ten times longer).

Solution: If time pressure is intense, use timeboxing to
eliminate functionality or move it into future versions.

2. Feature creep: Even if you are successful at avoid-
ing scope creep, about 25 percent of system
requirements will still change. And, changes—big
and small—can significantly increase time and cost.

Solution: Ensure that all changes are vital and that
the users are aware of the impact on cost and time.
Try to move proposed changes into future versions.

3. Silver bullet syndrome: Analysts sometimes believe
the marketing claims for some design tools that claim
to solve all problems and magically reduce time and
costs. No one tool or technique can eliminate overall
time or costs by more than 25 percent (although
some can reduce individual steps by this much).

Solution: If a design tool has claims that appear too
good to be true, just say no.

4. Switching tools in mid-project: Sometimes analysts
switch to what appears to be a better tool during
design in the hopes of saving time or costs. Usually,
any benefits are outweighed by the need to learn
the new tool. This also applies to even “minor”
upgrades to current tools.

Solution: Don’t switch or upgrade unless there is a
compelling need for specific features in the new
tool, and then explicitly increase the schedule to
include learning time.

Adapted from Steve McConnell, Rapid Development, Microsoft Press,

Redmond, WA 1996.

Avoiding Classic Design MistakesPRACTICAL

TIP

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

In this case, we would relate the new class (Employee) to the existing classes using the gen-

eralization (A-Kind-Of) relationship.

Abstraction and refinement are two closely related processes to factoring. Abstraction

deals with the creation of a “higher” level idea from a set of ideas. Identifying the Employee

class is an example of abstracting from a set of lower classes to a higher one. In some cases,

the abstraction process will identify abstract classes, whereas, in other situations, it will

identify additional concrete classes.1 The refinement process is the opposite of the abstrac-

tion process. In the appointment system example in the previous chapters (see Figure 7-2),

we could identify additional subclasses of the Administrative Staff class, such as Recep-

tionist, Secretary, and Bookkeeper. Of course we would only add the new classes if there

were sufficient differences between them. Otherwise, the more general class, Administra-

tive Staff, would suffice.

Partitions and Collaborations

Based on all of the factoring, refining, and abstracting that can take place to the evolving

system, the sheer size of the system representation can overload both the user and the

developer. At this point in the evolution of the system, it may make sense to split the rep-

resentation into a set of partitions. A partition is the object-oriented equivalent of a sub-

system,2 where a subsystem is a decomposition of a larger system into its component

systems (e.g., an accounting information system could be functionally decomposed into an

accounts payable system, an account receivable system, a payroll system, and so on). From

an object-oriented perspective, partitions are based on the pattern of activity (messages

sent) among the objects in an object-oriented system.

A good place to look for potential partitions is the collaborations modeled in UML’s

communication diagrams (see Chapter 8). If you recall, one useful way to identify collab-

orations is to create a communication diagram for each use case. However, since an indi-

vidual class may support multiple use cases, an individual class can participate in multiple

use case-based collaborations. In those cases where classes are supporting multiple use

cases, the collaborations should be merged together. Also, CRUD analysis (see Chapter 8)

can be used to identify potential classes on which to merge collaborations.

Depending on the complexity of the merged collaboration, it may be useful in decom-

posing the collaboration into multiple partitions. In this case, in addition to having collabo-

rations between objects, it is possible to have collaborations among partitions. The general

rule of thumb is the more messages sent between objects, the more likely the objects belong

in the same partition. The fewer messages sent, the less likely the two objects belong together.

Another useful approach to identify potential partitions is to model each collaboration

between objects in terms of clients, servers, and contracts. A client is an instance of a class

that sends a message to an instance of another class for a method to be executed; a server is

the instance of a class that receives the message; and a contract is the specification that for-

malizes the interactions between the client and server objects (see Chapters 7 and 10). This

approach allows the developer to build up potential partitions by looking at the contracts

that have been specified between objects. In this case, the more contracts there are between

objects, the more often than not the objects belong in the same partition. The fewer con-

tracts, the chances are the two classes do not belong in the same partition.

264 Chapter 9 Moving on to Design

1 See Chapter 7 for the differences between abstract and concrete classes.
2 Some authors refer to partitions as subsystems (e.g., see Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Weiner,
Designing Object-Oriented Software [Englewood Cliffs, NJ: Prentice-Hall, 1990]), while others refer to them as layers
(e.g., see Ian Graham, Migrating to Object Technology [Reading, MA Addison-Wesley, 1994]). However, we have cho-
sen to use the term partition (from Craig Larman, Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design [Englewood Cliffs, NJ: Prentice Hall, 1998]) to minimize confusion between subsystems in a tra-
ditional system development approach and the layers associated with Rational’s Unified Approach.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Layers

Until this point in the development of our system, we have focused only on the problem

domain; we have totally ignored the system environment (physical architecture, user inter-

face, and data access and management). To successfully evolve the analysis model of the

system into a design model of the system, we must add the system environment informa-

tion. One useful way to do this, without overloading the developer, is to use layers. A layer

represents an element of the software architecture of the evolving system. We have focused

only on one layer in the evolving software architecture: the problem domain layer. There

should be a layer for each of the different elements of the system environment (e.g., system

architecture, user interface, and data access and management).

The idea of separating the different elements of the architecture into separate layers

can be traced back to the MVC architecture of Smalltalk.3 When Smalltalk was first cre-

ated,4 the authors decided to separate the application logic from the logic of the user inter-

face. In this manner, it was possible to easily develop different user interfaces that worked

with the same application. To accomplish this, they created the Model-View-Controller

(MVC) architecture where Models implemented the application logic (problem domain),

and Views and Controllers implemented the logic for the user interface. Views handled the

output and Controllers handled the input. Since graphical user interfaces were first devel-

oped in the Smalltalk language, the MVC architecture served as the foundation for virtu-

ally all graphical user interfaces that have been developed today (including the Mac

interfaces, the Windows family, and the various Unix-based GUI environments).

Based on Smalltalk’s innovative MVC architecture, many different software layers have

been proposed.5 Based on these proposals, we suggest the following layers on which to base

Evolving the Analysis Models into Design Models 265

You have been working with the system for the campus
housing service over the previous three chapters. In Chap-
ter 6, you were asked to create a set of use cases (Your Turn
6-6) and to create a use case diagram (Your Turn 6-8). In
Chapter 7 (Your Turn 7-3), you created a structural model
(CRC cards and class diagram) for the same situation. In
Chapter 8, you created a sequence diagram (Your Turn 8-1)
and a communication diagram (Your Turn 8-2) for one of

the use cases you had identified in Chapter 6. Finally, you
also created a behavioral state machine for the apartment
class in Chapter 8 (Your Turn 8-3).

Based on the current set of functional, structural, and
behavioral models portrayed in these diagrams, apply the
abstraction and refinement processes to identify addi-
tional abstract and concrete classes that would be useful
to include in the evolving system.

9-1 Campus HousingYOUR

TURN

3 See Simon Lewis, The Art and Science of Smalltalk: An Introduction to Object-Oriented Programming Using Visu-
alWorks (Englewood Cliffs, NJ: Prentice-Hall, 1995).
4 Smalltalk was first invented in the early 1970s by a software development research team at Xerox PARC. It intro-
duced many new ideas into the area of programming languages (e.g., object-orientation, windows-based user
interfaces, reusable class library, and the idea of a development environment). In many ways, Smalltalk is the
father (or mother) of all object-based and object-oriented languages, such as Visual Basic, C++, and Java.
5 For example, Problem Domain, Human Interaction, Task Management, and Data Management (Peter Coad and
Edward Yourdon, Object-Oriented Design [Englewood Cliffs, NJ: Yourdon Press, 1991]); Domain, Application, and
Interface (Ian Graham, Migrating to Object Technology [Reading, MA: Addison Wesley, 1994]); Domain, Service, and
Presentation (Craig Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design
[Englewood Cliffs, NJ: Prentice Hall, 1998]); Business, View, and Access (Ali Bahrami, Object-Oriented Systems Devel-
opment using the Unified Modeling Language, [New York, NY: McGraw Hill, 1999]); Application-Specific, Application-
General, Middleware, System-Software (Ivar Jacobson, Grady Booch, and James Rumbaugh, The Unified Software
Development Process [Reading, MA: Addison-Wesley, 1999]); and Foundation, Architecture, Business, and Application
(Meilir Page-Jones, Fundamentals of Object-Oriented Design in UML [Reading, MA: Addison-Wesley, 2000]).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

software architecture: foundation, physical architecture, human computer interaction, data

access and management, and problem domain (see Figure 9-1). Each layer limits the types

of classes that can exist on it (e.g., only user interface classes may exist on the human com-

puter interaction layer). The following provides a short description of each layer.

Foundation The foundation layer is, in many ways, a very uninteresting layer. It contains

classes that are necessary for any object-oriented application to exist. They include classes

that represent fundamental data types (e.g., integers, real numbers, characters, and

strings), classes that represent fundamental data structures (sometimes referred to as con-

tainer classes; e.g., lists, trees, graphs, sets, stacks, and queues), and classes that represent

useful abstractions (sometimes referred to as utility classes; e.g., date, time, and money).

Today, the classes found on this layer typically are included with the object-oriented

development environments.

Physical Architecture The physical architecture layer addresses how the software will

execute on specific computers and networks. As such, this layer includes classes that deal

with communication between the software and the computer’s operating system and the

network. For example, classes that address how to interact with the various ports on a spe-

cific computer would be included in this layer. This layer also includes classes that would

interact with so-called middleware applications, such as the OMG’s CORBA and

Microsoft’s DCOM architectures that handle distributed objects.

Unlike the foundation layer, there are many design issues that must be addressed

before choosing the appropriate set of classes for this layer. These design issues include the

choice of a computing or network architecture (such as the various client-server architec-

tures), the actual design of a network, hardware and server software specification,

global/international issues (such as multilingual requirements), and security issues. A com-

plete description of all of the issues related to system architecture is beyond the scope of

this book—there are entire courses dedicated to this subject. However, we do present the

basic issues in Chapter 13.

Human Computer Interaction The human computer interaction layer contains classes

associated with the View and Controller idea from Smalltalk. The primary purpose of this

layer is to keep the specific user interface implementation separate from the problem

domain classes. This increases the portability of the evolving system. Typical classes found

on this layer include classes that can be used to represent buttons, windows, text fields,

scroll bars, check boxes, drop-down lists, and many other classes that represent user inter-

face elements.

When it comes to designing the user interface for an application, there are many issues

that must be addressed. For example, how important is consistency across different user

interfaces, what about differing levels of user experience, how is the user expected to be able

to navigate through the system, what about help systems and online manuals, what types

266 Chapter 9 Moving on to Design

Layers Examples Relevant Chapters

Foundation Date, Enumeration 9, 10

Physical Architecture ServerSocket, URLConnection 10, 13

Human Computer Interaction Button, Panel 10, 12

Data Management DataInputStream, FileInputStream 10, 11

Problem Domain Employee, Customer 6, 7, 8, 9, 10

FIGURE 9-1
Layers and Sample

Classes

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

of input elements should be included (e.g., text box, radio buttons, check boxes, sliders,

drop-down list boxes, etc.), and what types of output elements should be included (e.g.,

text, tables, graphs, etc.). Like the physical architecture layer, a complete description of all

of the issues related to human computer interaction is beyond the scope of this book.6

However from the user’s perspective, the user interface is the system. As such, we present

the basic issues in user interface design in Chapter 12.

Data Management The data management layer addresses the issues involving the persis-

tence of the objects contained in the system. The types of classes that appear in this layer deal

with how objects can be stored and retrieved. Like the human computer interface layer, the

classes contained in this layer allow the problem domain classes to be independent of the

storage utilized, and hence increase the portability of the evolving system. Some of the issues

related to this layer include choice of the storage format (such as relational, object/relational,

and object databases) and storage optimization (such as clustering and indexing). A com-

plete description of all of the issues related to the data management layer also is beyond the

scope of this book.7 However, we do present the fundamentals in Chapter 11.

Problem Domain The previous layers dealt with classes that represent elements from the

system environment and which will be added to the evolving system specification. The

problem domain layer is what we have focused our attention on up until now. At this stage

of the development of our system, we will need to further detail the classes so that it will

be possible to implement them in an effective and efficient manner.

Many issues need to be addressed when designing classes, no matter on which layer

they appear. For example, there are issues related to factoring, cohesion and coupling, con-

nascence, encapsulation, proper use of inheritance and polymorphism, constraints, con-

tract specification, and detailed method design. These issues are discussed in Chapter 10.

PACKAGES AND PACKAGE DIAGRAMS

In UML, collaborations, partitions, and layers can be represented by a higher-level con-

struct: a package.8 A package is a general construct that can be applied to any of the ele-

ments in UML models. In Chapter 6, we introduced the idea of packages as a way to group

use cases together to make the use case diagrams easier to read and to keep the models at a

reasonable level of complexity. In Chapters 7 and 8, we did the same thing for class and

communication diagrams, respectively. In this section we describe a package diagram: a

diagram that is composed only of packages. A package diagram is effectively a class diagram

that only shows packages.

The symbol for a package is similar to a tabbed folder (see Figure 9-2). Depending on

where a package is used, packages can participate in different types of relationships. For

example, in a class diagram, packages represent groupings of classes. Therefore, aggregation

and association relationships are possible.

Packages and Package Diagrams 267

6 One of the best books on user interface design is Ben Schheiderman, Designing the User Interface: Strategies for
Effective Human Computer Interaction, 3rd Ed (Reading, MA: Addison-Wesley, 1998).
7 There are many good database design books that are relevant to this layer, see for example, Fred R. McFadden,
Jeffrey A. Hoffer, Mary B. Prescott, Modern Database Management, 4th ed. (Reading, MA:Addison-Wesley, 1998),
Michael Blaha and William Premerlani, Object-Oriented Modeling and Design for Database Applications (Engle-
wood Cliffs, NJ: Prentice Hall, 1998), and Robert J. Muller, Database Design for Smarties: Using UML for Data
Modeling (San Francisco, CA: Morgan Kaufmann, 1999).
8 This discussion is based on material in Chapter 7 of Martin Fowler with Kendal Scott, UML Distilled: A Brief
Guide to the Standard Object Modeling Language, 2nd Ed. (Reading, MA: Addison Wesley, 2000).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

In a package diagram, a new relationship, the dependency relationship, is useful to

depict. A dependency relationship is portrayed by a dashed arrow (see Figure 9-2). A

dependency relationship represents the fact that a modification dependency exists between

two packages. That is, it is possible that a change in one package potentially could cause a

change to be required in another package. Figure 9-3 portrays the dependencies among the

different layers (foundation, physical architecture, human computer interaction, data

access and management, and problem domain). For example, if a change occurs in the

problem domain layer, it most likely will cause changes to occur in the human computer

interaction, physical architecture, and data management layers. Notice that these layers

“point to” the problem domain layer; as such, they are dependent on it. However, the

reverse is not true.

At the class level, there could be many causes for dependencies among classes. For

example, if the protocol for a method is changed, then this causes the interface for all objects

of this class to change. Therefore, all classes that have objects that send messages to the

instances of the modified class may have to be modified. Capturing dependency relation-

ships among the classes and packages helps the organization in maintaining object-oriented

information systems.

268 Chapter 9 Moving on to Design

A Package:

■ A logical grouping of UML elements

■ Used to simplify UML diagrams by grouping related elements into a single higher-
level element

A Dependency Relationship:

■ Represents a dependency between packages, i.e., if a package is changed, the
dependent package also could have to be modified

■ The arrow is drawn from the dependent package toward the package on which it
is dependent

Package

FIGURE 9-2 Syntax for Package Diagram

Human Computer Interaction

Problem Domain

Physical Architecture Data Management

Foundation

FIGURE 9-3
Package Diagram of

Dependency Relation-

ships among Layers

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

As already stated, collaborations, partitions, and layers are modeled as packages in

UML. Furthermore, collaborations are normally factored into a set of partitions, which are

typically placed on a layer. In addition, partitions can be composed of other partitions.

Also, it is possible to have classes in partitions, which are contained in another partition,

which is placed on a layer. All of these groupings are represented using packages in UML.

Remember that a package is simply a generic, grouping construct used to simplify UML

models through the use of composition.9

A simple package diagram, based on the appointment system example from the previ-

ous chapters, is shown in Figure 9-4. This diagram only portrays a very small portion of the

entire system. In this case, we see that the Patient UI, DAM-Patient, and Patient Table

classes are dependent on the Patient class. Furthermore, the DAM-Patient class is depen-

dent on the Patient Table class. The same can be seen with the classes dealing with the

actual appointments. By isolating the Problem Domain classes (such as the Patient and

Appt classes) from the actual object persistence classes (such as the Patient Table and Appt

Table classes) through the use of the intermediate Data Access and Manipulation classes

(DAM-Patient and DAM-Appt classes), we isolate the Problem Domain classes from the

actual storage medium.10 This greatly simplifies the maintenance and increases the

reusability of the Problem Domain classes. Of course, in a complete description of a real

system, there would be many more dependencies.

Identifying Packages and Creating Package Diagrams

In this section, we describe a simple five-step process to create package diagrams (see Fig-

ure 9-5). The first step is to set the context for the package diagram. Remember, packages

can be used to model partitions and/or layers. Revisiting the appointment system again,

let’s set the context as the problem domain layer.

The second step is to cluster the classes together into partitions based on the relation-

ships that the classes share. The relationships include generalization, aggregation, the vari-

ous associations, and the message sending that takes place between the objects in the

system. To identify the packages in the appointment system, we should look at the differ-

ent analysis models (e.g., the class diagram [see Figure 7-2], sequence diagrams [see Figure

8-1], and the communication diagrams [see Figure 8-6]). Any classes in a generalization

hierarchy should be kept together in a single partition.

The third step is to place the clustered classes together in a partition and model the

partitions as packages. Figure 9-6 portrays five packages: PD Layer, Person Pkg, Patient Pkg,

Appt Pkg, and Treatment Pkg.

The fourth step is to identify the dependency relationships among the packages. In

this case, we review the relationships that cross the boundaries of the packages to

uncover potential dependencies. In the appointment system, we see association relation-

ships that connect the Person Pkg with the Appt Pkg (via the association between the

Doctor class and the Appointment class), and the Patient Pkg, which is contained within

the Person Pkg, with the Appt Pkg (via the association between the Patient and

Appointment classes) and the Treatment Pkg (via the association between the Patient

and Symptom classes).

The fifth step is to place the dependency relationships on the evolved package diagram.

In the case of the Appointment system, there are dependency relationships between the

Person Pkg and the Appt Pkg and the Person Pkg and the Treatment Pkg. To increase the

Packages and Package Diagrams 269

9 For those familiar with traditional approaches, such as structured analysis and design, packages serve a similar
purpose as the leveling and balancing processes used in data flow diagramming.
10 These issues are described in more detail in Chapter 11.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

understandability of the dependency relationships among the different packages, a pure

package diagram that only shows the dependency relationships among the packages can be

created (see Figure 9-7).

270 Chapter 9 Moving on to Design

HCI Layer

Appt Sys UI

Patient UI Appt UI

PD Layer

Appt Sys

Patient Appt

DM Layer

Patient-DAM Appt-DAM

Patient Table Appt Table
FIGURE 9-4
Partial Package Dia-

gram of the Appoint-

ment System

1. Set the Context.

2. Cluster classes together based on shared relationships.

3. Model clustered classes as a package.

4. Identify dependency relationships among packages.

5. Place dependency relationships between packages.

FIGURE 9-5 Steps

for Identifying Pack-

ages and Building

Package Diagram

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

P
a
c
k

a
g

e
s
 a

n
d

 P
a
c
k

a
g

e
 D

ia
g

r
a
m

s
2
7
1

PD Layer

Person Package

Appt Package

Treatment Package

Patient PackagePerson

-lastname
-firstname
-address
-phone
-birthdate
-/ age

Administrative
Staff

Employee

Nurse

Health Team

Doctor

Symptom Illness

0..*

0..*

0..*

1..*

0..*

0..*

1..*

1..*

1

1

1

0..1

0..*

1

0..1

Patient

-amount
-insurance carrier

+make appointment()
+calculate last visit()
+change status()
+provides medical history()

Medical History

-heart disease
-high blood pressure
-diabetes
-allergies

Appointment

-time
-date
-reason

-name -description

+cancel without notice()

Bill

-date
-amount
-purpose

+generate cancellation fee()

0..*0..*

*
*

+primary
insurance
carrier

Treatment

medication
instructions
symptom severity

provides

has scheduled

schedules leads to

suffer

FIGURE 9-6 Package Diagram of the PD Layer for the Appointment SystemC
op

yr
ig

ht
ed

 M
at

er
ia

l
Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Applying Concepts at CD Selections

In the previous chapters, the CD Selections Internet sales system has been described. In Chap-

ter 5, the functional and nonfunctional requirements for the system were given in Figure 5-13.

In Chapter 6, the functional model in the form of an activity diagram (see Figure 6-12) and

the use case descriptions and diagram (see Figures 6-13 through 6-17). The structural model

comprised of the CRC cards and class diagram was given in Chapter 7 (see Figures 7-9 through

7-11 and 7-13). Finally, in Chapter 8 behavioral models were developed for the Places Order

use case and the Order class (see the sequence diagram in Figure 8-5, the communication dia-

gram in Figure 8-10, the behavioral state machine in Figure 8-15). In this section, we demon-

strate the creation of a package diagram for the CD Selections Internet sales system.

As just detailed, the first thing to do when identifying packages and creating package dia-

grams is to set the context. At this point in the development of the Internet sales system for CD

Selections, Alec wants the development team only to concentrate on the Problem Domain Layer.

The second step, cluster classes together, is accomplished by reviewing the relationships

among the different classes (see Figures 7-13, 8-5, and 8-10). Through this review process, we

see that there are generalization, aggregation, various associations, and message sending rela-

tionships. Since we always want to keep classes in a generalization hierarchy together, we

automatically cluster the Customer, Individual, and Organization classes together to form a

partition. It is also preferred to keep classes together that participate in aggregation relation-

ships. Based on aggregation relationships, we cluster the Mkt Info, Review, Artist Info, and

Sample Clip classes together in a partition. Based on the association relationship and the mes-

sage-sending pattern of activity (contained in the communication diagram in Figure 8-10)

between the CD and Mkt Info classes, it seemed to the development team that these classes

should be in the same partition. Furthermore, since the Vendor class is only related to the CD

class (see the class diagram in Figure 7-13), the development team decided to place it in the

same partition. Finally, the development team decided to place the Order and Order Item

classes together and the Search Req and CD List classes together in their own partitions.

The third step was to model each of these partitions as packages. Figure 9-8 shows the

classes being contained in their respective packages. Observe that the Credit-Card Center

currently is not contained in any package.

272 Chapter 9 Moving on to Design

PD Layer

Person Package Appt Package

Treatment Package

Patient Package

FIGURE 9-7
Overview Package

Diagram of the PD

Layer for the

Appointment System

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

P
a
c
k

a
g

e
s
 a

n
d

 P
a
c
k

a
g

e
 D

ia
g

r
a
m

s
2
7
3

PD Layer

Order Package CD Package

Search Package

Customer Package

places includes

results in

makes

consists of

contains

distributes

promotes

Organizational

Customer

Individual

Credit Card Center

Order Item

Review

Artist Info

Sample Clip

CD

Vendor

Mkt Info

Order

CD ListSearch Req

3 checks

1 0..1
*

*

*

**

1

1

1

*

*

*

*

**

**

*

*

*

* *

*

FIGURE 9-8 Package Diagram of the PD Layer of CD Selections Internet Sales System

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Identifying dependency relationships among the packages is the fourth step. In this case,

Alec was capable of quickly identifying four associations among the different packages: the

Customer Package and the Order Package, the Customer Package and the Search Package, the

Order Package and the CD Package, and the Search Package and the CD Package. He also

identified an association between the Credit Card Clearance Center class and the Customer

Package. Based on these associations, five dependency relationships were identified.

The fifth and final step is to place the dependency relationships on the package dia-

gram. Again, to increase the understandability of the dependency relationships among the

different packages, Alec decided to create a pure package diagram that only depicted the

highest-level packages (and in this case the Credit Card Center class) and the dependency

relationships (see Figure 9-9).

274 Chapter 9 Moving on to Design

PD Layer

Customer Package

Order Package

Search Package

CD Package

Credit Card Center

FIGURE 9-9
Overview Package

Diagram of the PD

Layer of CD Selections

Internet Sales System

Based on the factoring of the evolving system in Your Turn
9-1, identify a set of partitions for the Problem Domain

layer and model them in a package diagram.

9-2 Campus HousingYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

DESIGN STRATEGIES

Until now, we have assumed that the system will be built and implemented by the project

team; however, there are actually three ways to approach the creation of a new system:

developing a custom application in-house, buying a packaged system and customizing it,

and relying on an external vendor, developer, or service provider to build the system. Each

of these choices has its strengths and weaknesses, and each is more appropriate in different

scenarios. The following sections describe each design choice in turn, and then we present

criteria that you can use to select one of the three approaches for your project.

Custom Development

Many project teams assume that custom development, or building a new system from

scratch, is the best way to create a system. For one thing, teams have complete control over

the way the system looks and functions. Let’s consider the order taking process for CD

Selections. If the company wanted a Web order-taking feature that links tightly with its

existing distribution system, the project may involve a complex, highly specialized pro-

gram. Or, CD Selections might have a technical environment in which all information sys-

tems are built using standard technology and interface designs so that they are consistent

and easier to update and support. In both cases, it could be very effective to create a new

system from scratch that meets these highly specialized requirements.

Custom development also allows developers to be flexible and creative in the way they

solve business problems. CD Selections may envision the Web interface that takes customer

orders as an important strategic enabler. The company may want to use the information

from the system to better understand their customers who order over the Web, and it may

want the flexibility to evolve the system to incorporate technology, such as data-mining

software and geographic information systems to perform marketing research. A custom

application would be easier to change to include components that take advantage of cur-

rent technologies that can support such strategic efforts.

Building a system in-house also builds technical skills and functional knowledge

within the company. As developers work with business users, their understanding of the

business grows and they become better able to align IS with strategies and needs. These

same developers climb the technology learning curve so that future projects applying sim-

ilar technology become much less effortful.

Custom application development, however, also includes a dedicated effort that

includes long hours and hard work. Many companies have a development staff that already

is overcommitted to filling huge backlogs of systems requests, and they just do not have time

for another project. Also, a variety of skills—technical, interpersonal, functional, project

management, and modeling—all have to be in place for the project to move ahead smoothly.

IS professionals, especially highly skilled individuals, are quite difficult to hire and retain.

The risks associated with building a system from the ground up can be quite high, and

there is no guarantee that the project will succeed. Developers could be pulled away to work

on other projects, technical obstacles could cause unexpected delays, and the business users

could become impatient with a growing timeline.

Packaged Software

Many business needs are not unique, and because it makes little sense to “reinvent the

wheel,” many organizations buy packaged software that has already been written, rather

than developing their own custom solution. In fact, there are thousands of commercially

available software programs that have already been written to serve a multitude of pur-

poses. Think about your own need for a word processor—did you ever consider writing

Design Strategies 275

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

your own word processing software? That would be very silly considering the number of

good software packages available for a relatively inexpensive cost.

Similarly, most companies have needs that can be met quite well by packaged software

such as payroll or accounts receivable. It can be much more efficient to buy programs that have

already been created, tested, and proven, and a packaged system can be bought and installed

in a relatively short period of time, when compared with a custom system. Plus, packaged sys-

tems incorporate the expertise and experience of the vendor who created the software.

Let’s examine the Order Taking process once again. It turns out that there are pro-

grams available, called shopping cart programs, that allow a company to sell products on

the Internet by keeping track of customers’ selections, totaling them, and then e-mailing

the order to a mailbox. You can easily install it on an existing Web page, and it allows you

to take orders. Some shopping cart programs are even available over the Internet for free.

Therefore, CD Selections could decide that acquiring a ready-made order taking applica-

tion might be much more efficient than creating one from scratch.

Packaged software can range from reusable components (such as ActiveX and Jav-

abeans) to small single-function tools (like the shopping cart program) to huge, all-

encompassing systems such as enterprise resource planning (ERP) applications that are

installed to automate an entire business. Implementing ERP systems is a process in which

large organizations spend millions of dollars installing packages by companies like SAP,

PeopleSoft, Oracle, and Baan and then change their businesses accordingly. Installing ERP

software is much more difficult than installing small application packages because bene-

fits can be harder to realize and problems are much more serious.

One problem is that companies buying packaged systems must accept the functional-

ity that is provided by the system, and rarely is there a perfect fit. If the packaged system is

large in scope, its implementation could mean a substantial change in the way the company

does business. Letting technology drive the business can be a dangerous way to go.

276 Chapter 9 Moving on to Design

I worked with a large financial institution in the southeast
that suffered serious financial losses several years ago. A
new CEO was brought in to change the strategy of the
organization to being more “customer-focused.” The new
direction was quite innovative, and it was determined that
custom systems, including a data warehouse, would have
to be built to support the new strategic efforts. The prob-
lem was that the company did not have the in-house skills
for these kinds of custom projects.

The company now has one of the most successful
data-warehouse implementations because of its willing-
ness to use outside skills and its focus on project man-
agement. To supplement skills within the company, eight
sets of external consultants, including hardware ven-
dors, system integrators, and business strategists were
hired to take part and transfer critical skills to internal
employees. An in-house project manager coordinated
the data-warehouse implementation full-time, and her
primary goals were to set expectations clearly, define

responsibilities, and communicate the interdependen-
cies that existed among the team members.

This company shows that successful custom devel-
opment can be achieved, even when the company may
not start off with the right skills in-house. But, this kind of
project is not easy to pull off—it takes a talented project
manager to keep the project moving along and to transi-
tion the skills to the right people over time.

—Barbara Wixom

Questions:

1. What are the risks in building a custom system
without the right technical expertise? Why did the
company select a project manager from within the
organization? Would it have been better to hire an
external professional project manager to coordinate
the project?

9-A Building a Custom System—with Some HelpCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Most packaged applications allow for customization, or the manipulation of system

parameters to change the way certain features work. For example, the package might have

a way to accept information about your company or the company logo that would then

appear on input screens. Or, an accounting software package could offer a choice of vari-

ous ways to handle cash flow or inventory control so that it can support the accounting

practices in different organizations. If the amount of customization is not enough, and the

software package has a few features that don’t quite work the way the company needs it to

work, the project team can create workarounds.

A workaround is a custom-built add-on program that interfaces with the packaged

application to handle special needs. It can be a nice way to create needed functionality that

does not exist in the software package. But, workarounds should be a last resort for several

reasons. First, workarounds are not supported by the vendor who supplied the packaged

software, so when upgrades are made to the main system, they may make the workaround

ineffective. Also, if problems arise, vendors have a tendency to blame the workaround as the

culprit and refuse to provide support.

Although choosing a packaged software system is simpler than custom development,

it too can benefit from following a formal methodology just as if you were building a cus-

tom application.

Systems integration refers to the process of building new systems by combining pack-

aged software, existing legacy systems, and new software written to integrate these together.

Many consulting firms specialize in systems integration, so it is not uncommon for com-

panies to select the packaged software option and then outsource the integration of a vari-

ety of packages to a consulting firm. (Outsourcing is discussed in the next section.)

The key challenge in systems integration is finding ways to integrate the data produced

by the different packages and legacy systems. Integration often hinges around taking data

produced by one package or system and reformatting it for use in another package/system.

The project team starts by examining the data produced by and needed by the different

packages/systems and identifying the transformations that must occur to move the data from

one to the other. In many cases, this involves “fooling” the different packages/systems into

thinking that the data was produced by an existing program module that the package/system

expects to produce the data rather than the new package/system that is being integrated.

For example, CD Selections needs to integrate the new Internet sales system with exist-

ing legacy systems, such as the distribution system. The distribution system was written to

support a different application: the distribution of CDs to retail stores, and it currently

exchanges data with the system that supports the CD Selections retail stores. The Internet

sales system will need to produce data in the same format as this existing system so the dis-

tribution system will think the data is from the same system as always. Conversely, the pro-

ject team may need to revise the existing distribution system, so it can accept data from the

Internet sales system in a new format. A third approach is through the use of an object wrap-

per.11 An object wrapper essentially is an object that “wraps around” a legacy system, enabling

an object-oriented system to send messages to the legacy system. Effectively, object wrappers

create an application program interface (API) to the legacy system. The creation of an object

wrapper allows the protection of the corporation’s investment in the legacy system.

Outsourcing

The design choice that requires the least amount of in-house resources is outsourcing—hir-

ing an external vendor, developer, or service provider to create the system. Outsourcing has

Design Strategies 277

11 Ian Graham, Object-Oriented Methods: Principles & Practice, 3rd Ed. (Reading, MA: Addison-Wesley, 2001).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

become quite popular in recent years. Some estimate that as many as 50 percent of com-

panies with IT budgets of more than $5 million are currently outsourcing or evaluating the

approach. Although these figures include outsourcing for all kinds of systems functions,

this section focuses on outsourcing a single development project.

There can be great benefit to having someone else develop your system. They may be

more experienced in the technology or have more resources, like experienced program-

mers. Many companies embark upon outsourcing deals to reduce costs, while others see it

as an opportunity to add value to the business. For example, instead of creating a program

that handles the Order Taking Process or buying a preexisting package, CD Selections may

decide to let a Web service provider provide commercial services for them.

For whatever reason, outsourcing can be a good alternative for a new system. However,

it does not come without costs. If you decide to leave the creation of a new system in the

hands of someone else, you could compromise confidential information or lose control over

future development. In-house professionals are not benefiting from the skills that could be

learned from the project, and instead the expertise is transferred to the outside organization.

Ultimately, important skills can walk right out the door at the end of the contract.

Most risks can be addressed if you decide to outsource, but two are particularly impor-

tant. First, assess the requirements for the project thoroughly—you should never outsource

what you don’t understand. If you have conducted rigorous planning and analysis, then you

should be well aware of your needs. Second, carefully choose a vendor, developer, or service

with a proven track record with the type of system and technology that your system needs.

Three primary types of contracts can be drawn to control the outsourcing contract. A

time and arrangements deal is very flexible because you agree to pay for whatever time and

expenses are needed to get the job done. Of course, this agreement could result in a large

bill that exceeds initial estimates. This works best when you and the outsourcer are unclear

about what it is going to take to finish the job.

You will pay no more than expected with a fixed-price contract because if the outsourcer

exceeds the agreed-upon price, they will have to absorb the costs. Outsourcers are much more

careful about defining requirements clearly up front, and there is little flexibility for change.

The type of contract gaining in popularity is the value-added contract whereby the out-

sourcer reaps some percentage of the completed system’s benefits. You have very little risk

in this case, but expect to share the wealth once the system is in place.

Creating fair contracts is an art because you need to carefully balance flexibility with

clearly defined terms. Often needs change over time. As such, you don’t want the contract

to be so specific and rigid that alterations can’t be made. Think about how quickly tech-

nology like the World Wide Web changes. It is difficult to foresee how a project may evolve

over a long period of time. Short-term contracts help leave room for reassessment if needs

change or if relationships are not working out the way both parties expected. In all cases,

the relationship with the outsourcer should be viewed as a partnership where both parties

benefit and communicate openly.

Managing the outsourcing relationship is a full-time job. Thus, someone needs to be

assigned full-time to manage the outsourcer, and the level of that person should be appropri-

ate for the size of the job (a multimillion dollar outsourcing engagement should be handled by

a high level executive). Throughout the relationship, progress should be tracked and measured

against predetermined goals. If you do embark upon an outsourcing design strategy, be sure

to get more information. Many books have been written that provide much more detailed

information on the topic.12 Figure 9-10 summarizes some guidelines for outsourcing.

278 Chapter 9 Moving on to Design

12 For more information on outsourcing, we recommend Lacity, M. and Hirschheim, R., Information Systems
Outsourcing: Myths, Metaphors, and Realities (New York, NY: Wiley, 1993) and Willcocks, L. and Fitzgerald, G., A
Business Guide to Outsourcing Information Technology (London: Business Intelligence, 1994).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Selecting a Design Strategy

Each of the design strategies just discussed has its strengths and weaknesses, and no one

strategy is inherently better than the others. Thus, it is important to understand the

strengths and weaknesses of each strategy and when to use each. Figure 9-11 presents a

summary of the characteristics of each strategy.

Business Need If the business need for the system is common, and technical solutions

already exist in the marketplace that can meet the business need of the system, it makes lit-

tle sense to build a custom application. Packaged systems are good alternatives for common

business needs. A custom alternative will need to be explored when the business need is

unique or has special requirements. Usually if the business need is not critical to the com-

pany, then outsourcing is the best choice—someone outside of the organization can be

responsible for the application development.

In-house Experience If in-house experience exists for all of the functional and technical

needs of the system, it will be easier to build a custom application then if these skills do not

exist. A packaged system may be a better alternative for companies that do not have the

technical skills to build the desired system. For example, a project team that does not have

Web commerce technology skills may want to acquire a Web commerce package that can

Design Strategies 279

Outsourcing Guidelines

• Keep the lines of communication open between you and your outsourcer.

• Define and stabilize requirements before signing a contact.

• View the outsourcing relationship as a partnership.

• Select the vendor, developer or service provider carefully.

• Assign a person to managing the relationship.

• Don’t outsource what you don’t understand.

• Emphasize flexible requirements, long-term relationships and short-term contracts.FIGURE 9-10
Outsourcing Guidelines

Value-added contracts can be quite rare—and very dra-
matic. They exist when a vendor is paid a percentage of
revenue generated by the new system, which reduces the
up-front fee, sometimes to zero. The City of Chicago and
EDS (a large consulting and systems integration firm)
agreed to reengineer the process by which the city col-
lects the fines on 3.6 million parking tickets per year, and
thus signed a landmark deal of this type three years ago.
At the time, because of clogged courts and administrative
problems, the city collected on only about 25 percent of
all tickets issued. It had a $60 million backlog of uncol-
lected tickets.

Dallas-based EDS invested an estimated $25 mil-
lion in consulting and new systems in exchange for the
right to up to 26 percent of the uncollected fines, a base

processing fee for new tickets, and software rights. To
date, EDS has taken in well over $50 million on the
deal, analysts say. The deal has come under some fire
from various quarters as an example of an organization
giving away too much in a risk/reward-sharing deal. City
officials, however, counter that the city has pulled in
about $45 million in previously uncollected fines and
has improved its collection rate to 65 percent with little
up-front investment.

Source: Datamation, February 1, 1995.

Question:

1. Do you think the City of Chicago got a good deal
from this arrangement? Why or why not?

9-B EDS Value-Added ContractCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

be installed without many changes. Outsourcing is a good way to bring in outside experi-

ence that is missing in-house so that skilled people are in charge of building the system.

Project Skills The skills that are applied during projects are either technical (e.g., Java,

SQL) or functional (e.g., electronic commerce), and different design alternatives are more

viable, depending on how important the skills are to the company’s strategy. For example,

if certain functional and technical expertise that relate to Internet sales applications and

Web commerce application development are important to the organization because it

expects the Internet to play an important role in its sales over time, then it makes sense for

the company to develop Web commerce applications in-house, using company employees

so that the skills can be developed and improved. On the other hand, some skills like net-

work security may be either beyond the technical expertise of employees or not of interest

to the company’s strategists—it is just an operational issue that needs to be addressed. In

this case, packaged systems or outsourcing should be considered so internal employees can

focus on other business-critical applications and skills.

Project Management Custom applications require excellent project management and a

proven methodology. There are so many things like funding obstacles, staffing hold-ups,

and overly demanding business users that can push a project off-track. Therefore, the pro-

ject team should choose to develop a custom application only if they are certain that the

underlying coordination and control mechanisms will be in place. Packaged and outsourc-

ing alternatives also need to be managed; however, they are more shielded from internal

obstacles because the external parties have their own objectives and priorities (e.g., it may

be easier for an outside contractor to say “no” to a user than a person within the company).

The latter alternatives typically have their own methodologies, which can benefit compa-

nies that do not have an appropriate methodology to use.

Timeframe When time is a factor, the project team should probably start looking for a

system that is already built and tested. In this way, the company will have a good idea of

how long the package will take to put in place and what the final result will contain. The

timeframe for custom applications is hard to pin down, especially when you consider how

many projects end up missing important deadlines. If you must choose the custom devel-

opment alternative, and the timeframe is very short, consider using techniques like time-

boxing to manage this problem. The time to produce a system using outsourcing really

280 Chapter 9 Moving on to Design

Use Custom Use a Packaged Use Outsourcing
Development When… System When… When…

Business Need The business need is unique. The business need is common. The business need is not
core to the business.

In-house Experience In-house functional and In-house functional In-house functional or technical
technical experience exists. experience exists. experience does not exist.

Project Skills There is a desire to The skills are not strategic. The decision to outsource is a
build in-house skills. strategic decision.

Project Management The project has a highly The project has a project The project has a highly skilled
skilled project manager manager who can coordinate project manager at the level
and a proven methodology. vendor’s efforts. of the organization that matches

the scope of the outsourcing deal.

Timeframe The timeframe is flexible. The timeframe is short. The timeframe is short or flexible.

FIGURE 9-11 Selecting a Design Strategy

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

depends on the system and the outsourcer’s resources. If a service provider has services in

place that can be used to support the company’s needs, then a business need could be

implemented quickly. Otherwise, an outsourcing solution could take as long as a custom

development initiative.

DEVELOPING THE ACTUAL DESIGN

Once the project team has a good understanding of how well each design strategy fits with

the project’s needs, they must begin to understand exactly how to implement these strate-

gies. For example, what tools and technology would be used if a custom alternative were

selected? What vendors make packaged systems that address the project needs? What ser-

vice providers would be able to build this system if the application were outsourced? This

information can be obtained from people working in the IS department and from recom-

mendations by business users. Or, the project team can contact other companies with sim-

ilar needs and investigate the types of systems that they have put in place. Vendors and

consultants usually are willing to provide information about various tools and solutions in

the form of brochures, product demonstrations, and information seminars. However, be

sure to validate the information you receive from vendors and consultants. After all, they

are trying to make a sale. Therefore, they may “stretch” the capabilities of their tool by only

focusing on the positive aspects of the tool while omitting the tool’s drawbacks.

It is likely that the project team will identify several ways that the system could be con-

structed after weighing the specific design options. For example, the project team may have

found three vendors that make packaged systems that potentially could meet the project’s

needs. Or, the team may be debating over whether to develop a system using Java as a devel-

opment tool and the database management system from Oracle; or to outsource the devel-

opment effort to a consulting firm like Accenture or American Management Systems. Each

alternative will have pros and cons associated with it that need to be considered, and only

one solution can be selected in the end.

Alternative Matrix

An alternative matrix can be used to organize the pros and cons of the design alternatives

so that the best solution will be chosen in the end. This matrix is created using the same

steps as the feasibility analysis, which was presented in Chapter 3. The only difference is

that the alternative matrix combines several feasibility analyses into one matrix so that the

alternatives can be easily compared. The alternative matrix is a grid that contains the tech-

nical, budget, and organizational feasibilities for each system candidate, pros and cons asso-

ciated with adopting each solution, and other information that is helpful when making

comparisons. Sometimes weights are provided for different parts of the matrix to show

when some criteria are more important to the final decision.

Developing the Actual Design 281

Suppose that your university was interested in creating a
new course registration system that can support Web-
based registration. What should the university consider

when determining whether to invest in a custom, pack-
aged, or outsourced system solution?

9-3 Choose a Design StrategyYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

To create the alternative matrix, draw a grid with the alternatives across the top and

different criteria (e.g., feasibilities, pros, cons, and other miscellaneous criteria) along the

side. Next, fill in the grid with detailed descriptions about each alternative. This becomes a

useful document for discussion because it clearly presents the alternatives being reviewed

and comparable characteristics for each one.

Suppose that your company is thinking about implementing a packaged financial sys-

tem like Oracle Financials or Microsoft’s Great Plains, but there is not enough expertise in-

house to be able to create a thorough alternative matrix. This situation is quite

common—often the alternatives for a project are unfamiliar to the project team, so outside

expertise is needed to provide information about the alternatives’ criteria.

One helpful tool is the request for proposals (RFP). An RFP is a document that solicits

proposals to provide the alternative solutions from a vendor, developer, or service provider.

Basically, the RFP explains the system that you are trying to build and the criteria that you

will use to select a system. Vendors then respond by describing what it would mean for

them to be a part of the solution. They communicate the time, cost, and exactly how their

product or services will address the needs of the project.

There is no formal way to write an RFP, but it should include basic information like

the description of the desired system, any special technical needs or circumstances, eval-

uation criteria, instructions for how to respond, and the desired schedule. An RFP can be

a very large document (i.e., hundreds of pages) because companies try to include as

much detail as possible about their needs so that the respondent can be just as detailed

in the solution that would be provided. Thus, RFPs typically are used for large projects

rather than small ones because they take a lot of time to create, and even more time and

effort for vendors, developers, and service providers to develop high quality responses—

only a project with a fairly large price tag would be worth the time and cost to develop a

response for the RFP.

A less effort-intensive tool is a request for information (RFI) that includes the same for-

mat as the RFP. The RFI is shorter and contains less detailed information about a com-

pany’s needs, and it requires general information from respondents that communicates the

basic services that they can provide.

The final step, of course, is to decide which solution to design and implement.

The decision should be made by a combination of business users and technical pro-

fessionals after the issues involved with the different alternatives are well understood.

Once the decision is finalized, the design phase can continue as needed, based on the

selected alternative.

Applying the Concepts at CD Selections

Alec had three different approaches that he could take with the new system: he could

develop the entire system using development resources from CD Selections, he could buy

282 Chapter 9 Moving on to Design

Pretend that you have been assigned the task of selecting
a CASE tool for your class to use for a semester project.
Using the Web or other references resources, select three
CASE tools (e.g., ArgoUML, Poseidon, Rational Rose, or

Visual Paradigm). Create an alternative matrix that can be
used to compare the three software products in a way in
which a selection decision can be made.

9-4 Alternative MatrixYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

a commercial Internet sales packaged software program (or a set of different packages and

integrate them), or he could hire a consulting firm or service provider to create the system.

Immediately, Alec ruled out the third option. Building Internet applications, especially

sales systems, was important to the CD Selections’ business strategy. By outsourcing the

Internet sales system, CD Selections would not develop Internet application development

skills and business skills within the organization.

Instead, Alec decided that a custom development project using the company’s stan-

dard Web development tools would be the best choice for CD Selections. In this way, the

company would be developing critical technical and business skills in-house, and the pro-

ject team would be able to have a high level of flexibility and control over the final prod-

uct. Also, Alec wanted the new Internet sales system to directly interface with the existing

distribution system, and there was a chance that a packaged solution would not be able to

integrate as well into the CD Selections environment.

There was one part of the project that potentially could be handled using packaged

software: the shopping cart portion of the application. Alec realized that a multitude of

programs have been written and are available (at low prices) to handle a customer’s order

transaction over the Web. These programs allow customers to select items for an order

form, input credit card and billing information, and finalize the order transaction. Alec

believed that the project team should at least consider some of these packaged alternatives

so that less time had to be spent writing a program that handled basic Web tasks, and

more time could be devoted to innovative marketing ideas and custom interfaces with the

distribution system.

To help better understand some of the shopping cart programs that were available in

the market and how their adoption could benefit the project, Alec created an alternative

matrix that compared three different shopping cart programs to one another (see Figure

9-12). Although all three alternatives had positive points, Alec saw Alternative B (Web-

Shop) as the best alternative for handling the shopping cart functionality for the new

Internet sales system. WebShop was written in JAVA, the tool that CD Selections selected

as its standard Web development language; the expense was reasonable, with no hidden or

recurring costs; and there was a person in-house who had some positive experience with

the program. Alec made a note to look into acquiring WebShop as the shopping cart pro-

gram for the Internet sales system.

SUMMARY

The design phase contains many steps that guide the project team through planning out

exactly how the system needs to be constructed. The requirements that were identified and

the models that were created in the analysis phase serve as the primary inputs for the design

activities. In object-oriented design, the primary activity is to evolve the analysis models

into design models by optimizing the problem domain information already contained in

the analysis models and adding system environment details to them.

Evolving the Analysis Models into Design Models

When evolving the analysis models into design models, you should first carefully review

the analysis models: activity diagrams, use case descriptions, use case diagrams, CRC

cards, class and object diagrams, sequence diagrams, communication diagrams, and

behavioral state machines. During this review, factoring, refinement, and abstraction

processes can be used to polish the current models. During this polishing, it is possible

that the analysis models may become overly complex. If this occurs, then the models

Summary 283

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

should be partitioned based on the interactivity (message sending) and relationships

(generalization, aggregation, and association) shared among the classes. The more a class

has in common with another class (i.e., the more relationships shared), the more likely

they belong in the same partition.

The second thing to do to evolve the analysis model is to add the system environ-

ment (physical architecture, user interface, and data access and management) informa-

tion to the problem domain information already contained in the model. To accomplish

this and to control the complexity of the models, layers are used. A layer represents an

element of the software architecture of the system. We recommend five different layers

to be used: foundation, physical architecture, human computer interaction, data access

and management, and problem domain. Each layer only supports certain types of

classes (e.g., data access manipulation classes would only be allowed on the data man-

agement layer).

Packages and Package Diagrams

A package is a general UML construct used to represent collaborations, partitions, and lay-

ers. Its primary purpose is to support the logical grouping of other UML constructs

together (e.g., use cases and classes), by the developer and user to simplify and increase the

understandability of a UML diagram. There are instances in which a diagram that contains

only packages is useful. A package diagram contains packages and dependency relation-

ships. A dependency relationship represents the possibility of a modification dependency

existing between two packages (i.e., changes in one package could cause changes in the

dependent package).

Identifying packages and creating a package diagram is accomplished using a five-step

process. The five steps can be summed up as setting the context, clustering similar classes,

placing the clustered classes into a package, identifying dependency relationships among

the packages, and placing the dependency relationship on the package diagram.

284 Chapter 9 Moving on to Design

Alternative 1: Alternative 2: Alternative 3:
Shop-With-Me WebShop Shop-N-Go

Technical • Developed using C: very • Developed using C and JAVA: • Developed using JAVA: would like
Feasibility little C experience in-house would like to develop in-house to develop in-house JAVA skills

JAVA skills
• Orders sent to company • Flexible export features for • Orders saved to a number of

using email files passing order information to file formats
other systems

Economic • $150 initial charge • $700 up front charge, • $200/year
Feasibility no yearly fees

Organizational • Program used by other • Program used by other retail • Brand new application: few
Feasibility retail music companies music companies companies have experience with

Shop-N-Go to date

Other Benefits • Very simple to use • Tom in IS support has had
limited, but positive experience
with this program

• Easy to customize

Other Limitations • The interface is not easily
customized

FIGURE 9-12 Alternative Matrix for Shopping Cart Program

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Key Terms 285

KEY TERMS

A-Kind-Of

Abstract classes

Abstraction

Aggregation

Alternative matrix

Class

Client

Collaboration

Concrete classes

Contract

Controller

Custom development

Customization

Data management layer

Dependency relationship

Design phase

Enterprise resource systems (ERP)

Factoring

Fixed-price contract

Foundation layer

Generalization

Has-Parts

Human computer interaction layer

Layer

Message

Method

Middleware

Model

Model-View-Controller (MVC)

Module

Object wrapper

Outsourcing

Package

Package diagram

Packaged software

Partition

Physical architecture layer

Problem domain layer

Refinement

Request for information

Request for proposals

Server

Smalltalk

Systems integration

Time and arrangements contract

Value-added contract

View

Workaround

Design Strategies

During the design phase, the project team also needs to consider three approaches to cre-

ating the new system, including developing a custom application in-house, buying a pack-

aged system and customizing it, and relying on an external vendor, developer or system

provider to build and/or support the system.

Custom development allows developers to be flexible and creative in the way they solve

business problems, and it builds technical and functional knowledge within the organiza-

tion. But, many companies have a development staff that is already overcommitted to fill-

ing huge backlogs of systems requests, and they just don’t have time to devote to a project

where a system is built from scratch. It can be much more efficient to buy programs that

have been created, tested, and proven, and a packaged system can be bought and installed

in a relatively short period of time, when compared with a custom solution. Workarounds

can be used to meet the needs that are not addressed by the packaged application.

The third design strategy is to outsource the project and pay an external vendor, devel-

oper or service provider to create the system. It can be a good alternative for how to

approach the new system; however, it does not come without costs. However, if a company

decides to leave the creation of a new system in the hands of someone else, the organiza-

tion could compromise confidential information or lose control over future development.

Each of the design strategies discussed above has its strengths and weaknesses, and no

one strategy is inherently better than the others. Thus, it is important to consider such

issues as the uniqueness of business need for the system, the amount of in-house experi-

ence that is available to build the system, and the importance of the project skills to the

company. Also, the existence of good project management and the amount of time avail-

able to develop the application play a role in the selection process.

Developing the Actual Design

Ultimately, the decision must be made regarding the specific type of system that needs to

be designed. An alternative matrix can help make this decision by presenting feasibility

information for several candidate solutions in a way in which they can be compared easily.

Both the Request for Proposal and Request for Information are two ways to gather accu-

rate information regarding the alternatives.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

286 Chapter 9 Moving on to Design

QUESTIONS

1. What is the primary difference between an analysis

model and a design model?

2. What does factoring mean? How is it related to

abstraction and refinement?

3. What is a partition? How does a partition relate to a

collaboration?

4. What is a layer? Name the different layers.

5. What is a package? How are packages related to parti-

tions and layers?

6. What is a dependency relationship? How do you iden-

tify them?

7. What are the five steps for identifying packages and

creating package diagrams?

8. What situations are most appropriate for a custom

development design strategy?

9. What are some problems with using a packaged soft-

ware approach to building a new system? How can

these problems be addressed?

10. Why do companies invest in ERP systems?

11. What are the pros and cons of using a workaround?

12. When is outsourcing considered a good design strat-

egy? When is it not appropriate?

13. What are the differences between the time and

arrangements, fixed-price, and value-added contracts

for outsourcing?

14. How are the alternative matrix and feasibility analysis

related?

15. What is an RFP? How is this different from an RFI?

EXERCISES

A. Based on the functional models you created for exer-

cises E, F, and G in Chapter 6 and the structural model

you created in Exercise K in Chapter 7, draw a package

diagram for the problem domain layer for the dentist

office system.

B. Based on the functional models you created for exer-

cises J and K in Chapter 6 and the structural model

you created in Exercise M in Chapter 7, draw a pack-

age diagram for the problem domain layer for the real

estate system.

C. Based on the functional models you created for exer-

cises L and M in Chapter 6, the structural model you

created in Exercise N in Chapter 7, and the behavioral

models you created in exercises A and B in Chapter 8,

draw a package diagram for the problem domain layer

for the video store system.

D. Based on the functional models you created for exer-

cises N and O in Chapter 6, the structural model you

created in Exercise O in Chapter 7, and the behavioral

models you created in exercises C and D in Chapter 8,

draw a package diagram for the problem domain layer

for the health club membership system.

E. Based on the functional models you created for exer-

cises P and Q in Chapter 6, the structural model you

created in Exercise P in Chapter 7, and the behavioral

models you created in exercises H in Chapter 8, draw

a package diagram for the problem domain layer for

the catering system.

F. Based on the functional models you created for exer-

cises R and S in Chapter 6, the structural model you

created in Exercise Q in Chapter 7, and the behavioral

models you created in exercises I in Chapter 8, draw a

package diagram for the problem domain layer for the

system for the Of-the-Month Club.

G. Based on the functional models you created for exer-

cises T and U in Chapter 6, the structural model you

created in Exercise R in Chapter 7, and the behavioral

models you created in exercises J in Chapter 8, draw a

package diagram for the problem domain layer for the

university library system.

H. Which design strategy would you recommend for the

construction of this system in:

a. Exercise A. Why?

b. Exercise B. Why?

c. Exercise C. Why?

d. Exercise D. Why?

e. Exercise E. Why?

f. Exercise F. Why?

g. Exercise G. Why?

I. Pretend that you are leading a project that will implement

a new course enrollment system for your university. You

are thinking about either using a packaged course enroll-

ment application or outsourcing the job to an external

consultant. Create an outline for a Request for Proposal to

which interested vendors and consultants could respond.

J. Pretend that you and your friends are starting a small

business painting houses in the summertime. You

need to buy a software package that handles the finan-

cial transactions of the business. Create an alternative

matrix that compares three packaged systems (e.g.,

Quicken, MS Money, Quickbooks). Which alternative

appears to be the best choice?

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

MINICASES

Minicases 287

1. Susan, president of MOTO, Inc., a human resources

management firm, is reflecting on the client manage-

ment software system her organization purchased

four years ago. At that time, the firm had just gone

through a major growth spurt, and the mixture of

automated and manual procedures that had been

used to manage client accounts became unwieldy.

Susan and Nancy, her IS department head, researched

and selected the package that is currently used. Susan

had heard about the software at a professional confer-

ence she attended, and at least initially, it worked

fairly well for the firm. Some of their procedures had

to change to fit the package, but they expected that

and were prepared for it.

Since that time, MOTO, Inc. has continued to grow,

not only through an expansion of the client base, but

also through the acquisition of several smaller

employment-related businesses. MOTO, Inc. is a

much different business than it was four years ago.

Along with expanding to offer more diversified

human resource management services, the firm’s sup-

port staff has also expanded. Susan and Nancy are par-

ticularly proud of the IS department they have built

up over the years. Using strong ties with a local uni-

versity, an attractive compensation package, and a

good working environment, the IS department is well-

staffed with competent, innovative people, plus a

steady stream of college interns that keeps the depart-

ment fresh and lively. One of the IS teams pioneered

the use of the Internet to offer MOTO’s services to a

whole new market segment, an experiment that has

proven very successful.

It seems clear that a major change is needed in the

client management software, and Susan has already

begun to plan financially to undertake such a project.

This software is a central part of MOTO’s operations,

and Susan wants to be sure that a quality system is

obtained this time. She knows that the vendor of their

current system has made some revisions and addi-

tions to its product line. There are also a number of

other software vendors who offer products that may

be suitable. Some of these vendors did not exist when

the purchase was made four years ago. Susan is also

considering Nancy’s suggestion that the IS depart-

ment develop a custom software application.

a. Outline the issues that Susan should consider that

would support the development of a custom soft-

ware application in-house.

b. Outline the issues that Susan should consider which

would support the purchase of a software package.

c. Within the context of a systems development pro-

ject, when should the decision of “make-versus-

buy” be made? How should Susan proceed? Explain

your answer.

2. Refer to Minicase 1 in Chapter 7. After completing all

of the analysis models (both the As-Is and To-Be

models) for West Star Marinas, the Director of Oper-

ations finally understood why it was important to

understand the As-Is system before delving into the

development of the To-Be system. However, you now

tell him that the To-Be models are only the problem

domain portion of the design. To say the least, he is

now very confused. After explaining to him the

advantages of using a layered approach to developing

the system, he informs you that “I don’t care about

reusability or maintenance. I only want the system to

be implemented as soon as possible. You IS types are

always trying to pull a fast one on the users. Just get

the system completed.”

What is your response to the Director of Opera-

tions? Do you jump into implementation as he seems

to want? What do you do next?

3. Refer to the analysis models that you created for Profes-

sional and Scientific Staff Management (PSSM) for

Minicase 2 in Chapter 6 and for Minicase 1 in Chapter 8.

a. Add packages to your use-case diagram to simplify it.

b. Use the communication diagram to identify logical

partitions in your class diagram. Add packages to

the diagram to represent the partitions.

4. Refer to the analysis models that you created for Hol-

iday Travel Vehicles for Minicase 2 in Chapter 7 and

for Minicase 2 in Chapter 8.

a. Add packages to your use-case diagram to simplify it.

b. Use the communication diagram to identify logical

partitions in your class diagram. Add packages to

the diagram to represent the partitions.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

C
ontracts

Factored/Partitioned
Behavioral M

odel
Factored/Partitioned

Functional M
odel

H
ardw

are/Softw
are

Specifications
D

eploym
ent

D
iagram

s
U

ser Interface
D

esign
Data Access & M

anipula-
tion Class Design

O
bject

Persistence D
esign

M
ethod

Specifications
C

lass
Specifications

Package
D

iagram
s

Factored/Partitioned
Structural M

odel
D

esign
Plan

PART THREE

Design Phase

The Design Phase decides how the system will oper-

ate. First, the project team creates a Design Plan and

a set of factored and partitioned Analysis models

(Functional, Structural, and Behavioral). The class

and method designs are illustrated using the Class

Specifications (using CRC Cards and Class Dia-

grams), Contracts, and Method Specifications. Next,

the data management layer is addressed by designing

the actual database or file structure to be used for ob-

ject persistence and a set of classes that will map the

Class Specifications into the object persistence format

chosen. Next, the team produces the user interface

layer design using Use Scenarios, Windows Naviga-

tion Diagrams, Real Use Cases, Interface Standards,

and User Interface Templates. The physical architec-

ture layer design is created using a Deployment Dia-

grams and Hardware/Software Specification. This

collection of deliverables is the system specification

that is handed to the programming team for imple-

mentation. At the end of the Design Phase, the feasi-

bility analysis and project plan are reexamined and

revised, and another decision is made by the project

sponsor and approval committee about whether to

terminate the project or continue.

CHAPTER 9

Moving on

 to Design

CHAPTER 10

Class and

 Method Design

CHAPTER 11

Data

Management

Layer Design

CHAPTER 12

Human Computer

Interaction

Layer Design

CHAPTER 13

Physical

Architecture

Layer Design

C
op

yr
ig

ht
ed

 M
at

er
ia

l

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

The design phase in object-oriented system development uses the requirements that were

gathered during analysis to create a blueprint for the future system. A successful design builds

upon what was learned in earlier phases and leads to a smooth implementation by creating a

clear, accurate plan of what needs to be done. This chapter describes the initial transition

from analysis to design and presents three ways to approach the design for the new system.

OBJECTIVES

■ Understand the transition from analysis to design.
■ Understand the use of factoring, partitions, and layers.
■ Be able to create package diagrams.
■ Be familiar with the custom, packaged, and outsource design alternatives.
■ Be able to create an alternative matrix.

CHAPTER OUTLINE

INTRODUCTION

The purpose of the analysis phase is to figure out what the business needs. The purpose of

the design phase is to decide how to build it. The major activity that takes place during the

design phase is evolving the set of analysis representations into design representations.

Throughout the design phase, the project team carefully considers the new system in

respect to the current environment and systems that exist within the organization as a

whole. Major considerations of the “how” of a system are environmental factors like inte-

grating with existing systems, converting data from legacy systems, and leveraging skills

that exist in-house. Although the Planning and Analysis phases are undertaken to develop

Introduction

Evolving the Analysis Models into Design

Models

Factoring

Partitions and Collaborations

Layers

Packages and Package Diagrams

Identifying Packages and Creating

Package Diagrams

Applying the Concepts at CD Selections

Design Strategies

Custom Development

Packaged Software

Outsourcing

Selecting a Design Strategy

Developing the Actual Design

Alternative Matrix

Applying the Concepts at CD Selec-

tions

Summary

C H A P T E R 9

Moving on to Design

261

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

a “possible” system, the goal of the Design phase is to create a blueprint for a system that

makes sense to implement.

An important initial part of the design phase is to examine several design strategies

and decide which will be used to build the system. Systems can be built from scratch, pur-

chased and customized, or outsourced to others, and the project team needs to investigate

the viability of each alternative. The decision to make, to buy, or to outsource influences

the design tasks that are accomplished throughout the rest of the phase.

At the same time, detailed design of the individual classes and methods that are used

to map out the nuts and bolts of the system and how they are to be stored must still be

completed. Techniques like CRC cards, class diagrams, contract specification, method spec-

ification, and database design provide detail in preparation for the implementation phase,

and they ensure that programmers have sufficient information to build the right system

efficiently. These topics are covered in Chapters 10 and 11.

Design also includes activities like designing the user interface, system inputs, and sys-

tem outputs, which involve the ways that the user interacts with the system. Chapter 12

describes these three activities in detail, along with techniques, such as story boarding and

prototyping that help the project team design a system that meets the needs of its users and

is satisfying to use.

Finally, physical architecture decisions are made regarding the hardware and software

that will be purchased to support the new system and the way that the processing of the

system will be organized. For example, the system can be organized so that its processing is

centralized at one location, distributed, or both centralized and distributed, and each solu-

tion offers unique benefits and challenges to the project team. Global issues and security

need to be considered along with the system’s technical architecture because they will influ-

ence the implementation plans that are made. Physical architecture, security, and global

issues will be described in Chapter 13.

The many steps of the design phase are highly interrelated and, as with the steps in the

analysis phase, the analysts often go back and forth among them. For example, prototyp-

ing in the interface design step often uncovers additional information that is needed in the

system. Alternatively, a system that is being designed for an organization that has central-

ized systems may require substantial hardware and software investments if the project team

decides to change to a system in which all of the processing is distributed.

In this chapter, we overview the processes that are used to evolve the analysis models into

design models. Next, we introduce the use of packages and package diagrams. Finally, we exam-

ine the three fundamental approaches to developing new systems: make, buy, or outsource.

EVOLVING THE ANALYSIS MODELS INTO DESIGN MODELS

The purpose of the analysis models was to represent the underlying business problem domain

as a set of collaborating objects. In other words, the analysis activities defined the functional

requirements. To achieve this, the analysis activities ignored nonfunctional requirements such

as performance and the system environment issues (e.g., distributed or centralized processing,

user interface issues, and database issues). In contrast, the primary purpose of the design mod-

els is to increase the likelihood of successfully delivering a system that implements the func-

tional requirements in a manner that is affordable and easily maintainable.

Therefore, in system design, we address both the functional and nonfunctional require-

ments. From an object-oriented perspective, system design models simply refine the system

analysis models by adding system environment (or solution domain) details to them and

refining the problem domain information already contained in the analysis models.

262 Chapter 9 Moving on to Design

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

When evolving the analysis model into the design model, you should first carefully review

the use cases and the current set of classes (their methods and attributes, and the relationships

between them). Are all of the classes necessary? Are there any missing classes? Are the classes

fully defined? Are their any missing attributes or methods? Do the classes have any unneces-

sary attributes and methods? Is the current representation of the evolving system optimal?

In the following sections, we introduce factoring, partitions and collaborations, and

layers as a way to evolve problem domain-oriented analysis models into optimal solution

domain-oriented design models.

Factoring

Factoring is the process of separating out a module into a standalone module in and of

itself. The new module can be a new class or a new method. For example, when reviewing

a set of classes, it may be discovered that they have a similar set of attributes and meth-

ods. As such, it may make sense to factor out the similarities into a separate class. Depend-

ing on whether the new class should be in a superclass relationship to the existing classes

or not, the new class can be related to the existing classes through generalization (A-Kind-

Of) or possibly through aggregation (Has-Parts) relationship. For example, using the

appointment system example in the previous chapters (see Figure 7-2), if the Employee

class had not been identified, we could possibly identify it at this stage by factoring out the

similar methods and attributes from the Nurse, Administrative Staff, and Doctor classes.

Evolving the Analysis Models into Design Models 263

In Chapters 3 and 4, we discussed several classic mis-
takes and how to avoid them. Here, we summarize four
classic mistakes in the design phase, and discuss how to
avoid them.

1. Reducing design time: If time is short, there is a
temptation to reduce the time spent in “unproduc-
tive” activities such as design so that the team can
jump into “productive” programming. This results in
missing important details that have to be investi-
gated later at a much higher time cost (usually at
least ten times longer).

Solution: If time pressure is intense, use timeboxing to
eliminate functionality or move it into future versions.

2. Feature creep: Even if you are successful at avoid-
ing scope creep, about 25 percent of system
requirements will still change. And, changes—big
and small—can significantly increase time and cost.

Solution: Ensure that all changes are vital and that
the users are aware of the impact on cost and time.
Try to move proposed changes into future versions.

3. Silver bullet syndrome: Analysts sometimes believe
the marketing claims for some design tools that claim
to solve all problems and magically reduce time and
costs. No one tool or technique can eliminate overall
time or costs by more than 25 percent (although
some can reduce individual steps by this much).

Solution: If a design tool has claims that appear too
good to be true, just say no.

4. Switching tools in mid-project: Sometimes analysts
switch to what appears to be a better tool during
design in the hopes of saving time or costs. Usually,
any benefits are outweighed by the need to learn
the new tool. This also applies to even “minor”
upgrades to current tools.

Solution: Don’t switch or upgrade unless there is a
compelling need for specific features in the new
tool, and then explicitly increase the schedule to
include learning time.

Adapted from Steve McConnell, Rapid Development, Microsoft Press,

Redmond, WA 1996.

Avoiding Classic Design MistakesPRACTICAL

TIP

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

In this case, we would relate the new class (Employee) to the existing classes using the gen-

eralization (A-Kind-Of) relationship.

Abstraction and refinement are two closely related processes to factoring. Abstraction

deals with the creation of a “higher” level idea from a set of ideas. Identifying the Employee

class is an example of abstracting from a set of lower classes to a higher one. In some cases,

the abstraction process will identify abstract classes, whereas, in other situations, it will

identify additional concrete classes.1 The refinement process is the opposite of the abstrac-

tion process. In the appointment system example in the previous chapters (see Figure 7-2),

we could identify additional subclasses of the Administrative Staff class, such as Recep-

tionist, Secretary, and Bookkeeper. Of course we would only add the new classes if there

were sufficient differences between them. Otherwise, the more general class, Administra-

tive Staff, would suffice.

Partitions and Collaborations

Based on all of the factoring, refining, and abstracting that can take place to the evolving

system, the sheer size of the system representation can overload both the user and the

developer. At this point in the evolution of the system, it may make sense to split the rep-

resentation into a set of partitions. A partition is the object-oriented equivalent of a sub-

system,2 where a subsystem is a decomposition of a larger system into its component

systems (e.g., an accounting information system could be functionally decomposed into an

accounts payable system, an account receivable system, a payroll system, and so on). From

an object-oriented perspective, partitions are based on the pattern of activity (messages

sent) among the objects in an object-oriented system.

A good place to look for potential partitions is the collaborations modeled in UML’s

communication diagrams (see Chapter 8). If you recall, one useful way to identify collab-

orations is to create a communication diagram for each use case. However, since an indi-

vidual class may support multiple use cases, an individual class can participate in multiple

use case-based collaborations. In those cases where classes are supporting multiple use

cases, the collaborations should be merged together. Also, CRUD analysis (see Chapter 8)

can be used to identify potential classes on which to merge collaborations.

Depending on the complexity of the merged collaboration, it may be useful in decom-

posing the collaboration into multiple partitions. In this case, in addition to having collabo-

rations between objects, it is possible to have collaborations among partitions. The general

rule of thumb is the more messages sent between objects, the more likely the objects belong

in the same partition. The fewer messages sent, the less likely the two objects belong together.

Another useful approach to identify potential partitions is to model each collaboration

between objects in terms of clients, servers, and contracts. A client is an instance of a class

that sends a message to an instance of another class for a method to be executed; a server is

the instance of a class that receives the message; and a contract is the specification that for-

malizes the interactions between the client and server objects (see Chapters 7 and 10). This

approach allows the developer to build up potential partitions by looking at the contracts

that have been specified between objects. In this case, the more contracts there are between

objects, the more often than not the objects belong in the same partition. The fewer con-

tracts, the chances are the two classes do not belong in the same partition.

264 Chapter 9 Moving on to Design

1 See Chapter 7 for the differences between abstract and concrete classes.
2 Some authors refer to partitions as subsystems (e.g., see Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Weiner,
Designing Object-Oriented Software [Englewood Cliffs, NJ: Prentice-Hall, 1990]), while others refer to them as layers
(e.g., see Ian Graham, Migrating to Object Technology [Reading, MA Addison-Wesley, 1994]). However, we have cho-
sen to use the term partition (from Craig Larman, Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design [Englewood Cliffs, NJ: Prentice Hall, 1998]) to minimize confusion between subsystems in a tra-
ditional system development approach and the layers associated with Rational’s Unified Approach.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Layers

Until this point in the development of our system, we have focused only on the problem

domain; we have totally ignored the system environment (physical architecture, user inter-

face, and data access and management). To successfully evolve the analysis model of the

system into a design model of the system, we must add the system environment informa-

tion. One useful way to do this, without overloading the developer, is to use layers. A layer

represents an element of the software architecture of the evolving system. We have focused

only on one layer in the evolving software architecture: the problem domain layer. There

should be a layer for each of the different elements of the system environment (e.g., system

architecture, user interface, and data access and management).

The idea of separating the different elements of the architecture into separate layers

can be traced back to the MVC architecture of Smalltalk.3 When Smalltalk was first cre-

ated,4 the authors decided to separate the application logic from the logic of the user inter-

face. In this manner, it was possible to easily develop different user interfaces that worked

with the same application. To accomplish this, they created the Model-View-Controller

(MVC) architecture where Models implemented the application logic (problem domain),

and Views and Controllers implemented the logic for the user interface. Views handled the

output and Controllers handled the input. Since graphical user interfaces were first devel-

oped in the Smalltalk language, the MVC architecture served as the foundation for virtu-

ally all graphical user interfaces that have been developed today (including the Mac

interfaces, the Windows family, and the various Unix-based GUI environments).

Based on Smalltalk’s innovative MVC architecture, many different software layers have

been proposed.5 Based on these proposals, we suggest the following layers on which to base

Evolving the Analysis Models into Design Models 265

You have been working with the system for the campus
housing service over the previous three chapters. In Chap-
ter 6, you were asked to create a set of use cases (Your Turn
6-6) and to create a use case diagram (Your Turn 6-8). In
Chapter 7 (Your Turn 7-3), you created a structural model
(CRC cards and class diagram) for the same situation. In
Chapter 8, you created a sequence diagram (Your Turn 8-1)
and a communication diagram (Your Turn 8-2) for one of

the use cases you had identified in Chapter 6. Finally, you
also created a behavioral state machine for the apartment
class in Chapter 8 (Your Turn 8-3).

Based on the current set of functional, structural, and
behavioral models portrayed in these diagrams, apply the
abstraction and refinement processes to identify addi-
tional abstract and concrete classes that would be useful
to include in the evolving system.

9-1 Campus HousingYOUR

TURN

3 See Simon Lewis, The Art and Science of Smalltalk: An Introduction to Object-Oriented Programming Using Visu-
alWorks (Englewood Cliffs, NJ: Prentice-Hall, 1995).
4 Smalltalk was first invented in the early 1970s by a software development research team at Xerox PARC. It intro-
duced many new ideas into the area of programming languages (e.g., object-orientation, windows-based user
interfaces, reusable class library, and the idea of a development environment). In many ways, Smalltalk is the
father (or mother) of all object-based and object-oriented languages, such as Visual Basic, C++, and Java.
5 For example, Problem Domain, Human Interaction, Task Management, and Data Management (Peter Coad and
Edward Yourdon, Object-Oriented Design [Englewood Cliffs, NJ: Yourdon Press, 1991]); Domain, Application, and
Interface (Ian Graham, Migrating to Object Technology [Reading, MA: Addison Wesley, 1994]); Domain, Service, and
Presentation (Craig Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design
[Englewood Cliffs, NJ: Prentice Hall, 1998]); Business, View, and Access (Ali Bahrami, Object-Oriented Systems Devel-
opment using the Unified Modeling Language, [New York, NY: McGraw Hill, 1999]); Application-Specific, Application-
General, Middleware, System-Software (Ivar Jacobson, Grady Booch, and James Rumbaugh, The Unified Software
Development Process [Reading, MA: Addison-Wesley, 1999]); and Foundation, Architecture, Business, and Application
(Meilir Page-Jones, Fundamentals of Object-Oriented Design in UML [Reading, MA: Addison-Wesley, 2000]).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

software architecture: foundation, physical architecture, human computer interaction, data

access and management, and problem domain (see Figure 9-1). Each layer limits the types

of classes that can exist on it (e.g., only user interface classes may exist on the human com-

puter interaction layer). The following provides a short description of each layer.

Foundation The foundation layer is, in many ways, a very uninteresting layer. It contains

classes that are necessary for any object-oriented application to exist. They include classes

that represent fundamental data types (e.g., integers, real numbers, characters, and

strings), classes that represent fundamental data structures (sometimes referred to as con-

tainer classes; e.g., lists, trees, graphs, sets, stacks, and queues), and classes that represent

useful abstractions (sometimes referred to as utility classes; e.g., date, time, and money).

Today, the classes found on this layer typically are included with the object-oriented

development environments.

Physical Architecture The physical architecture layer addresses how the software will

execute on specific computers and networks. As such, this layer includes classes that deal

with communication between the software and the computer’s operating system and the

network. For example, classes that address how to interact with the various ports on a spe-

cific computer would be included in this layer. This layer also includes classes that would

interact with so-called middleware applications, such as the OMG’s CORBA and

Microsoft’s DCOM architectures that handle distributed objects.

Unlike the foundation layer, there are many design issues that must be addressed

before choosing the appropriate set of classes for this layer. These design issues include the

choice of a computing or network architecture (such as the various client-server architec-

tures), the actual design of a network, hardware and server software specification,

global/international issues (such as multilingual requirements), and security issues. A com-

plete description of all of the issues related to system architecture is beyond the scope of

this book—there are entire courses dedicated to this subject. However, we do present the

basic issues in Chapter 13.

Human Computer Interaction The human computer interaction layer contains classes

associated with the View and Controller idea from Smalltalk. The primary purpose of this

layer is to keep the specific user interface implementation separate from the problem

domain classes. This increases the portability of the evolving system. Typical classes found

on this layer include classes that can be used to represent buttons, windows, text fields,

scroll bars, check boxes, drop-down lists, and many other classes that represent user inter-

face elements.

When it comes to designing the user interface for an application, there are many issues

that must be addressed. For example, how important is consistency across different user

interfaces, what about differing levels of user experience, how is the user expected to be able

to navigate through the system, what about help systems and online manuals, what types

266 Chapter 9 Moving on to Design

Layers Examples Relevant Chapters

Foundation Date, Enumeration 9, 10

Physical Architecture ServerSocket, URLConnection 10, 13

Human Computer Interaction Button, Panel 10, 12

Data Management DataInputStream, FileInputStream 10, 11

Problem Domain Employee, Customer 6, 7, 8, 9, 10

FIGURE 9-1
Layers and Sample

Classes

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

of input elements should be included (e.g., text box, radio buttons, check boxes, sliders,

drop-down list boxes, etc.), and what types of output elements should be included (e.g.,

text, tables, graphs, etc.). Like the physical architecture layer, a complete description of all

of the issues related to human computer interaction is beyond the scope of this book.6

However from the user’s perspective, the user interface is the system. As such, we present

the basic issues in user interface design in Chapter 12.

Data Management The data management layer addresses the issues involving the persis-

tence of the objects contained in the system. The types of classes that appear in this layer deal

with how objects can be stored and retrieved. Like the human computer interface layer, the

classes contained in this layer allow the problem domain classes to be independent of the

storage utilized, and hence increase the portability of the evolving system. Some of the issues

related to this layer include choice of the storage format (such as relational, object/relational,

and object databases) and storage optimization (such as clustering and indexing). A com-

plete description of all of the issues related to the data management layer also is beyond the

scope of this book.7 However, we do present the fundamentals in Chapter 11.

Problem Domain The previous layers dealt with classes that represent elements from the

system environment and which will be added to the evolving system specification. The

problem domain layer is what we have focused our attention on up until now. At this stage

of the development of our system, we will need to further detail the classes so that it will

be possible to implement them in an effective and efficient manner.

Many issues need to be addressed when designing classes, no matter on which layer

they appear. For example, there are issues related to factoring, cohesion and coupling, con-

nascence, encapsulation, proper use of inheritance and polymorphism, constraints, con-

tract specification, and detailed method design. These issues are discussed in Chapter 10.

PACKAGES AND PACKAGE DIAGRAMS

In UML, collaborations, partitions, and layers can be represented by a higher-level con-

struct: a package.8 A package is a general construct that can be applied to any of the ele-

ments in UML models. In Chapter 6, we introduced the idea of packages as a way to group

use cases together to make the use case diagrams easier to read and to keep the models at a

reasonable level of complexity. In Chapters 7 and 8, we did the same thing for class and

communication diagrams, respectively. In this section we describe a package diagram: a

diagram that is composed only of packages. A package diagram is effectively a class diagram

that only shows packages.

The symbol for a package is similar to a tabbed folder (see Figure 9-2). Depending on

where a package is used, packages can participate in different types of relationships. For

example, in a class diagram, packages represent groupings of classes. Therefore, aggregation

and association relationships are possible.

Packages and Package Diagrams 267

6 One of the best books on user interface design is Ben Schheiderman, Designing the User Interface: Strategies for
Effective Human Computer Interaction, 3rd Ed (Reading, MA: Addison-Wesley, 1998).
7 There are many good database design books that are relevant to this layer, see for example, Fred R. McFadden,
Jeffrey A. Hoffer, Mary B. Prescott, Modern Database Management, 4th ed. (Reading, MA:Addison-Wesley, 1998),
Michael Blaha and William Premerlani, Object-Oriented Modeling and Design for Database Applications (Engle-
wood Cliffs, NJ: Prentice Hall, 1998), and Robert J. Muller, Database Design for Smarties: Using UML for Data
Modeling (San Francisco, CA: Morgan Kaufmann, 1999).
8 This discussion is based on material in Chapter 7 of Martin Fowler with Kendal Scott, UML Distilled: A Brief
Guide to the Standard Object Modeling Language, 2nd Ed. (Reading, MA: Addison Wesley, 2000).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

In a package diagram, a new relationship, the dependency relationship, is useful to

depict. A dependency relationship is portrayed by a dashed arrow (see Figure 9-2). A

dependency relationship represents the fact that a modification dependency exists between

two packages. That is, it is possible that a change in one package potentially could cause a

change to be required in another package. Figure 9-3 portrays the dependencies among the

different layers (foundation, physical architecture, human computer interaction, data

access and management, and problem domain). For example, if a change occurs in the

problem domain layer, it most likely will cause changes to occur in the human computer

interaction, physical architecture, and data management layers. Notice that these layers

“point to” the problem domain layer; as such, they are dependent on it. However, the

reverse is not true.

At the class level, there could be many causes for dependencies among classes. For

example, if the protocol for a method is changed, then this causes the interface for all objects

of this class to change. Therefore, all classes that have objects that send messages to the

instances of the modified class may have to be modified. Capturing dependency relation-

ships among the classes and packages helps the organization in maintaining object-oriented

information systems.

268 Chapter 9 Moving on to Design

A Package:

■ A logical grouping of UML elements

■ Used to simplify UML diagrams by grouping related elements into a single higher-
level element

A Dependency Relationship:

■ Represents a dependency between packages, i.e., if a package is changed, the
dependent package also could have to be modified

■ The arrow is drawn from the dependent package toward the package on which it
is dependent

Package

FIGURE 9-2 Syntax for Package Diagram

Human Computer Interaction

Problem Domain

Physical Architecture Data Management

Foundation

FIGURE 9-3
Package Diagram of

Dependency Relation-

ships among Layers

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

As already stated, collaborations, partitions, and layers are modeled as packages in

UML. Furthermore, collaborations are normally factored into a set of partitions, which are

typically placed on a layer. In addition, partitions can be composed of other partitions.

Also, it is possible to have classes in partitions, which are contained in another partition,

which is placed on a layer. All of these groupings are represented using packages in UML.

Remember that a package is simply a generic, grouping construct used to simplify UML

models through the use of composition.9

A simple package diagram, based on the appointment system example from the previ-

ous chapters, is shown in Figure 9-4. This diagram only portrays a very small portion of the

entire system. In this case, we see that the Patient UI, DAM-Patient, and Patient Table

classes are dependent on the Patient class. Furthermore, the DAM-Patient class is depen-

dent on the Patient Table class. The same can be seen with the classes dealing with the

actual appointments. By isolating the Problem Domain classes (such as the Patient and

Appt classes) from the actual object persistence classes (such as the Patient Table and Appt

Table classes) through the use of the intermediate Data Access and Manipulation classes

(DAM-Patient and DAM-Appt classes), we isolate the Problem Domain classes from the

actual storage medium.10 This greatly simplifies the maintenance and increases the

reusability of the Problem Domain classes. Of course, in a complete description of a real

system, there would be many more dependencies.

Identifying Packages and Creating Package Diagrams

In this section, we describe a simple five-step process to create package diagrams (see Fig-

ure 9-5). The first step is to set the context for the package diagram. Remember, packages

can be used to model partitions and/or layers. Revisiting the appointment system again,

let’s set the context as the problem domain layer.

The second step is to cluster the classes together into partitions based on the relation-

ships that the classes share. The relationships include generalization, aggregation, the vari-

ous associations, and the message sending that takes place between the objects in the

system. To identify the packages in the appointment system, we should look at the differ-

ent analysis models (e.g., the class diagram [see Figure 7-2], sequence diagrams [see Figure

8-1], and the communication diagrams [see Figure 8-6]). Any classes in a generalization

hierarchy should be kept together in a single partition.

The third step is to place the clustered classes together in a partition and model the

partitions as packages. Figure 9-6 portrays five packages: PD Layer, Person Pkg, Patient Pkg,

Appt Pkg, and Treatment Pkg.

The fourth step is to identify the dependency relationships among the packages. In

this case, we review the relationships that cross the boundaries of the packages to

uncover potential dependencies. In the appointment system, we see association relation-

ships that connect the Person Pkg with the Appt Pkg (via the association between the

Doctor class and the Appointment class), and the Patient Pkg, which is contained within

the Person Pkg, with the Appt Pkg (via the association between the Patient and

Appointment classes) and the Treatment Pkg (via the association between the Patient

and Symptom classes).

The fifth step is to place the dependency relationships on the evolved package diagram.

In the case of the Appointment system, there are dependency relationships between the

Person Pkg and the Appt Pkg and the Person Pkg and the Treatment Pkg. To increase the

Packages and Package Diagrams 269

9 For those familiar with traditional approaches, such as structured analysis and design, packages serve a similar
purpose as the leveling and balancing processes used in data flow diagramming.
10 These issues are described in more detail in Chapter 11.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

understandability of the dependency relationships among the different packages, a pure

package diagram that only shows the dependency relationships among the packages can be

created (see Figure 9-7).

270 Chapter 9 Moving on to Design

HCI Layer

Appt Sys UI

Patient UI Appt UI

PD Layer

Appt Sys

Patient Appt

DM Layer

Patient-DAM Appt-DAM

Patient Table Appt Table
FIGURE 9-4
Partial Package Dia-

gram of the Appoint-

ment System

1. Set the Context.

2. Cluster classes together based on shared relationships.

3. Model clustered classes as a package.

4. Identify dependency relationships among packages.

5. Place dependency relationships between packages.

FIGURE 9-5 Steps

for Identifying Pack-

ages and Building

Package Diagram

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

P
a
c
k

a
g

e
s
 a

n
d

 P
a
c
k

a
g

e
 D

ia
g

r
a
m

s
2
7
1

PD Layer

Person Package

Appt Package

Treatment Package

Patient PackagePerson

-lastname
-firstname
-address
-phone
-birthdate
-/ age

Administrative
Staff

Employee

Nurse

Health Team

Doctor

Symptom Illness

0..*

0..*

0..*

1..*

0..*

0..*

1..*

1..*

1

1

1

0..1

0..*

1

0..1

Patient

-amount
-insurance carrier

+make appointment()
+calculate last visit()
+change status()
+provides medical history()

Medical History

-heart disease
-high blood pressure
-diabetes
-allergies

Appointment

-time
-date
-reason

-name -description

+cancel without notice()

Bill

-date
-amount
-purpose

+generate cancellation fee()

0..*0..*

*
*

+primary
insurance
carrier

Treatment

medication
instructions
symptom severity

provides

has scheduled

schedules leads to

suffer

FIGURE 9-6 Package Diagram of the PD Layer for the Appointment SystemC
op

yr
ig

ht
ed

 M
at

er
ia

l
Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Applying Concepts at CD Selections

In the previous chapters, the CD Selections Internet sales system has been described. In Chap-

ter 5, the functional and nonfunctional requirements for the system were given in Figure 5-13.

In Chapter 6, the functional model in the form of an activity diagram (see Figure 6-12) and

the use case descriptions and diagram (see Figures 6-13 through 6-17). The structural model

comprised of the CRC cards and class diagram was given in Chapter 7 (see Figures 7-9 through

7-11 and 7-13). Finally, in Chapter 8 behavioral models were developed for the Places Order

use case and the Order class (see the sequence diagram in Figure 8-5, the communication dia-

gram in Figure 8-10, the behavioral state machine in Figure 8-15). In this section, we demon-

strate the creation of a package diagram for the CD Selections Internet sales system.

As just detailed, the first thing to do when identifying packages and creating package dia-

grams is to set the context. At this point in the development of the Internet sales system for CD

Selections, Alec wants the development team only to concentrate on the Problem Domain Layer.

The second step, cluster classes together, is accomplished by reviewing the relationships

among the different classes (see Figures 7-13, 8-5, and 8-10). Through this review process, we

see that there are generalization, aggregation, various associations, and message sending rela-

tionships. Since we always want to keep classes in a generalization hierarchy together, we

automatically cluster the Customer, Individual, and Organization classes together to form a

partition. It is also preferred to keep classes together that participate in aggregation relation-

ships. Based on aggregation relationships, we cluster the Mkt Info, Review, Artist Info, and

Sample Clip classes together in a partition. Based on the association relationship and the mes-

sage-sending pattern of activity (contained in the communication diagram in Figure 8-10)

between the CD and Mkt Info classes, it seemed to the development team that these classes

should be in the same partition. Furthermore, since the Vendor class is only related to the CD

class (see the class diagram in Figure 7-13), the development team decided to place it in the

same partition. Finally, the development team decided to place the Order and Order Item

classes together and the Search Req and CD List classes together in their own partitions.

The third step was to model each of these partitions as packages. Figure 9-8 shows the

classes being contained in their respective packages. Observe that the Credit-Card Center

currently is not contained in any package.

272 Chapter 9 Moving on to Design

PD Layer

Person Package Appt Package

Treatment Package

Patient Package

FIGURE 9-7
Overview Package

Diagram of the PD

Layer for the

Appointment System

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

P
a
c
k

a
g

e
s
 a

n
d

 P
a
c
k

a
g

e
 D

ia
g

r
a
m

s
2
7
3

PD Layer

Order Package CD Package

Search Package

Customer Package

places includes

results in

makes

consists of

contains

distributes

promotes

Organizational

Customer

Individual

Credit Card Center

Order Item

Review

Artist Info

Sample Clip

CD

Vendor

Mkt Info

Order

CD ListSearch Req

3 checks

1 0..1
*

*

*

**

1

1

1

*

*

*

*

**

**

*

*

*

* *

*

FIGURE 9-8 Package Diagram of the PD Layer of CD Selections Internet Sales System

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Identifying dependency relationships among the packages is the fourth step. In this case,

Alec was capable of quickly identifying four associations among the different packages: the

Customer Package and the Order Package, the Customer Package and the Search Package, the

Order Package and the CD Package, and the Search Package and the CD Package. He also

identified an association between the Credit Card Clearance Center class and the Customer

Package. Based on these associations, five dependency relationships were identified.

The fifth and final step is to place the dependency relationships on the package dia-

gram. Again, to increase the understandability of the dependency relationships among the

different packages, Alec decided to create a pure package diagram that only depicted the

highest-level packages (and in this case the Credit Card Center class) and the dependency

relationships (see Figure 9-9).

274 Chapter 9 Moving on to Design

PD Layer

Customer Package

Order Package

Search Package

CD Package

Credit Card Center

FIGURE 9-9
Overview Package

Diagram of the PD

Layer of CD Selections

Internet Sales System

Based on the factoring of the evolving system in Your Turn
9-1, identify a set of partitions for the Problem Domain

layer and model them in a package diagram.

9-2 Campus HousingYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

DESIGN STRATEGIES

Until now, we have assumed that the system will be built and implemented by the project

team; however, there are actually three ways to approach the creation of a new system:

developing a custom application in-house, buying a packaged system and customizing it,

and relying on an external vendor, developer, or service provider to build the system. Each

of these choices has its strengths and weaknesses, and each is more appropriate in different

scenarios. The following sections describe each design choice in turn, and then we present

criteria that you can use to select one of the three approaches for your project.

Custom Development

Many project teams assume that custom development, or building a new system from

scratch, is the best way to create a system. For one thing, teams have complete control over

the way the system looks and functions. Let’s consider the order taking process for CD

Selections. If the company wanted a Web order-taking feature that links tightly with its

existing distribution system, the project may involve a complex, highly specialized pro-

gram. Or, CD Selections might have a technical environment in which all information sys-

tems are built using standard technology and interface designs so that they are consistent

and easier to update and support. In both cases, it could be very effective to create a new

system from scratch that meets these highly specialized requirements.

Custom development also allows developers to be flexible and creative in the way they

solve business problems. CD Selections may envision the Web interface that takes customer

orders as an important strategic enabler. The company may want to use the information

from the system to better understand their customers who order over the Web, and it may

want the flexibility to evolve the system to incorporate technology, such as data-mining

software and geographic information systems to perform marketing research. A custom

application would be easier to change to include components that take advantage of cur-

rent technologies that can support such strategic efforts.

Building a system in-house also builds technical skills and functional knowledge

within the company. As developers work with business users, their understanding of the

business grows and they become better able to align IS with strategies and needs. These

same developers climb the technology learning curve so that future projects applying sim-

ilar technology become much less effortful.

Custom application development, however, also includes a dedicated effort that

includes long hours and hard work. Many companies have a development staff that already

is overcommitted to filling huge backlogs of systems requests, and they just do not have time

for another project. Also, a variety of skills—technical, interpersonal, functional, project

management, and modeling—all have to be in place for the project to move ahead smoothly.

IS professionals, especially highly skilled individuals, are quite difficult to hire and retain.

The risks associated with building a system from the ground up can be quite high, and

there is no guarantee that the project will succeed. Developers could be pulled away to work

on other projects, technical obstacles could cause unexpected delays, and the business users

could become impatient with a growing timeline.

Packaged Software

Many business needs are not unique, and because it makes little sense to “reinvent the

wheel,” many organizations buy packaged software that has already been written, rather

than developing their own custom solution. In fact, there are thousands of commercially

available software programs that have already been written to serve a multitude of pur-

poses. Think about your own need for a word processor—did you ever consider writing

Design Strategies 275

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

your own word processing software? That would be very silly considering the number of

good software packages available for a relatively inexpensive cost.

Similarly, most companies have needs that can be met quite well by packaged software

such as payroll or accounts receivable. It can be much more efficient to buy programs that have

already been created, tested, and proven, and a packaged system can be bought and installed

in a relatively short period of time, when compared with a custom system. Plus, packaged sys-

tems incorporate the expertise and experience of the vendor who created the software.

Let’s examine the Order Taking process once again. It turns out that there are pro-

grams available, called shopping cart programs, that allow a company to sell products on

the Internet by keeping track of customers’ selections, totaling them, and then e-mailing

the order to a mailbox. You can easily install it on an existing Web page, and it allows you

to take orders. Some shopping cart programs are even available over the Internet for free.

Therefore, CD Selections could decide that acquiring a ready-made order taking applica-

tion might be much more efficient than creating one from scratch.

Packaged software can range from reusable components (such as ActiveX and Jav-

abeans) to small single-function tools (like the shopping cart program) to huge, all-

encompassing systems such as enterprise resource planning (ERP) applications that are

installed to automate an entire business. Implementing ERP systems is a process in which

large organizations spend millions of dollars installing packages by companies like SAP,

PeopleSoft, Oracle, and Baan and then change their businesses accordingly. Installing ERP

software is much more difficult than installing small application packages because bene-

fits can be harder to realize and problems are much more serious.

One problem is that companies buying packaged systems must accept the functional-

ity that is provided by the system, and rarely is there a perfect fit. If the packaged system is

large in scope, its implementation could mean a substantial change in the way the company

does business. Letting technology drive the business can be a dangerous way to go.

276 Chapter 9 Moving on to Design

I worked with a large financial institution in the southeast
that suffered serious financial losses several years ago. A
new CEO was brought in to change the strategy of the
organization to being more “customer-focused.” The new
direction was quite innovative, and it was determined that
custom systems, including a data warehouse, would have
to be built to support the new strategic efforts. The prob-
lem was that the company did not have the in-house skills
for these kinds of custom projects.

The company now has one of the most successful
data-warehouse implementations because of its willing-
ness to use outside skills and its focus on project man-
agement. To supplement skills within the company, eight
sets of external consultants, including hardware ven-
dors, system integrators, and business strategists were
hired to take part and transfer critical skills to internal
employees. An in-house project manager coordinated
the data-warehouse implementation full-time, and her
primary goals were to set expectations clearly, define

responsibilities, and communicate the interdependen-
cies that existed among the team members.

This company shows that successful custom devel-
opment can be achieved, even when the company may
not start off with the right skills in-house. But, this kind of
project is not easy to pull off—it takes a talented project
manager to keep the project moving along and to transi-
tion the skills to the right people over time.

—Barbara Wixom

Questions:

1. What are the risks in building a custom system
without the right technical expertise? Why did the
company select a project manager from within the
organization? Would it have been better to hire an
external professional project manager to coordinate
the project?

9-A Building a Custom System—with Some HelpCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Most packaged applications allow for customization, or the manipulation of system

parameters to change the way certain features work. For example, the package might have

a way to accept information about your company or the company logo that would then

appear on input screens. Or, an accounting software package could offer a choice of vari-

ous ways to handle cash flow or inventory control so that it can support the accounting

practices in different organizations. If the amount of customization is not enough, and the

software package has a few features that don’t quite work the way the company needs it to

work, the project team can create workarounds.

A workaround is a custom-built add-on program that interfaces with the packaged

application to handle special needs. It can be a nice way to create needed functionality that

does not exist in the software package. But, workarounds should be a last resort for several

reasons. First, workarounds are not supported by the vendor who supplied the packaged

software, so when upgrades are made to the main system, they may make the workaround

ineffective. Also, if problems arise, vendors have a tendency to blame the workaround as the

culprit and refuse to provide support.

Although choosing a packaged software system is simpler than custom development,

it too can benefit from following a formal methodology just as if you were building a cus-

tom application.

Systems integration refers to the process of building new systems by combining pack-

aged software, existing legacy systems, and new software written to integrate these together.

Many consulting firms specialize in systems integration, so it is not uncommon for com-

panies to select the packaged software option and then outsource the integration of a vari-

ety of packages to a consulting firm. (Outsourcing is discussed in the next section.)

The key challenge in systems integration is finding ways to integrate the data produced

by the different packages and legacy systems. Integration often hinges around taking data

produced by one package or system and reformatting it for use in another package/system.

The project team starts by examining the data produced by and needed by the different

packages/systems and identifying the transformations that must occur to move the data from

one to the other. In many cases, this involves “fooling” the different packages/systems into

thinking that the data was produced by an existing program module that the package/system

expects to produce the data rather than the new package/system that is being integrated.

For example, CD Selections needs to integrate the new Internet sales system with exist-

ing legacy systems, such as the distribution system. The distribution system was written to

support a different application: the distribution of CDs to retail stores, and it currently

exchanges data with the system that supports the CD Selections retail stores. The Internet

sales system will need to produce data in the same format as this existing system so the dis-

tribution system will think the data is from the same system as always. Conversely, the pro-

ject team may need to revise the existing distribution system, so it can accept data from the

Internet sales system in a new format. A third approach is through the use of an object wrap-

per.11 An object wrapper essentially is an object that “wraps around” a legacy system, enabling

an object-oriented system to send messages to the legacy system. Effectively, object wrappers

create an application program interface (API) to the legacy system. The creation of an object

wrapper allows the protection of the corporation’s investment in the legacy system.

Outsourcing

The design choice that requires the least amount of in-house resources is outsourcing—hir-

ing an external vendor, developer, or service provider to create the system. Outsourcing has

Design Strategies 277

11 Ian Graham, Object-Oriented Methods: Principles & Practice, 3rd Ed. (Reading, MA: Addison-Wesley, 2001).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

become quite popular in recent years. Some estimate that as many as 50 percent of com-

panies with IT budgets of more than $5 million are currently outsourcing or evaluating the

approach. Although these figures include outsourcing for all kinds of systems functions,

this section focuses on outsourcing a single development project.

There can be great benefit to having someone else develop your system. They may be

more experienced in the technology or have more resources, like experienced program-

mers. Many companies embark upon outsourcing deals to reduce costs, while others see it

as an opportunity to add value to the business. For example, instead of creating a program

that handles the Order Taking Process or buying a preexisting package, CD Selections may

decide to let a Web service provider provide commercial services for them.

For whatever reason, outsourcing can be a good alternative for a new system. However,

it does not come without costs. If you decide to leave the creation of a new system in the

hands of someone else, you could compromise confidential information or lose control over

future development. In-house professionals are not benefiting from the skills that could be

learned from the project, and instead the expertise is transferred to the outside organization.

Ultimately, important skills can walk right out the door at the end of the contract.

Most risks can be addressed if you decide to outsource, but two are particularly impor-

tant. First, assess the requirements for the project thoroughly—you should never outsource

what you don’t understand. If you have conducted rigorous planning and analysis, then you

should be well aware of your needs. Second, carefully choose a vendor, developer, or service

with a proven track record with the type of system and technology that your system needs.

Three primary types of contracts can be drawn to control the outsourcing contract. A

time and arrangements deal is very flexible because you agree to pay for whatever time and

expenses are needed to get the job done. Of course, this agreement could result in a large

bill that exceeds initial estimates. This works best when you and the outsourcer are unclear

about what it is going to take to finish the job.

You will pay no more than expected with a fixed-price contract because if the outsourcer

exceeds the agreed-upon price, they will have to absorb the costs. Outsourcers are much more

careful about defining requirements clearly up front, and there is little flexibility for change.

The type of contract gaining in popularity is the value-added contract whereby the out-

sourcer reaps some percentage of the completed system’s benefits. You have very little risk

in this case, but expect to share the wealth once the system is in place.

Creating fair contracts is an art because you need to carefully balance flexibility with

clearly defined terms. Often needs change over time. As such, you don’t want the contract

to be so specific and rigid that alterations can’t be made. Think about how quickly tech-

nology like the World Wide Web changes. It is difficult to foresee how a project may evolve

over a long period of time. Short-term contracts help leave room for reassessment if needs

change or if relationships are not working out the way both parties expected. In all cases,

the relationship with the outsourcer should be viewed as a partnership where both parties

benefit and communicate openly.

Managing the outsourcing relationship is a full-time job. Thus, someone needs to be

assigned full-time to manage the outsourcer, and the level of that person should be appropri-

ate for the size of the job (a multimillion dollar outsourcing engagement should be handled by

a high level executive). Throughout the relationship, progress should be tracked and measured

against predetermined goals. If you do embark upon an outsourcing design strategy, be sure

to get more information. Many books have been written that provide much more detailed

information on the topic.12 Figure 9-10 summarizes some guidelines for outsourcing.

278 Chapter 9 Moving on to Design

12 For more information on outsourcing, we recommend Lacity, M. and Hirschheim, R., Information Systems
Outsourcing: Myths, Metaphors, and Realities (New York, NY: Wiley, 1993) and Willcocks, L. and Fitzgerald, G., A
Business Guide to Outsourcing Information Technology (London: Business Intelligence, 1994).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Selecting a Design Strategy

Each of the design strategies just discussed has its strengths and weaknesses, and no one

strategy is inherently better than the others. Thus, it is important to understand the

strengths and weaknesses of each strategy and when to use each. Figure 9-11 presents a

summary of the characteristics of each strategy.

Business Need If the business need for the system is common, and technical solutions

already exist in the marketplace that can meet the business need of the system, it makes lit-

tle sense to build a custom application. Packaged systems are good alternatives for common

business needs. A custom alternative will need to be explored when the business need is

unique or has special requirements. Usually if the business need is not critical to the com-

pany, then outsourcing is the best choice—someone outside of the organization can be

responsible for the application development.

In-house Experience If in-house experience exists for all of the functional and technical

needs of the system, it will be easier to build a custom application then if these skills do not

exist. A packaged system may be a better alternative for companies that do not have the

technical skills to build the desired system. For example, a project team that does not have

Web commerce technology skills may want to acquire a Web commerce package that can

Design Strategies 279

Outsourcing Guidelines

• Keep the lines of communication open between you and your outsourcer.

• Define and stabilize requirements before signing a contact.

• View the outsourcing relationship as a partnership.

• Select the vendor, developer or service provider carefully.

• Assign a person to managing the relationship.

• Don’t outsource what you don’t understand.

• Emphasize flexible requirements, long-term relationships and short-term contracts.FIGURE 9-10
Outsourcing Guidelines

Value-added contracts can be quite rare—and very dra-
matic. They exist when a vendor is paid a percentage of
revenue generated by the new system, which reduces the
up-front fee, sometimes to zero. The City of Chicago and
EDS (a large consulting and systems integration firm)
agreed to reengineer the process by which the city col-
lects the fines on 3.6 million parking tickets per year, and
thus signed a landmark deal of this type three years ago.
At the time, because of clogged courts and administrative
problems, the city collected on only about 25 percent of
all tickets issued. It had a $60 million backlog of uncol-
lected tickets.

Dallas-based EDS invested an estimated $25 mil-
lion in consulting and new systems in exchange for the
right to up to 26 percent of the uncollected fines, a base

processing fee for new tickets, and software rights. To
date, EDS has taken in well over $50 million on the
deal, analysts say. The deal has come under some fire
from various quarters as an example of an organization
giving away too much in a risk/reward-sharing deal. City
officials, however, counter that the city has pulled in
about $45 million in previously uncollected fines and
has improved its collection rate to 65 percent with little
up-front investment.

Source: Datamation, February 1, 1995.

Question:

1. Do you think the City of Chicago got a good deal
from this arrangement? Why or why not?

9-B EDS Value-Added ContractCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

be installed without many changes. Outsourcing is a good way to bring in outside experi-

ence that is missing in-house so that skilled people are in charge of building the system.

Project Skills The skills that are applied during projects are either technical (e.g., Java,

SQL) or functional (e.g., electronic commerce), and different design alternatives are more

viable, depending on how important the skills are to the company’s strategy. For example,

if certain functional and technical expertise that relate to Internet sales applications and

Web commerce application development are important to the organization because it

expects the Internet to play an important role in its sales over time, then it makes sense for

the company to develop Web commerce applications in-house, using company employees

so that the skills can be developed and improved. On the other hand, some skills like net-

work security may be either beyond the technical expertise of employees or not of interest

to the company’s strategists—it is just an operational issue that needs to be addressed. In

this case, packaged systems or outsourcing should be considered so internal employees can

focus on other business-critical applications and skills.

Project Management Custom applications require excellent project management and a

proven methodology. There are so many things like funding obstacles, staffing hold-ups,

and overly demanding business users that can push a project off-track. Therefore, the pro-

ject team should choose to develop a custom application only if they are certain that the

underlying coordination and control mechanisms will be in place. Packaged and outsourc-

ing alternatives also need to be managed; however, they are more shielded from internal

obstacles because the external parties have their own objectives and priorities (e.g., it may

be easier for an outside contractor to say “no” to a user than a person within the company).

The latter alternatives typically have their own methodologies, which can benefit compa-

nies that do not have an appropriate methodology to use.

Timeframe When time is a factor, the project team should probably start looking for a

system that is already built and tested. In this way, the company will have a good idea of

how long the package will take to put in place and what the final result will contain. The

timeframe for custom applications is hard to pin down, especially when you consider how

many projects end up missing important deadlines. If you must choose the custom devel-

opment alternative, and the timeframe is very short, consider using techniques like time-

boxing to manage this problem. The time to produce a system using outsourcing really

280 Chapter 9 Moving on to Design

Use Custom Use a Packaged Use Outsourcing
Development When… System When… When…

Business Need The business need is unique. The business need is common. The business need is not
core to the business.

In-house Experience In-house functional and In-house functional In-house functional or technical
technical experience exists. experience exists. experience does not exist.

Project Skills There is a desire to The skills are not strategic. The decision to outsource is a
build in-house skills. strategic decision.

Project Management The project has a highly The project has a project The project has a highly skilled
skilled project manager manager who can coordinate project manager at the level
and a proven methodology. vendor’s efforts. of the organization that matches

the scope of the outsourcing deal.

Timeframe The timeframe is flexible. The timeframe is short. The timeframe is short or flexible.

FIGURE 9-11 Selecting a Design Strategy

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

depends on the system and the outsourcer’s resources. If a service provider has services in

place that can be used to support the company’s needs, then a business need could be

implemented quickly. Otherwise, an outsourcing solution could take as long as a custom

development initiative.

DEVELOPING THE ACTUAL DESIGN

Once the project team has a good understanding of how well each design strategy fits with

the project’s needs, they must begin to understand exactly how to implement these strate-

gies. For example, what tools and technology would be used if a custom alternative were

selected? What vendors make packaged systems that address the project needs? What ser-

vice providers would be able to build this system if the application were outsourced? This

information can be obtained from people working in the IS department and from recom-

mendations by business users. Or, the project team can contact other companies with sim-

ilar needs and investigate the types of systems that they have put in place. Vendors and

consultants usually are willing to provide information about various tools and solutions in

the form of brochures, product demonstrations, and information seminars. However, be

sure to validate the information you receive from vendors and consultants. After all, they

are trying to make a sale. Therefore, they may “stretch” the capabilities of their tool by only

focusing on the positive aspects of the tool while omitting the tool’s drawbacks.

It is likely that the project team will identify several ways that the system could be con-

structed after weighing the specific design options. For example, the project team may have

found three vendors that make packaged systems that potentially could meet the project’s

needs. Or, the team may be debating over whether to develop a system using Java as a devel-

opment tool and the database management system from Oracle; or to outsource the devel-

opment effort to a consulting firm like Accenture or American Management Systems. Each

alternative will have pros and cons associated with it that need to be considered, and only

one solution can be selected in the end.

Alternative Matrix

An alternative matrix can be used to organize the pros and cons of the design alternatives

so that the best solution will be chosen in the end. This matrix is created using the same

steps as the feasibility analysis, which was presented in Chapter 3. The only difference is

that the alternative matrix combines several feasibility analyses into one matrix so that the

alternatives can be easily compared. The alternative matrix is a grid that contains the tech-

nical, budget, and organizational feasibilities for each system candidate, pros and cons asso-

ciated with adopting each solution, and other information that is helpful when making

comparisons. Sometimes weights are provided for different parts of the matrix to show

when some criteria are more important to the final decision.

Developing the Actual Design 281

Suppose that your university was interested in creating a
new course registration system that can support Web-
based registration. What should the university consider

when determining whether to invest in a custom, pack-
aged, or outsourced system solution?

9-3 Choose a Design StrategyYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

To create the alternative matrix, draw a grid with the alternatives across the top and

different criteria (e.g., feasibilities, pros, cons, and other miscellaneous criteria) along the

side. Next, fill in the grid with detailed descriptions about each alternative. This becomes a

useful document for discussion because it clearly presents the alternatives being reviewed

and comparable characteristics for each one.

Suppose that your company is thinking about implementing a packaged financial sys-

tem like Oracle Financials or Microsoft’s Great Plains, but there is not enough expertise in-

house to be able to create a thorough alternative matrix. This situation is quite

common—often the alternatives for a project are unfamiliar to the project team, so outside

expertise is needed to provide information about the alternatives’ criteria.

One helpful tool is the request for proposals (RFP). An RFP is a document that solicits

proposals to provide the alternative solutions from a vendor, developer, or service provider.

Basically, the RFP explains the system that you are trying to build and the criteria that you

will use to select a system. Vendors then respond by describing what it would mean for

them to be a part of the solution. They communicate the time, cost, and exactly how their

product or services will address the needs of the project.

There is no formal way to write an RFP, but it should include basic information like

the description of the desired system, any special technical needs or circumstances, eval-

uation criteria, instructions for how to respond, and the desired schedule. An RFP can be

a very large document (i.e., hundreds of pages) because companies try to include as

much detail as possible about their needs so that the respondent can be just as detailed

in the solution that would be provided. Thus, RFPs typically are used for large projects

rather than small ones because they take a lot of time to create, and even more time and

effort for vendors, developers, and service providers to develop high quality responses—

only a project with a fairly large price tag would be worth the time and cost to develop a

response for the RFP.

A less effort-intensive tool is a request for information (RFI) that includes the same for-

mat as the RFP. The RFI is shorter and contains less detailed information about a com-

pany’s needs, and it requires general information from respondents that communicates the

basic services that they can provide.

The final step, of course, is to decide which solution to design and implement.

The decision should be made by a combination of business users and technical pro-

fessionals after the issues involved with the different alternatives are well understood.

Once the decision is finalized, the design phase can continue as needed, based on the

selected alternative.

Applying the Concepts at CD Selections

Alec had three different approaches that he could take with the new system: he could

develop the entire system using development resources from CD Selections, he could buy

282 Chapter 9 Moving on to Design

Pretend that you have been assigned the task of selecting
a CASE tool for your class to use for a semester project.
Using the Web or other references resources, select three
CASE tools (e.g., ArgoUML, Poseidon, Rational Rose, or

Visual Paradigm). Create an alternative matrix that can be
used to compare the three software products in a way in
which a selection decision can be made.

9-4 Alternative MatrixYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

a commercial Internet sales packaged software program (or a set of different packages and

integrate them), or he could hire a consulting firm or service provider to create the system.

Immediately, Alec ruled out the third option. Building Internet applications, especially

sales systems, was important to the CD Selections’ business strategy. By outsourcing the

Internet sales system, CD Selections would not develop Internet application development

skills and business skills within the organization.

Instead, Alec decided that a custom development project using the company’s stan-

dard Web development tools would be the best choice for CD Selections. In this way, the

company would be developing critical technical and business skills in-house, and the pro-

ject team would be able to have a high level of flexibility and control over the final prod-

uct. Also, Alec wanted the new Internet sales system to directly interface with the existing

distribution system, and there was a chance that a packaged solution would not be able to

integrate as well into the CD Selections environment.

There was one part of the project that potentially could be handled using packaged

software: the shopping cart portion of the application. Alec realized that a multitude of

programs have been written and are available (at low prices) to handle a customer’s order

transaction over the Web. These programs allow customers to select items for an order

form, input credit card and billing information, and finalize the order transaction. Alec

believed that the project team should at least consider some of these packaged alternatives

so that less time had to be spent writing a program that handled basic Web tasks, and

more time could be devoted to innovative marketing ideas and custom interfaces with the

distribution system.

To help better understand some of the shopping cart programs that were available in

the market and how their adoption could benefit the project, Alec created an alternative

matrix that compared three different shopping cart programs to one another (see Figure

9-12). Although all three alternatives had positive points, Alec saw Alternative B (Web-

Shop) as the best alternative for handling the shopping cart functionality for the new

Internet sales system. WebShop was written in JAVA, the tool that CD Selections selected

as its standard Web development language; the expense was reasonable, with no hidden or

recurring costs; and there was a person in-house who had some positive experience with

the program. Alec made a note to look into acquiring WebShop as the shopping cart pro-

gram for the Internet sales system.

SUMMARY

The design phase contains many steps that guide the project team through planning out

exactly how the system needs to be constructed. The requirements that were identified and

the models that were created in the analysis phase serve as the primary inputs for the design

activities. In object-oriented design, the primary activity is to evolve the analysis models

into design models by optimizing the problem domain information already contained in

the analysis models and adding system environment details to them.

Evolving the Analysis Models into Design Models

When evolving the analysis models into design models, you should first carefully review

the analysis models: activity diagrams, use case descriptions, use case diagrams, CRC

cards, class and object diagrams, sequence diagrams, communication diagrams, and

behavioral state machines. During this review, factoring, refinement, and abstraction

processes can be used to polish the current models. During this polishing, it is possible

that the analysis models may become overly complex. If this occurs, then the models

Summary 283

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

should be partitioned based on the interactivity (message sending) and relationships

(generalization, aggregation, and association) shared among the classes. The more a class

has in common with another class (i.e., the more relationships shared), the more likely

they belong in the same partition.

The second thing to do to evolve the analysis model is to add the system environ-

ment (physical architecture, user interface, and data access and management) informa-

tion to the problem domain information already contained in the model. To accomplish

this and to control the complexity of the models, layers are used. A layer represents an

element of the software architecture of the system. We recommend five different layers

to be used: foundation, physical architecture, human computer interaction, data access

and management, and problem domain. Each layer only supports certain types of

classes (e.g., data access manipulation classes would only be allowed on the data man-

agement layer).

Packages and Package Diagrams

A package is a general UML construct used to represent collaborations, partitions, and lay-

ers. Its primary purpose is to support the logical grouping of other UML constructs

together (e.g., use cases and classes), by the developer and user to simplify and increase the

understandability of a UML diagram. There are instances in which a diagram that contains

only packages is useful. A package diagram contains packages and dependency relation-

ships. A dependency relationship represents the possibility of a modification dependency

existing between two packages (i.e., changes in one package could cause changes in the

dependent package).

Identifying packages and creating a package diagram is accomplished using a five-step

process. The five steps can be summed up as setting the context, clustering similar classes,

placing the clustered classes into a package, identifying dependency relationships among

the packages, and placing the dependency relationship on the package diagram.

284 Chapter 9 Moving on to Design

Alternative 1: Alternative 2: Alternative 3:
Shop-With-Me WebShop Shop-N-Go

Technical • Developed using C: very • Developed using C and JAVA: • Developed using JAVA: would like
Feasibility little C experience in-house would like to develop in-house to develop in-house JAVA skills

JAVA skills
• Orders sent to company • Flexible export features for • Orders saved to a number of

using email files passing order information to file formats
other systems

Economic • $150 initial charge • $700 up front charge, • $200/year
Feasibility no yearly fees

Organizational • Program used by other • Program used by other retail • Brand new application: few
Feasibility retail music companies music companies companies have experience with

Shop-N-Go to date

Other Benefits • Very simple to use • Tom in IS support has had
limited, but positive experience
with this program

• Easy to customize

Other Limitations • The interface is not easily
customized

FIGURE 9-12 Alternative Matrix for Shopping Cart Program

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Key Terms 285

KEY TERMS

A-Kind-Of

Abstract classes

Abstraction

Aggregation

Alternative matrix

Class

Client

Collaboration

Concrete classes

Contract

Controller

Custom development

Customization

Data management layer

Dependency relationship

Design phase

Enterprise resource systems (ERP)

Factoring

Fixed-price contract

Foundation layer

Generalization

Has-Parts

Human computer interaction layer

Layer

Message

Method

Middleware

Model

Model-View-Controller (MVC)

Module

Object wrapper

Outsourcing

Package

Package diagram

Packaged software

Partition

Physical architecture layer

Problem domain layer

Refinement

Request for information

Request for proposals

Server

Smalltalk

Systems integration

Time and arrangements contract

Value-added contract

View

Workaround

Design Strategies

During the design phase, the project team also needs to consider three approaches to cre-

ating the new system, including developing a custom application in-house, buying a pack-

aged system and customizing it, and relying on an external vendor, developer or system

provider to build and/or support the system.

Custom development allows developers to be flexible and creative in the way they solve

business problems, and it builds technical and functional knowledge within the organiza-

tion. But, many companies have a development staff that is already overcommitted to fill-

ing huge backlogs of systems requests, and they just don’t have time to devote to a project

where a system is built from scratch. It can be much more efficient to buy programs that

have been created, tested, and proven, and a packaged system can be bought and installed

in a relatively short period of time, when compared with a custom solution. Workarounds

can be used to meet the needs that are not addressed by the packaged application.

The third design strategy is to outsource the project and pay an external vendor, devel-

oper or service provider to create the system. It can be a good alternative for how to

approach the new system; however, it does not come without costs. However, if a company

decides to leave the creation of a new system in the hands of someone else, the organiza-

tion could compromise confidential information or lose control over future development.

Each of the design strategies discussed above has its strengths and weaknesses, and no

one strategy is inherently better than the others. Thus, it is important to consider such

issues as the uniqueness of business need for the system, the amount of in-house experi-

ence that is available to build the system, and the importance of the project skills to the

company. Also, the existence of good project management and the amount of time avail-

able to develop the application play a role in the selection process.

Developing the Actual Design

Ultimately, the decision must be made regarding the specific type of system that needs to

be designed. An alternative matrix can help make this decision by presenting feasibility

information for several candidate solutions in a way in which they can be compared easily.

Both the Request for Proposal and Request for Information are two ways to gather accu-

rate information regarding the alternatives.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

286 Chapter 9 Moving on to Design

QUESTIONS

1. What is the primary difference between an analysis

model and a design model?

2. What does factoring mean? How is it related to

abstraction and refinement?

3. What is a partition? How does a partition relate to a

collaboration?

4. What is a layer? Name the different layers.

5. What is a package? How are packages related to parti-

tions and layers?

6. What is a dependency relationship? How do you iden-

tify them?

7. What are the five steps for identifying packages and

creating package diagrams?

8. What situations are most appropriate for a custom

development design strategy?

9. What are some problems with using a packaged soft-

ware approach to building a new system? How can

these problems be addressed?

10. Why do companies invest in ERP systems?

11. What are the pros and cons of using a workaround?

12. When is outsourcing considered a good design strat-

egy? When is it not appropriate?

13. What are the differences between the time and

arrangements, fixed-price, and value-added contracts

for outsourcing?

14. How are the alternative matrix and feasibility analysis

related?

15. What is an RFP? How is this different from an RFI?

EXERCISES

A. Based on the functional models you created for exer-

cises E, F, and G in Chapter 6 and the structural model

you created in Exercise K in Chapter 7, draw a package

diagram for the problem domain layer for the dentist

office system.

B. Based on the functional models you created for exer-

cises J and K in Chapter 6 and the structural model

you created in Exercise M in Chapter 7, draw a pack-

age diagram for the problem domain layer for the real

estate system.

C. Based on the functional models you created for exer-

cises L and M in Chapter 6, the structural model you

created in Exercise N in Chapter 7, and the behavioral

models you created in exercises A and B in Chapter 8,

draw a package diagram for the problem domain layer

for the video store system.

D. Based on the functional models you created for exer-

cises N and O in Chapter 6, the structural model you

created in Exercise O in Chapter 7, and the behavioral

models you created in exercises C and D in Chapter 8,

draw a package diagram for the problem domain layer

for the health club membership system.

E. Based on the functional models you created for exer-

cises P and Q in Chapter 6, the structural model you

created in Exercise P in Chapter 7, and the behavioral

models you created in exercises H in Chapter 8, draw

a package diagram for the problem domain layer for

the catering system.

F. Based on the functional models you created for exer-

cises R and S in Chapter 6, the structural model you

created in Exercise Q in Chapter 7, and the behavioral

models you created in exercises I in Chapter 8, draw a

package diagram for the problem domain layer for the

system for the Of-the-Month Club.

G. Based on the functional models you created for exer-

cises T and U in Chapter 6, the structural model you

created in Exercise R in Chapter 7, and the behavioral

models you created in exercises J in Chapter 8, draw a

package diagram for the problem domain layer for the

university library system.

H. Which design strategy would you recommend for the

construction of this system in:

a. Exercise A. Why?

b. Exercise B. Why?

c. Exercise C. Why?

d. Exercise D. Why?

e. Exercise E. Why?

f. Exercise F. Why?

g. Exercise G. Why?

I. Pretend that you are leading a project that will implement

a new course enrollment system for your university. You

are thinking about either using a packaged course enroll-

ment application or outsourcing the job to an external

consultant. Create an outline for a Request for Proposal to

which interested vendors and consultants could respond.

J. Pretend that you and your friends are starting a small

business painting houses in the summertime. You

need to buy a software package that handles the finan-

cial transactions of the business. Create an alternative

matrix that compares three packaged systems (e.g.,

Quicken, MS Money, Quickbooks). Which alternative

appears to be the best choice?

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

MINICASES

Minicases 287

1. Susan, president of MOTO, Inc., a human resources

management firm, is reflecting on the client manage-

ment software system her organization purchased

four years ago. At that time, the firm had just gone

through a major growth spurt, and the mixture of

automated and manual procedures that had been

used to manage client accounts became unwieldy.

Susan and Nancy, her IS department head, researched

and selected the package that is currently used. Susan

had heard about the software at a professional confer-

ence she attended, and at least initially, it worked

fairly well for the firm. Some of their procedures had

to change to fit the package, but they expected that

and were prepared for it.

Since that time, MOTO, Inc. has continued to grow,

not only through an expansion of the client base, but

also through the acquisition of several smaller

employment-related businesses. MOTO, Inc. is a

much different business than it was four years ago.

Along with expanding to offer more diversified

human resource management services, the firm’s sup-

port staff has also expanded. Susan and Nancy are par-

ticularly proud of the IS department they have built

up over the years. Using strong ties with a local uni-

versity, an attractive compensation package, and a

good working environment, the IS department is well-

staffed with competent, innovative people, plus a

steady stream of college interns that keeps the depart-

ment fresh and lively. One of the IS teams pioneered

the use of the Internet to offer MOTO’s services to a

whole new market segment, an experiment that has

proven very successful.

It seems clear that a major change is needed in the

client management software, and Susan has already

begun to plan financially to undertake such a project.

This software is a central part of MOTO’s operations,

and Susan wants to be sure that a quality system is

obtained this time. She knows that the vendor of their

current system has made some revisions and addi-

tions to its product line. There are also a number of

other software vendors who offer products that may

be suitable. Some of these vendors did not exist when

the purchase was made four years ago. Susan is also

considering Nancy’s suggestion that the IS depart-

ment develop a custom software application.

a. Outline the issues that Susan should consider that

would support the development of a custom soft-

ware application in-house.

b. Outline the issues that Susan should consider which

would support the purchase of a software package.

c. Within the context of a systems development pro-

ject, when should the decision of “make-versus-

buy” be made? How should Susan proceed? Explain

your answer.

2. Refer to Minicase 1 in Chapter 7. After completing all

of the analysis models (both the As-Is and To-Be

models) for West Star Marinas, the Director of Oper-

ations finally understood why it was important to

understand the As-Is system before delving into the

development of the To-Be system. However, you now

tell him that the To-Be models are only the problem

domain portion of the design. To say the least, he is

now very confused. After explaining to him the

advantages of using a layered approach to developing

the system, he informs you that “I don’t care about

reusability or maintenance. I only want the system to

be implemented as soon as possible. You IS types are

always trying to pull a fast one on the users. Just get

the system completed.”

What is your response to the Director of Opera-

tions? Do you jump into implementation as he seems

to want? What do you do next?

3. Refer to the analysis models that you created for Profes-

sional and Scientific Staff Management (PSSM) for

Minicase 2 in Chapter 6 and for Minicase 1 in Chapter 8.

a. Add packages to your use-case diagram to simplify it.

b. Use the communication diagram to identify logical

partitions in your class diagram. Add packages to

the diagram to represent the partitions.

4. Refer to the analysis models that you created for Hol-

iday Travel Vehicles for Minicase 2 in Chapter 7 and

for Minicase 2 in Chapter 8.

a. Add packages to your use-case diagram to simplify it.

b. Use the communication diagram to identify logical

partitions in your class diagram. Add packages to

the diagram to represent the partitions.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

The most important step of the design phase is designing the individual classes and methods.

Object-oriented systems can be quite complex, so analysts need to create instructions and guide-

lines for programmers that clearly describe what the system must do. This chapter presents a set

of criteria, activities, and techniques used to design classes and methods. Together they are used

to ensure the object-oriented design communicates how the system needs to be coded.

OBJECTIVES

■ Become familiar with coupling, cohesion, and connascence.
■ Be able to specify, restructure, and optimize object designs.
■ Be able to identify the reuse of predefined classes, libraries, frameworks, and components.
■ Be able to specify constraints and contracts.
■ Be able to create a method specification.

CHAPTER OUTLINE

INTRODUCTION

Class and Method design is where all of the work actually gets done during the design

phase. No matter which layer you are focusing on, the classes, which will be used to create

the system objects, must be designed. Some people believe that with reusable class libraries

and off-the-shelf components, this type of low-level, or detailed, design is a waste of time

and that we should jump immediately into the “real” work: coding the system. However, if

Introduction

Revisiting the Basic Characteristics of

Object-Orientation

Classes, Objects, Methods, and Messages

Encapsulation and Information Hiding

Polymorphism and Dynamic Binding

Inheritance

Design Criteria

Coupling

Cohesion

Connascence

Object Design Activities

Additional Specification

Identifying Opportunities for Reuse

Restructuring the Design

Optimizing the Design

Mapping Problem Domain Classes to

Implementation Languages

Constraints and Contracts

Types of Constraints

Elements of a Contract

Method Specification

General Information

Events

Message Passing

Algorithm Specification

Applying the Concepts at CD Selections

Summary

C H A P T E R 1 0

Class and Method Design

288

C
op

yr
ig

ht
ed

 M
at

er
ia

l

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

the past shows us anything, it shows that low-level or detailed design is critical despite the

use of libraries and components. Detailed design is still very important for two reasons.

First, even preexisting classes and components needs to be understood, organized, and

pieced together. Second, it is still common for the project team to have to write some code

(if not all) and produce original classes that support the application logic of the system.

Jumping right into coding will guarantee results that can be disastrous. For example,

even though the use of layers can simplify the individual classes, they can increase the com-

plexity of the interactions between them. As such, if the classes are not designed carefully,

the resulting system can be very inefficient. Or worse, the instances of the classes (i.e., the

objects) will not be capable of communicating with each other, which, of course, will cause

the system not to work properly.

Furthermore, in an object-oriented system, changes can take place at different levels of

abstraction. These levels include Variable, Method, Class/Object, Cluster,1 Library, and/or

Application/System levels (see Figure 10-1). The changes that take place at one level can

impact other levels (e.g., changes to a class can affect the cluster level, which can affect both

the system level and the library level, which in turn can cause changes back down at the

class level). Finally, changes can be occurring at different levels at the same time.

The good news is that the detailed design of the individual classes and methods is fairly

straightforward and the interactions among the objects on the problem domain layer have

been designed, in some detail, in the analysis phase (see Chapters 6 through 8). As far as

the other layers go (system architecture, human computer interaction, and data manage-

ment), they will be highly dependent on the problem domain layer. Therefore, if we get the

problem domain classes designed correctly, the design of the classes on the other layers will

fall into place, relatively speaking.

That being said, it has been our experience that many project teams are much too

quick at jumping into writing code for the classes without first designing them. Some of

Introduction 289

Application/System

Cluster Library

Class/Object

Variable Method
FIGURE 10-1
Levels of Abstraction

in Object-Oriented

Systems
Source: Adapted from David P. Tegarden, Steven D. Sheetz, and David E.Monarchi, “A Software Complexity Model of

Object-Oriented Systems,” Decision Support Systems 13 (March 1995): 241–262.

1 A cluster is a group of collaborating objects. Other names for a cluster include package, partition, pattern, sub-
ject, and subsystem.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

this has been caused by the fact that object-oriented systems analysis and design has

evolved from object-oriented programming. Until recently there has been a general lack of

accepted guidelines on how to design and develop effective object-oriented systems. How-

ever, with the acceptance of UML as a standard object notation, standardized approaches

based on work of many object methodologists have begun to emerge.2

In this chapter, we begin by revisiting the principles of object-orientation. Next, we

present a set of useful design criteria and activities that are applicable across any layer for

class and method design. Finally, we present a set of techniques that are useful to design

methods: contracts and method specifications.

REVISITING THE BASIC CHARACTERISTICS OF OBJECT-ORIENTATION

As pointed out in Chapter 2, object-oriented systems can be traced back to the Simula and

Smalltalk programming languages. However, until the increase in processor power and the

decrease in processor cost that occurred in the 1980s, object-oriented approaches were not

practical. In this section, we review the basic characteristics of object-orientation.

Classes, Objects, Methods, and Messages

The basic building block of the system is the object. Objects are instances of classes that we

use as templates to define objects. A class defines both the data and processes that each

object contains. Each object has attributes that describe data about the object. Objects have

state, which is defined by the value of its attributes and its relationships with other objects

at a particular point in time. And, each object has methods, which specify what processes

the object can perform. In order to get an object to perform a method (e.g., to delete itself),

a message is sent to the object. A message is essentially a function or procedure call from

one object to another object.

Encapsulation and Information Hiding

Encapsulation is the mechanism that combines the processes and data into a single object.

Information hiding suggests only the information required to use an object be available out-

side the object. Exactly how the object stores data or performs methods is not relevant, as

long as the object functions correctly. All that is required to use an object is the set of meth-

ods and the messages needed to be sent to trigger them. The only communication between

objects should be through an object’s methods. The fact that we can use an object by send-

ing a message that calls methods is the key to reusability since it shields the internal work-

ings of the object from changes in the outside system, and it keeps the system from being

affected when changes are made to an object.

Polymorphism and Dynamic Binding

Polymorphism means having the ability to take several forms. By supporting polymor-

phism, object-oriented systems can send the same message to a set of objects, which can be

interpreted differently by different classes of objects. And, based on encapsulation and

information hiding, an object does not have to be concerned with how something is done

when using other objects. It simply sends a message to an object and that object determines

how to interpret the message. This is accomplished through the use of dynamic binding.

290 Chapter 10 Class and Method Design

2 For example, OPEN (I. Graham, B. Henderson-Seller, and H. Yanoussi, The Open Process Specification [Reading,
MA: Addison-Wesley, 1997]) and RUP (P. Kruchten, The Rational Unified Process: An Introduction, 2nd Ed. [Read-
ing, MA: Addison-Wesley, 2000]).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Dynamic binding refers to the ability of object-oriented systems to defer the data typing

of objects to run time. For example, imagine that you have an array of type employee that

contains instances of hourly employees and salaried employees. Both of these types of

employees implement a “compute pay” method. An object can send the message to each

instance contained in the array to compute the pay for that individual instance. Depending

on whether the instance is an hourly employee or a salaried employee, a different method

would be executed. The specific method is chosen at run time. With this ability, individual

classes are easier to understand. However, the specific level of support for polymorphism and

dynamic binding is language specific. Most object-oriented programming languages support

dynamic binding of methods, and some support dynamic binding of attributes. As such, it is

important to know what object-oriented programming language is going to be used.

But polymorphism can be a double-edged sword. Through the use of dynamic bind-

ing, there is no way to know before run time which specific object will be asked to execute

its method. In effect, there is a decision made by the system that is not coded anywhere.3

Furthermore, because all of these decisions are made at run time, it is possible to send a

message to an object that it does not understand (i.e., the object does not have a corre-

sponding method). This can cause a run time error that, if not programmed to handle cor-

rectly, can cause the system to abort.

Finally, if the methods are not semantically consistent, the developer cannot assume

that all methods with the same name will perform the same generic operation. For exam-

ple, imagine that you have an array of type person that contains instances of employees and

customers. Both of these implement a “compute pay” method. An object can send the mes-

sage to each instance contained in the array to execute the compute pay method for that

individual instance. In the case of an instance of employee, the compute pay method com-

putes the amount that the employee is owed by the firm, while the compute pay method

associated with instances of customers computes the amount owed the firm by the cus-

tomer. Depending on whether the instance is an employee or a customer, a different mean-

ing is associated with the method. As such, the semantics of each method must be

determined individually. This substantially increases the difficulty of understanding indi-

vidual objects. The key to controlling the difficulty of understanding object-oriented sys-

tems when using polymorphism is to ensure that all methods with the same name

implement that same generic operation (i.e., they are semantically consistent).

Inheritance

Inheritance allows developers to define classes incrementally by reusing classes defined pre-

viously as the basis for new classes. Although we could define each class separately, it might

be simpler to define one general superclass that contains the data and methods needed by

the subclasses, and then have these classes inherit the properties of the superclass. Sub-

classes inherit the appropriate attributes and methods from the superclasses “above” them.

Inheritance makes it simpler to define classes.

There have been many different types of inheritance mechanisms associated with OO

systems.4 The most common inheritance mechanisms include different forms of single and

multiple inheritance. Single inheritance allows a subclass to have only a single parent class.

Currently, all object-oriented methodologies, databases, and programming languages per-

mit extending the definition of the superclass through single inheritance.

Revisiting the Basic Characteristics of Object-Orientation 291

3 From a practical perspective, there is an implied case statement. The system chooses the method based on the
type of object being asked to execute it.
4 See, for example, M. Lenzerini, D. Nardi, and M. Simi, Inheritance Hierarchies in Knowledge Representation and
Programming Languages (New York: Wiley, 1991).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Some object-oriented methodologies, databases, and programming languages allow a

subclass to redefine some or all of the attributes and/or methods of its superclass. With

redefinition capabilities, it is possible to introduce an inheritance conflict (i.e., an attribute

[or method] of a subclass with the same name as an attribute [or method] of a superclass).

For example in Figure 10-2, Doctor is a subclass of Employee. Both have methods named

computePay(). This causes an inheritance conflict. Furthermore, when the definition of a

superclass is modified, all of its subclasses are affected. This may introduce additional

inheritance conflicts in one (or more) of the superclass’s subclasses. For example in Figure

10-2, Employee could be modified to include an additional method, updateSchedule().

This would add another inheritance conflict between Employee and Doctor. Therefore,

developers must be aware of the effects of the modification not only in the superclass, but

also in each subclass that inherits the modification.

Finally, through redefinition capabilities, it is possible for a programmer to arbitrarily

cancel the inheritance of methods by placing stubs5 in the subclass that will override the

definition of the inherited method. If the cancellation of methods is necessary for the cor-

rect definition of the subclass, then it is likely that the subclass has been misclassified (i.e.,

it is inheriting from the wrong superclass).

As you can see, from a design perspective, inheritance conflicts and redefinition can

cause all kinds of problems with interpreting the final design and implementation.6 How-

ever, most inheritance conflicts are due to poor classification of the subclass in the inheri-

tance hierarchy (i.e., the generalization A-Kind-Of semantics are violated), or the actual

inheritance mechanism violates the encapsulation principle (i.e., subclasses are capable of

directly addressing the attributes or methods of a superclass). To address these issues, Jim

Rumbaugh, and his colleagues, suggested the following guidelines:7

■ Do not redefine query operations.

■ Methods that redefine inherited ones should only restrict the semantics of the

inherited ones.

■ The underlying semantics of the inherited method should never be changed.

■ The signature (argument list) of the inherited method

should never be changed.

However, many existing object-oriented programming languages

violate these guidelines. When it comes to implementing the

design, different object-oriented programming languages address

inheritance conflicts differently. Therefore, it is important at this

point in the development of the system to know what the pro-

gramming language that you are going to use supports.

When considering the interaction of inheritance with poly-

morphism and dynamic binding, object-oriented systems provide

the developer with a very powerful, but dangerous, set of tools.

Depending on the object-oriented programming language used,

this interaction can allow the same object to be associated with dif-

ferent classes at different times. For example, salaried employee,

such as a doctor, can be treated as a generic employee, or any of its

292 Chapter 10 Class and Method Design

Employee

+computePay()

Doctor

+computePay()
+updateSchedule()

FIGURE 10-2
Single Inheritance

Conflicts

5 In this case, a stub is simply the minimal definition of a method to prevent syntax errors occurring.
6 For more information, see Ronald J. Brachman, “I Lied about the Trees Or, Defaults and Definitions in Knowl-
edge Representation,” AI Magazine, 5(3) (Fall 1985), pp. 80-93.
7 J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-Oriented Modeling and Design (Engle-
wood Cliffs, NJ: Prentice Hall, 1991).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

direct and indirect superclasses. Therefore, depending on whether static or dynamic binding

is supported, the same object may execute different implementations of the same method at

different times. Or, if the method only is defined with the salaried employee class, and it is

currently treated as a generic employee, the instance may cause a run time error to occur.8 As

stated previously, it is important to know what object-oriented programming language is

going to be used so that these kinds of issues can be solved with the design, instead of the

implementation, of the class.

With multiple inheritance, a subclass may inherit from more than one superclass. In

this situation, the types of inheritance conflicts are multiplied. In addition to the possibil-

ity of having an inheritance conflict between the subclass and one (or more) of its super-

classes, it is now possible to have conflicts between two (or more) superclasses. In this latter

case, there are three different types of additional inheritance conflicts that can occur:

1. Two inherited attributes (or methods) have the same name and semantics.

2. Two inherited attributes (or methods) have different names but with identical

semantics (i.e., they are synonyms).

3. Two inherited attributes (or methods) have the same name but with different seman-

tics (i.e., they are homonyms). This also violates the proper use of polymorphism.

For example, in Figure 10-3, Robot-Employee is a subclass of both Employee and Robot.

In this case, Employee and Robot conflict with the attribute name. Which one should Robot-

Employee inherit? Because they are the same, semantically speaking, does it really matter? It

is also possible that Employee and Robot could have a semantic conflict on the classification

and type attributes if they are synonyms. Practically speaking, the only way to prevent this sit-

uation is for the developer to catch it during the design of the subclass. Finally, what if the

runningTime attributes are homonyms? In the case Employee objects, the runningTime

attribute stores the employee’s time running a mile, while the runningTime attribute for

Robot objects store the average time between checkups. Should Robot-Employee inherit both

of them? It really depends on whether the robot employees can run the mile or not. With the

potential for these additional types of conflicts, there is a risk of decreasing the understand-

ability in an object-oriented system, instead of increasing it, through the use of multiple

inheritance. As such, great care should be taken when using multiple inheritance.

Revisiting the Basic Characteristics of Object-Orientation 293

Employee

-name
-classification
-runningTime

Robot

-name
-type
-runningTime

Robot-EmployeeFIGURE 10-3
Additional Inheritance

Conflicts with Multiple

Inheritance

8 This happens with novices quite regularly when using C++.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

DESIGN CRITERIA

When considering the design of an object-oriented system, there is a set of criteria that can

be used to determine whether the design is a good one or a bad one. According to Coad and

Yourdon,9 “A good design is one that balances trade-offs to minimize the total cost of the

system over its entire lifetime.” These criteria include coupling, cohesion, and connascence.

Coupling

Coupling refers to how interdependent or interrelated the modules (classes, objects, and

methods) are in a system. The higher the interdependency, the more likely changes in

part of a design can cause changes to be required in other parts of the design. For object-

oriented systems, Coad and Yourdon10 identified two types of coupling to consider:

interaction and inheritance.

Interaction coupling deals with the coupling among methods and objects through mes-

sage passing. Lieberherr and Holland put forth the Law of Demeter as a guideline to mini-

mize this type of coupling.11 Essentially, the law minimizes the number of objects that can

receive messages from a given object. The law states that an object should only send mes-

sages to one of the following: itself, an object that is contained in an attribute of the object

(or one of its superclasses), an object that is passed as a parameter to the method, an object

that is created by the method, or an object that is stored in a global variable. In each case,

interaction coupling is increased. For example, the coupling increases between the objects

if the calling method passes attributes to the called method, or if the calling method

depends on the value being returned by the called method.

There are six types of interaction coupling, each falling on different parts of a good-to-

bad continuum. They range from no direct coupling (Good) up to content coupling (Bad).

294 Chapter 10 Class and Method Design

Meilir Page-Jones, through his consulting company, iden-
tified a set of abuses of inheritance. In some cases, these
abuses led to lengthy and bloody disputes, gruesome
implementations, and in one case, it led to the destruction
of the development team. In all cases, the error was in not
enforcing a generalization (A-Kind-Of) semantics. In one
case, the inheritance hierarchy was inverted: BoardMem-
ber was a superclass of Manager which was a superclass
of Employee. However, in this case, an Employee is NOT
A-Kind-Of Manager which is NOT A-Kind-Of BoardMem-
ber. In fact, the opposite was true. However, if you think of
an Organization Chart, a BoardMember is “super” to a
Manager, which is “super” to an Employee. In another

example, the client’s firm attempted to use inheritance to
model a membership idea (e.g., Student is a member of a
club). However, the club should have had an attribute that
contained the student members. In the other examples,
inheritance was used to implement an association rela-
tionship and an aggregation relationship.

Source: Meilir Page-Jones, Fundamentals of Object-Oriented Design in

UML (Reading, MA: Addison-Wesley, 2000).

Question:

1. As an analyst, how can you attempt to avoid these
types of inheritance abuses?

10-A Inheritance AbusesCONCEPTS

IN ACTION

9 Peter Coad and Edward Yourdon, Object-Oriented Design (Englewood Cliffs, NJ: Yourdon Press, 1991), p. 128.
10 Ibid.
11 Karl J. Lieberherr and Ian M.Holland, “Assuring Good Style for Object-Oriented Programs,” IEEE Software, 6
(5) (September, 1989), pp. 38-48 and Karl J. Lieberherr, Adaptive Object-Oriented Software: The Demeter Method
with Propagation Patterns (Boston, MA: PWS Publishing, 1996).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Figure 10-4 presents the different types of interaction coupling. In general, interaction cou-

pling should be minimized. The one possible exception is that non–problem domain classes

must be coupled to their corresponding problem domain classes. For example, a report

object (on the human computer interaction layer) that displays the contents of an employee

object (on the problem domain layer) will be dependent on the employee object. In this case,

for optimization purposes, the report class may be even content or pathologically coupled

to the employee class. However, problem domain classes should never be coupled to

non–problem domain classes.

Inheritance coupling, as its name implies, deals with how tightly coupled the classes are

in an inheritance hierarchy. Most authors tend to say simply that this type of coupling is

desirable. However, depending on the issues raised previously with inheritance—inheri-

tance conflicts, redefinition capabilities, and dynamic binding—a high level of inheritance

coupling may not be a good thing. For example, should a method defined in a subclass be

allowed to call a method defined in one of its superclasses? Or, should a method defined in

a subclass refer to an attribute defined in one of its superclasses? Or, even more confusing,

can a method defined in an abstract superclass depend on its subclasses to define a method

or attribute on which it is dependent? Depending on the object-oriented programming

language being used, all of these options are possible.

As Snyder has pointed out, most problems with inheritance is the ability within the

object-oriented programming languages to violate the encapsulation and information hid-

ing principles.12 Therefore again, knowledge of which object-oriented programming lan-

guage is to be used is crucial. From a design perspective, the developer will need to optimize

Design Criteria 295

Good No Direct Coupling The methods do not relate to one another; that is, they do
not call one another.

Data The calling method passes a variable to the called method.
If the variable is composite, (i.e., an object), the entire
object is used by the called method to perform its function.

Stamp The calling method passes a composite variable (i.e., an
object) to the called method, but the called method only
uses a portion of the object to perform its function.

Control The calling method passes a control variable whose value
will control the execution of the called method.

Common or Global The methods refer to a “global data area” that is outside the
individual objects.

Bad Content or Pathological A method of one object refers to the inside (hidden parts) of
another object. This violates the principles of encapsulation
and information hiding. However, C++ allows this to take
place through the use of “friends.”

Source: These types were adapted from Page-Jones, The Practical Guide to Structured Systems Design, 2nd Ed,

Englewood Cliffs, NJ: Yardon Press, 1988; and Glenford Myers, Composite/Structured Design. New York: Van Nos-

trand Reinhold, 1978.

Level Type Description

FIGURE 10-4

Types of Interaction

Coupling

12 Alan Snyder, “Encapsulation and Inheritance in Object-Oriented Programming Languages,” in: N. Meyrowitz,
Ed., OOPSLA ‘86 Conference Proceedings, ACM SigPlan Notices, 21 (11) (November 1986) and Alan Snyder,
“Inheritance and the Development of Encapsulated Software Components,” in: B. Shriver and P. Wegner, Eds.,
Research Directions in Object-Oriented Programming (Cambridge, MA: MIT Press, 1987).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

the trade-offs of violating the encapsulation and information hiding principles and

increasing the desirable coupling between subclasses and its superclasses. The best way to

solve this conundrum is to ensure that inheritance is used only to support generalization/

specialization (A-Kind-Of) semantics and the principle of substitutability (see Chapter 7).

All other uses should be avoided.

Cohesion

Cohesion refers to how single-minded a module (class, object, or method) is within a system. A

class or object should only represent one thing, and a method should only solve a single task.

Three general types of cohesion: method, class, and generalization/specialization, have been

identified by Coad and Yourdon13 for object-oriented systems. Each of these is described below.

Method cohesion addresses the cohesion within an individual method (i.e., how single-

minded is a method). Methods should do one and only one thing. A method that actually

performs multiple functions is more difficult to understand than one that only performs a

single function. There are seven types of method cohesion that have been identified (see

Figure 10-5). They range from functional cohesion (Good) down to coincidental cohesion

(Bad). In general, method cohesion should be maximized.

296 Chapter 10 Class and Method Design

Good Functional A method performs a single problem-related task (e.g.,
Calculate current GPA).

Sequential The method combines two functions in which the output
from the first one is used as the input to the second one
(e.g., format and validate current GPA).

Communicational The method combines two functions that use the same
attributes to execute (e.g., calculate current and
cumulative GPA).

Procedural The method supports multiple weakly related functions. For
example, the method could calculate student GPA, print
student record, calculate cumulative GPA, and print
cumulative GPA.

Temporal or Classical The method supports multiple related functions in time
(e.g., initialize all attributes).

Logical The method supports multiple related functions, but the
choice of the specific function is chosen based on a control
variable that is passed into the method. For example, the
called method could open a checking account, open a sav-
ings account, or calculate a loan, depending on the message
that is send by its calling method.

Bad Coincidental The purpose of the method cannot be defined or it performs
multiple functions that are unrelated to one another. For
example, the method could update customer records, calcu-
late loan payments, print exception reports, and analyze
competitor pricing structure.

Source: These types were adapted from Page-Jones, The Practical Guide to Structured Systems and Myers

Composite/Structured Design.

Level Type Description

FIGURE 10-5

Types of Method

Cohesion

13 Coad and Yourdon, Object-Oriented Design.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Class cohesion is the level of cohesion among the attributes and methods of a class (i.e.,

how single-minded is a class). A class should only represent one thing, such as an employee,

a department, or an order. All attributes and methods contained in a class should be required

for the class to represent the thing. For example, an employee class should have attributes that

deal with a social security number, last name, first names, middle initial, addresses, and ben-

efits, but it should not have attributes like door, engine, or hood. Furthermore, there should

be no attributes or methods that are never used. In other words, a class should have only the

attributes and methods necessary to fully define instances for the problem at hand. In this

case, we have ideal class cohesion. Glenford Meyers suggested that a cohesive class14 should:

■ contain multiple methods that are visible outside of the class and that each visible

method only performs a single function (i.e., it has functional cohesion),

■ have methods that only refer to attributes or other methods defined with the class

or its superclass(es), and

■ not have any control-flow couplings between its methods.

Page-Jones15 has identified three less than desirable types of class cohesion: mixed-

instance, mixed-domain, and mixed-role (see Figure 10-6). An individual class can have a

mixture of any of the three types.

Generalization/specialization cohesion addresses the sensibility of the inheritance hier-

archy. How are the classes in the inheritance hierarchy related? Are the classes related

through a generalization/specialization (A-Kind-Of) semantics? Or, are they related via

some association, aggregation, or membership type of relationship that was created for

simple reuse purposes? Recall, all of the issues raised previously on the use of inheritance.

Highly cohesive inheritance hierarchies only should support the semantics of generaliza-

tion and specialization (A-Kind-Of) and the principle of substitutability.

Design Criteria 297

Good Ideal The class has none of the mixed cohesions.

Mixed-Role The class has one or more attributes that relate objects of
the class to other objects on the same layer (e.g., the
problem domain layer), but the attribute(s) have nothing to
do with the underlying semantics of the class.

Mixed-Domain The class has one or more attributes that relate objects of
the class to other objects on a different layer. As such,
they have nothing to do with the underlying semantics of
the thing that the class represents. In these cases, the
offending attribute(s) belongs in another class located on
one of the other layers. For example, a port attribute located
in a problem domain class should be in a system architec-
ture class that is related to the problem domain class.

Worse Mixed-Instance The class represents two different types of objects. The class
should be decomposed into two separate classes. Typically,
different instances only use a portion of the full definition of
the class.

Source: Page-Jones, Fundamentals of Object-Oriented Design in UML.

Level Type Description

FIGURE 10-6

Types of Class

Cohesion

14 We have adapted his informational-strength module criteria from structured design to object-oriented design.
(see Glenford J. Myers, Composite/Structured Design [New York, NY: Van Nostrand Reinhold, 1978]).
15 See Meilir Page-Jones, Fundamentals of Object-Oriented Design in UML (Reading, MA: Addison-Wesley, 2000).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Connascence

Connascence16 generalizes the ideas of cohesion and coupling, and it combines them

with the arguments for encapsulation. To accomplish this, three levels of encapsulation

have been identified. Level-0 encapsulation refers to the amount of encapsulation real-

ized in an individual line of code, Level-1 encapsulation is the level of encapsulation

attained by combining lines of code into a method, and Level-2 encapsulation is

achieved by creating classes that contain both methods and attributes. Method cohe-

sion and interaction coupling primarily address level-1 encapsulation. Class cohesion,

generalization/specialization cohesion, and inheritance coupling only address level-2

encapsulation. Connascence, as a generalization of cohesion and coupling, addresses

both level-1 and level-2 encapsulation.

But what exactly is connascence? Connascence literally means to be born together.

From an object-oriented design perspective, it really means that two modules (classes or

methods) are so intertwined, that if you make a change in one, it is likely that a change in

the other will be required. On the surface, this is very similar to coupling, and as such

should be minimized. However, when you combine it with the encapsulation levels, it is not

quite as simple as that. In this case, you want to (1) minimize overall connascence by elim-

inating any unnecessary connascence throughout the system, (2) minimize connascence

across any encapsulation boundaries, such as method boundaries and class boundaries,

and (3) maximize connascence within any encapsulation boundary.

Based on these guidelines, a subclass should never directly access any hidden

attribute or method of a superclass (i.e., a subclass should not have special rights to the

properties of its superclass(es)). If direct access to the non-visible attributes and meth-

ods of a superclass by its subclass is allowed, which is permitted in most object-oriented

programming languages, and a modification to the superclass is made, then due to the

connascence between the subclass and its superclass, it is likely that a modification to the

subclass also will be required. In other words, the subclass has access to something across

an encapsulation boundary (the class boundary between the subclass and the super-

class). Practically speaking, you should maximize the cohesion (connascence) within an

encapsulation boundary and minimize the coupling (connascence) between the encap-

sulation boundaries. There are many possible types of connascence. Figure 10-7

describes five of the types.

OBJECT DESIGN ACTIVITIES

The design activities for classes and methods are really an extension of the analysis and evo-

lution activities presented previously (see Chapters 6 through 9). In this case, we expand

the descriptions of the partitions, layers, and classes. Practically speaking, the expanded

descriptions are created through the activities that take place during the detailed design of

the classes and methods. As such, we limit this discussion to the detailed design of classes

and methods. The activities used to design classes and methods include additional specifi-

cation of the current model, identifying opportunities for reuse, restructuring the design,

optimizing the design, and finally, mapping the problem domain classes to an implemen-

tation language. Of course, any changes made to a class on one layer can cause the classes

on the other layers that are coupled to it to be modified also. The object design activities

are described in this section.

298 Chapter 10 Class and Method Design

16 See Meilir Page-Jones, “Comparing Techniques by Means of Encapsulation and Connascence,” Communica-
tions of the ACM, 35 (9) (September 1992), pp. 147–151.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Additional Specification

At this point in the development of the system, it is crucial to review the current set of

structural and behavioral models.17 First, we should ensure that the classes on the problem

domain layer are both necessary and sufficient to solve the underlying problem. To do this,

we need to be sure that there are no missing attributes or methods and no extra or unused

attributes or methods in each class. Furthermore, are there any missing or extra classes? If

we have done our job well during the analysis phase, there will be few, if any, attributes or

methods to add to the models. However, it is always better to be safe than sorry.

Second, we need to finalize the visibility (hidden or visible) of the attributes and meth-

ods in each class. Depending on the object-oriented programming language used, this

could be predetermined (e.g., in Smalltalk attributes are hidden and methods are visible18).

Third, we need to decide on the signature of every method in every class. The signa-

ture of a method comprises three parts: the name of the method, the parameters or argu-

ments that must be passed to the method, and the type of value that the method will return

to the calling method.

Fourth, we need to define any constraints that must be preserved by the objects (e.g., an

attribute of an object that can only have values in a certain range). There are three different

types of constraints: pre-conditions, post-conditions, and invariants. These are captured in

the form of contracts (described later in this chapter) and assertions added to CRC cards

and class diagrams. We also must decide how to handle a violation of a constraint. Should

the system simply abort? Should the system automatically undo the change that caused the

violation? Should the system let the end user determine the approach to correct the viola-

tion? In other words, the designer must design the errors that the system is expected to han-

dle. It is best to not leave these types of problems for the programmer to solve. Violations of

a constraint are known as exceptions in languages, such as C++ and Java.

Object Design Activities 299

Name If a method refers to an attribute, it is tied to the name of the attribute. If the
attribute’s name changes, the content of the method will have to change.

Type or Class If a class has an attribute of type A, it is tied to the type of the attribute. If the type
of the attribute changes, the attribute declaration will have to change.

Convention A class has an attribute in which a range of values has a semantic meaning (e.g.,
account numbers whose values range from 1000 to 1999 are assets). If the range
would change, then every method that used the attribute would have
to be modified.

Algorithm Two different methods of a class are dependent on the same algorithm to
execute correctly (e.g., insert an element into an array and find an element in
the same array). If the underlying algorithm would change, then the insert and
find methods would also have to change.

Position The order of the code in a method or the order of the arguments to a method is
critical for the method to execute correctly. If either is wrong, then the method
will, at least, not function correctly.

Source: Page-Jones, “Comparing Techniques by Means of Encapsulation and Connascence” and Page-Jones,

Fundamentals of Object-Oriented Design in UML.

Type Description

FIGURE 10-7

Types of Connascence

17 I know, we have mentioned this before. However, you cannot overemphasize the importance of constantly
reviewing the evolving design.
18 By default, most object-oriented analysis and design approaches assume Smalltalk’s approach.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

The additional specification activities also are applicable to the other layers: data man-

agement Identifying Opportunities for Reuse section (Chapter 11), human computer inter-

action (Chapter 12), and physical architecture (Chapter 13).

Identifying Opportunities for Reuse

Previously, we looked at possibly utilizing reuse in our structural models in the analysis

phase through the use of patterns (see Chapter 7). In the design phase, in addition to using

analysis patterns, there are opportunities for using design patterns, frameworks, libraries,

and components. The opportunities will vary depending on which layer is being reviewed.

For example, it is doubtful that a class library will be of much help on the problem domain

layer, but an appropriate class library could be of great help on the foundation layer. In this

section, we describe the use of design patterns, frameworks, libraries, and components.

Like analysis patterns, design patterns are simply useful grouping of collaborating

classes that provide a solution to a commonly occurring problem. The primary difference

between analysis and design patterns is that design patterns are useful in solving “a general

design problem in a particular context.”19 While analysis patterns tended to aid in filling

out a problem domain representation. For example, a useful pattern is the Whole-Part pat-

tern (see Figure 10-8, Part A). The Whole-Part pattern explicitly supports the Aggregation

and Composition relationships within the UML. Another useful design pattern is the Com-

mand Processor pattern (see Figure 10-8, Part B). The primary purpose of the Command

Processor pattern is to force the designer to explicitly separate the interface to an object

(Command) from the actual execution of the operation (Supplier) behind the interface.

Finally, some of the design patterns support different physical architectures (see Chapter

13). For example, the Forwarder-Receiver pattern (see Figure 10-8, Part C) supports a peer-

to-peer architecture. Many design patterns are available in C++ or Java source code.

A framework is composed of a set of implemented classes that can be can be used as

a basis for implementing an application. For example, there are frameworks available for

CORBA and DCOM on which you could base the implementation of part of the physical

architecture layer. Most frameworks allow you to create subclasses to inherit from classes

in the framework. There are object-persistence frameworks that can be purchased and

used to add persistence to the problem domain classes, which would be helpful on the data

management layer. Of course, when inheriting from classes in a framework, you are cre-

ating a dependency (i.e., increasing the inheritance coupling from the subclass to the

superclass). Therefore, if you use a framework, and the vendor makes changes to the

framework, you will have to at least recompile the system when you upgrade to the new

version of the framework.

A class library is similar to a framework in that you typically have a set of implemented

classes that were designed for reuse. However, frameworks tend to be more domain-specific.

In fact, frameworks may be built using a class library. A typical class library could be pur-

chased to support numerical or statistical processing, file management (data management

layer), or user interface development (human computer interaction layer). In some cases,

you will create instances of classes contained in the class library and in other cases you will

extend classes in the class library by creating subclasses based on them. Like frameworks, if

you use inheritance to reuse the classes in the class library, you will run into all of the issues

dealing with inheritance coupling and connascence. If you directly instantiate classes in the

class library, you will create a dependency between your object and the library object based

on the signatures of the methods in the library object. This will increase the interaction cou-

pling between the class library object and your object.

300 Chapter 10 Class and Method Design

19 Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software (Reading, MA: Addison-Wesley, 1995).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Object Design Activities 301

Client

+doTask()

Whole

+service1()
+service2()

Part1

+serviceA1()
+serviceA2()

PartN

+serviceA1()
+serviceA2()

Supplier

+appFunctions()
+getState()
+restoreState()

Supplier

+receive()
+unmarshal()
+receiveMsg()

Supplier

+marshal()
+deliver()
+sendMsg()

Supplier

+marshal()
+deliver()
+sendMsg()

Supplier

+receive()
+unmarshal()
+receiveMsg()

Abstract Command

+do()
+undo()

Command Processor

+dolt(in cmd)
+undolt()

-commandStack

Command

+do()
+undo()

-stateForUndo

Controller

+eventLoop()

Controller

+service()

Controller

+service()

(A)

(B)

(C)

calls service

usescreates

InterProcessCommunication

InterProcessCommunication

performs/stores

combines

1

transfer/command

*

1

sendMsg

receiveMsg

1

1

1

receiveMsg

sendMsg

FIGURE 10-8 Sample Design Patterns20

20 These design patterns, along with many more, can be found in Frank Buschmann, Regine Meunier, Hans
Rohnert, Peter Sommerlad, and Michael Stal, Pattern-Oriented Software Architecture: A System of Patterns
(Chichetser, UK: Wiley, 1996).

Source: Buschmann, et al, Pattern-Oriented Software Architecture: A System of Patterns (John Wiley & Sons: 2000).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

A component is a self-contained, encapsulated piece of software that can be “plugged”

into a system to provide a specific set of required functionality. Today, there are many com-

ponents available for purchase that have been implemented using ActiveX or JavaBean

technologies. A component has a well-defined Application Program Interface (API). The

API is essentially a set of method interfaces to the objects contained in the component. The

internal workings of the component are hidden behind the API. Components can be

implemented using class libraries and frameworks. However, components also can be used

to implement frameworks. Unless, the API changes between versions of the component,

upgrading to a new version normally will require only linking the component back into the

application. As such, recompilation typically is not required.

Which of these approaches should you use? It depends on what you are trying to build.

In general, frameworks are used mostly to aid in developing objects on the physical archi-

tecture, human computer interaction, or data management layers; components are used

primarily to simplify the development of objects on the problem domain and human com-

puter interaction layers; and class libraries are used to develop frameworks and compo-

nents and to support the foundation layer.

Restructuring the Design

Once the individual classes and methods have been specified, and the class libraries, frame-

works, and components have been incorporated into the evolving design, you should use

factoring to restructure the design. Factoring, if you recall from Chapter 9, is the process of

separating out aspects of a method or class into a new method or class to simplify the over-

all design. For example, when reviewing a set of classes on a particular layer, you might dis-

cover that a subset of them shares a similar definition. In that case, it may be useful to factor

out the similarities and create a new class. Based on the issues related to cohesion, coupling,

and connascence, the new class may be related to the old classes via inheritance (general-

ization) or through an aggregation or association relationship.

Another process that is useful to restructure the evolving design is normalization.

Normalization is described in Chapter 11 in relation to relational databases. However,

normalization can be useful at times to identify potential classes that are missing from the

design. Also, related to normalization is the requirement to implement the actual associ-

ation and aggregation relationships as attributes. Virtually no object-oriented program-

ming language differentiates between attributes and association and aggregation

relationships. Therefore, all association and aggregation relationships must be converted

to attributes in the classes.

Finally, all inheritance relationships should be challenged to ensure that they only sup-

port a generalization/specialization (A-Kind-Of) semantics and the principle of substi-

tutability. Otherwise, all of the problems mentioned previously with inheritance

coupling, class cohesion, and generalization/ specialization cohesion will come to pass.

302 Chapter 10 Class and Method Design

In the previous chapters, you have been working on a
system for the campus housing service. Based on the
current set of functional, structural, and behavioral
models that you have developed, are there potential

opportunities of reuse in developing the system?
Search the Web for potential patterns, class libraries,
and components that could be useful in developing
this system.

10-1 Campus HousingYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Optimizing the Design21

Up until now, we have focused our energy on developing an understandable design. With

all of the classes, patterns, collaborations, partitions, and layers designed and with all of

the class libraries, frameworks, and components included in the design, understandabil-

ity has been, as it should have been, our primary focus. However, increasing the under-

standability of a design typically creates an inefficient design. And conversely, focusing

on efficiency issues will deliver a design that is more difficult to understand. A good prac-

tical design will manage the inevitable tradeoffs that must occur to create an acceptable

system. In this section, we describe a set of simple optimizations that can be used to cre-

ate a more efficient design.

The first optimization to consider is to review the access paths between objects. In

some cases, a message from one object to another may have a long path to traverse (i.e., it

goes through many objects). If the path is long, and the message is sent frequently, a redun-

dant path should be considered. Adding an attribute to the calling object that will store a

direct connection to the object at the end of the path can accomplish this.

A second optimization is to review each attribute of each class. Which methods use the

attributes and which objects use the methods should be determined. If the only methods

that use an attribute are read and update methods, and only instances of a single class send

messages to read and update the attribute, then the attribute may belong with the calling

class instead of the called class. Moving the attribute to the calling class will substantially

speed up the system.

A third optimization is to review the direct and indirect fan-out of each method.

Fan-out refers to the number of messages sent by a method. The direct fan-out is the

number of messages sent by the method itself, while the indirect fan-out also includes

the number of messages sent by the methods called by the other methods in a mes-

sage tree. If the fan-out of a method is high relative to the other methods in the sys-

tem, the method should be optimized. One way to do this is to consider adding an

index (see Chapter 11) to the attributes used to send the messages to the objects in the

message tree.

A fourth optimization is to look at the execution order of the statements in often-

used methods. In some cases, it may be possible to rearrange some of the statements to

be more efficient. For example, if it is known, based on the objects in the system, that

a search routine can be narrowed by searching on one attribute before another one,

then the search algorithm should be optimized by forcing it to always search in a pre-

defined order.

A fifth optimization is to avoid recomputation by creating a derived attribute (or

active value) (e.g., a total that will store the value of the computation). This is also

known as caching computational results. This can be accomplished by adding a trigger

to the attributes contained in the computation (i.e., those attributes on which the

derived attribute is dependent). This would require a recomputation to take place only

when one of the attributes that go into the computation is changed. Another approach

would be to mark the derived attribute, and delay the recomputation until the next

time the derived attribute is accessed. This last approach delays the recomputation as

long as possible. In this manner, a computation does not occur unless it has to occur.

Otherwise, every time a derived attribute needs to be accessed, a computation would

be required.

Object Design Activities 303

21 The material contained in this section is based on James Rumbaugh, Michael Blaha, William Premerlani, Fred-
erick Eddy, and William Lorensen, Object-Oriented Modeling and Design (Englewood Cliffs, NJ: Prentice-Hall,
1991), and Bernd Brugge and Allen H. Dutoit, Object-Oriented Software Engineering: Conquering Complex and
Changing Systems (Englewood Cliffs, NJ: Prentice Hall, 2000).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Mapping Problem Domain Classes to Implementation Languages22

Up until this point in the development of the system, it has been assumed that the classes and

methods in the models would be implemented directly in an object-oriented programming

language. However, now it is important to map the current design to the capabilities of the

programming language used. For example, if you have used multiple inheritance in your

design, but you are implementing in a language that only supports single inheritance, then the

multiple inheritance must be factored out of the design. Or, if the implementation is to be

done in an object-based language, one that does not support inheritance,23 or a non–object-

based language, such as C or Pascal, we must map the problem domain objects to program-

ming constructs that can be implemented using the chosen implementation environment. In

this section, we describe a set of rules that can be used to do the necessary mapping.

Implementing Problem Domain Classes in a Single-Inheritance Language The only

issue associated with implementing problem domain objects is the factoring out of any mul-

tiple inheritance, that is, the use of more than one superclass, used in the evolving design. For

example, if you were to implement the solution in Java, Smalltalk, or Visual Basic.net, you must

factor out any multiple inheritance. The easiest way to do this is to use the following rule:

RULE 1a: Convert the additional inheritance relationships to association relation-

ships. The multiplicity of the new association from the subclass to the

“superclass” should be 1..1. If the additional superclasses are concrete, that

is, they can be instantiated themselves, then the multiplicity from the

superclass to the subclass is 0..1. Otherwise, it is 1..1. Furthermore, an

exclusive-or (XOR) constraint must be added between the associations.

Finally, you must add appropriate methods to ensure that all information

is still available to the original class.

OR

RULE 1b: Flatten the inheritance hierarchy by copying the attributes and methods of

the additional superclass(es) down to all of the subclasses and remove the

additional superclass from the design.24

304 Chapter 10 Class and Method Design

Assume that you are the project leader for the campus
housing system that you have been developing over the
previous chapters and that you just modified in Your Turn
10-1. However, as you review the current set of models,
you realize that even though the models provide a rather
complete description of the problem domain layer, the
evolving models have begun to become unmanageable.

And as project leader, you also need to guarantee that the
design will be efficient. Create a set of discussion points
that you will use to explain to your development team the
importance of optimizing the design before jumping into
coding. Be sure to include an example of each optimiza-
tion technique that can be used in the current set of mod-
els for the campus housing system.

10-2 Campus HousingYOUR

TURN

22 The mapping rules presented in this section are based on material in Coad and Yourdon, Object-Oriented Design.
23 In this case, we are talking about implementation inheritance, not the so-called interface inheritance. Interface
inheritance supported by Visual Basic and Java only supports inheriting the requirements to implement certain
methods, not any implementation. Java and Visual Basic.net also support single inheritance as described in this
text, whereas Visual Basic 6 only supports interface inheritance.
24 It is also a good idea to document this modification in the design so that in the future, modifications to the
design can be maintained easily.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Figure 10-9 demonstrates the application of the above rules. Part A of Figure 10-9 por-

trays a simple example of multiple inheritance where Class 1 inherits from both Super-

Class1 and SuperClass2, and Class 2 inherits from both SuperClass2 and SuperClass3.

Assuming that SuperClass2 is concrete, we apply Rule 1a to Part A, and we end up with the

diagram in Part B where we have added the association between Class1 and SuperClass2

and the association between Class2 and SuperClass2. Furthermore, the multiplicities have

been added correctly, and the XOR constraint has been applied. If we apply Rule 1b to Part

A, we end up with the diagram in Part C where all of the attributes of SuperClass2 have

been copied down into Class1 and Class2. In this latter case, you may have to deal with the

effects of inheritance conflicts (see earlier in the chapter).

The advantage of Rule 1a is that all problem domain classes identified during analysis

are preserved. This allows for maximum flexibility of maintenance of the design of the

problem domain layer. However, Rule 1a increases the amount of message passing required

in the system, and it has added processing requirements involving the XOR constraint, thus

reducing the overall efficiency of the design. As such, our recommendation is to limit Rule

1a to only be applied when dealing with “extra” superclasses that are concrete because they

have an independent existence in the problem domain. Use Rule 1b when they are abstract

because they do not have an independent existence from the subclass.

Implementing Problem Domain Objects in a Object-Based Language If we are going

to implement our solution in an object-based language (i.e., a language that supports the

creation of object, but does not support implementation inheritance), we must factor out

all uses of inheritance from the problem domain class design. For example, if you were to

implement your design in Visual Basic 6 or earlier, you would have to remove all uses of

inheritance in the design. Applying the above rule to all superclasses will enable you to

restructure your design without any inheritance.

Figure 10-10 demonstrates the application of the above rules. Part A of Figure 10-10

shows the same simple example of multiple inheritance portrayed in Figure 10-9 where Class1

inherits from both SuperClass1 and SuperClass2, and Class2 inherits from both SuperClass2

and SuperClass3. Assuming that the superclasses are concrete, we apply Rule 1a to Part A and

we end up with the diagram in Part B where we have added the associations, the multiplicities,

and the XOR constraint. If we apply Rule 1b to Part A and we assume that the superclasses are

abstract, we end up with the diagram in Part C where all of the attributes of the superclasses

have been copied down into Class1 and Class2. In this latter case, you may have to deal with

the effects of inheritance conflicts (see earlier in the chapter). What would you recommend to

do if SuperClass 2 was concrete and SuperClass1 and SuperClass3 were abstract.

Implementing Problem Domain Objects in a Traditional Language From a practical

perspective, you are much better off implementing an object-oriented design in an object-

oriented programming language, such as C++, Java, Smalltalk, or Visual Basic.net. How-

ever, implementing an object-oriented design in an object-based language, such as Visual

Object Design Activities 305

In the previous chapters, we have been using a dentist
office appointment system as an example. Assume that you
now know that the system must be implemented in Visual

Basic 6, which does not support implementation inheri-
tance. As such, redraw the class diagram factoring out the
use of inheritance in the design by applying the above rules.

10-3 Dentist Office Appointment SystemYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

306 Chapter 10 Class and Method Design

Class1

-attribute5
-attribute6

SuperClass1

-attribute1
-attribute2

SuperClass2

-attribute3
-attribute4

SuperClass2

-attribute3
-attribute4

Class1

-attribute5
-attribute6

SuperClass1

-attribute1
-attribute2

Class2

-attribute5
-attribute6

Class2

-attribute5
-attribute6

SuperClass3

-attribute7
-attribute8

SuperClass1

-attribute1
-attribute2

SuperClass3

-attribute7
-attribute8

(A)

(B)

Class1

-attribute3
-attribute4
-attribute5
-attribute6

Class2

-attribute3
-attribute4
-attribute5
-attribute6

SuperClass1

-attribute1
-attribute2

SuperClass3

-attribute7
-attribute8

(C)

{XOR}

0..*

0..*

1..1

1..1

FIGURE 10-9 Factoring Out Multiple Inheritance Effect for a Single-Inheritance Language

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Object Design Activities 307

Class1

-attribute5
-attribute6

SuperClass1

-attribute1
-attribute2

SuperClass2

-attribute3
-attribute4

SuperClass2

-attribute3
-attribute4

Class1

-attribute5
-attribute6

SuperClass1

-attribute1
-attribute2

Class2

-attribute5
-attribute6

Class2

-attribute5
-attribute6

SuperClass3

-attribute7
-attribute8

SuperClass1

-attribute1
-attribute2

SuperClass3

-attribute7
-attribute8

(A)

(B)

Class1

-attribute1
-attribute2
-attribute3
-attribute4
-attribute5
-attribute6

Class2

-attribute3
-attribute4
-attribute5
-attribute6
-attribute7
-attribute8

(C)

{XOR}

0..* 1..1

0..*

1..1 1..1

1..1

1..1

1..1

FIGURE 10-10 Factoring Out Multiple Inheritance Effect for an Object-Based Language

Basic 6, is preferable to attempting to implement it in a traditional programming language,

such as C or Cobol. Practically speaking, the “gulf” between an object-oriented design and

a traditional programming language is simply too great for mere mortals to be able to

cross. The best advice that we can give to you on implementing an object-oriented design

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

in a traditional programming language, is to run away as fast and as far as possible from

the project. However, if you are brave (foolish?) enough to attempt this, you must realize

that, in addition to factoring out inheritance from the design, you will have to factor out

all uses of polymorphism, dynamic binding, encapsulation, and information hiding. To say

the least, this is quite a bit of additional work to be accomplished. Furthermore, the man-

ner in which you factor these object-oriented features out of the detailed design of the sys-

tem tends to be language dependent. As such, this is beyond the scope of this text.

CONSTRAINTS AND CONTRACTS

Contracts were introduced in Chapter 7 in association with collaborations. If you recall, a

contract formalizes the interactions between the client and server objects, where a client

(consumer) object is an instance of a class that sends a message to a server (supplier) object

that executes one of its methods in response to the request. Contracts are modeled on the

legal notion of a contract where both parties, client and server objects, have obligations and

rights. Practically speaking, a contract is a set of constraints and guarantees. If the con-

straints are met, then the server object will guarantee certain behavior.25 Constraints can

be written in either a natural language (e.g., English, Structured English, pseudocode) or a

formal language (e.g., UML’s Object Constraint Language26).

Types of Constraints

There are three different types of constraints typically captured in object-oriented design:

pre-conditions, post-conditions, and invariants.

Contracts are used primarily to establish the pre-conditions and post-conditions for a

method to be able to execute properly. A pre-condition is a constraint that must be met for

a method to execute. For example, the parameters passed to a method must be valid for the

method to execute. Otherwise, an exception should be raised. A post-condition is a con-

straint that must be met after the method executes, or the effect of the method execution

must be undone. For example, the method can not make any of the attributes of the object

take on an invalid value. In this case, an exception should be raised, and the effect of the

method’s execution should be undone.

Where pre-conditions and post-conditions model the constraints on an individual

method, invariants model constraints that must always be true for all instances of a class.

Examples of invariants include domains or types of attributes, multiplicity of attributes,

and the valid values of attributes. This includes the attributes that model association and

aggregation relationships. For example, if an association relationship is required, an invari-

ant should be created that will enforce it to have a valid value for the instance to exist.

Invariants are normally attached to the class. As such, we can attach invariants to the CRC

cards or class diagram by adding a set of assertions to them.

In Figure 10-11, the back of the CRC card constrains the attributes of an Order to spe-

cific types. For example, Order Number must be an unsigned long, and Customer must be

an instance of the Customer class. Furthermore, additional invariants were added to four

of the attributes. For example, Cust ID must not only be an unsigned long, but it also must

have one and only one value (i.e., a multiplicity of (1..1)), and it must have the same value

as the result of the GetCustID() message sent to the instance of Customer stored in the

308 Chapter 10 Class and Method Design

25 The idea of using contracts in design evolved from the “Design by Contract” technique developed by Bertrand
Meyer. See Bertrand Meyer, Object-Oriented Software Construction (Englewood Cliffs, NJ: Prentice Hall, 1988).
26 See Jos Warmer and Anneke Kleppe, The Object Constraint Language: Precise Modeling with UML (Reading,
MA: Addison Wesley, 1999).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Customer attribute. Also shown is the constraint for an instance to exist, an instance of the

Customer class, an instance of the State class, and at least one instance of the Product class

must be associated with the Order object (see Relationships section of the CRC card). Fig-

ure 10-12 portrays the same set of constraints on a class diagram. However, if all invariants

are placed on a class diagram, the diagram will become very difficult to understand. As

such, we recommend extending the CRC card to document the invariants instead of attach-

ing them all to the class diagram.

Constraints and Contracts 309

Front:

Class Name: Order ID: 2

Calculate tax

Calculate subtotal

Calculate shipping

Calculate total

Responsibilities

Associated Use Cases: 3Description: An Individual that needs to receive or has received
medical attention

Type: Concrete, Domain

Collaborators

Back:

Attributes:

Relationships:

Generalization (a-kind-of):

Aggregation (has-parts):

Other Associations: Product {1..*} Customer {1..1} State {1..1}

Order Number (1..1) (unsigned long)

Date (1..1) (Date)

Sub Total (0..1) (double)

Tax (0..1) (double) {Sub Total = sum (Product Order. GetExtension())}

Shipping (0..1) (double)

Total (0..1) (double)

Customer (1..1) (Customer)

Cust ID (1..1) (unsigned long) {Cust ID = Customer. GetCustID()}

State (1..1) (State)

StateName (1..1) (String) {State Name = State. GetState()}

FIGURE 10-11
Invariants on a

CRC Card

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Elements of a Contract

Contracts document the message passing that takes place between objects. Technically

speaking, a contract should be created for each message sent and received by each object;

one for each interaction. However, there would be quite a bit of duplication if this were

310 Chapter 10 Class and Method Design

Order

-Order Number : unsigned long
-Date[1..] : Date
-Sub Total[0..1] : double
-Tax[0..1] : double
-Shipping[0..1] : double
-Total[0..1] : double
-Tax[0..1] : double
-Customer[1..1] : Customer
-Cust ID[1..1] : unsigned long
-State[1..1] : State
-State Name[1..1] : String

Product

-Product Number
-Product Desc
-Price

Customer

-Cust ID
-Last Name
-First Name 1..1

1..1

0..*

1..*0..*

0..*

State

-State
-TaxRate

<<invariant>>
{Cust ID = Customer.GetCustID()}

<<invariant>>
{State Name = State.GetState()}

<<invariant>>
{Tax =State.GetTaxRate()*SubTotal}

<<invariant>>
{Sub Total =Sum(Product Order.GetExtension())}

Product Order

Order
Product
Qty
Extension

FIGURE 10-12 Invariants on a Class Diagram

Using the CRC card in Figure 10-11 and the class diagram in
Figure 10-12 as guides, add invariants for the Customer class,
the State class, the Product class, and the Product-Order Asso-
ciation to their respective CRC cards and the class diagram.

Question:

1. How easy is it to interpret the class diagram once
all of the invariants were added? Look at the class

diagram in Figure 7-13 and the package diagram in
Figure 9-8. What would they look like if the invari-
ants were all attached to the diagrams? What would
you recommend doing to avoid this situation?

10-4 InvariantsYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

done. In practice, a contract is created for each method that can receive messages from

other objects (i.e., one for each visible method).

A contract should contain the information necessary for a programmer to understand

what a method is to do (i.e., they are declarative in nature). This information includes the

method name, class name, ID number, client objects, associated use cases, description,

arguments received, type of data returned, and the pre- and post-conditions.27 Contracts

do not have a detailed algorithmic description of how the method is to work (i.e., they are

not procedural in nature). Detailed algorithmic descriptions typically are documented in a

method specification (this is described later in this chapter). In other words, a contract is

composed of the information required for the developer of a client object to know what

messages can be sent to the server objects and what the client can expect in return. Figure

10-13 shows a sample format for a contract.

Since each contract is associated with a specific method and a specific class, the con-

tract must document them. The ID number of the contract is used to provide a unique

identifier for every contract. The Clients (Consumers) element of a contract is a list of

Constraints and Contracts 311

In Your Turn 7-3, you created a set of CRC cards and a
class diagram. Add invariants to the class diagram and to

the set of CRC cards.

10-5 Campus HousingYOUR

TURN

Method Name: Class Name: ID:

Clients (Consumers):

Associated Use Cases:

Description of Responsibilities:

Arguments Received:

Type of Value Returned:

Pre-Conditions:

Post-Conditions:

FIGURE 10-13

Sample Contract Format

27 Currently, there is no standard format for a contract. The contract in Figure 10-13 is based on material con-
tained in Ian Graham, Migrating to Object Technology (Reading, MA: Addison-Wesley, 1995), Craig Larman,
Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design (Englewood Cliffs, NJ: Pren-
tice-Hall, 1998); Meyer, Object-Oriented Software Construction, and R. Wirfs-Brock, B. Wilkerson, and L. Wiener,
Designing Object-Oriented Software (Englewood Cliffs, NJ: Prentice Hall, 1990).

TEMPLATE

can be found at
www.wiley.com
/college/dennis

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

classes and methods that send a message to this specific method. This list is determined by

reviewing the sequence diagrams associated with the server class. The Associated Use Cases

element is a list of Use Cases in which this method is used to realize the implementation of

the use case. The use cases listed here can be found by reviewing the server class’s CRC card

and the associated sequence diagrams.

The Description of Responsibilities provides an informal description of what the

method is to perform, not how it is to do it. The arguments received are the data types of

the parameters passed to the method and the value returned is the data type of the value

that the method will return to its clients. Together with the method name, they form the

signature of the method.

The pre-condition and post-condition element is where the pre- and post-conditions for the

method are recorded. Recall that pre- and post-conditions can be written in natural language,

Structured English, pseudocode, or a formal language. It really does not matter which one you

use. However, given the volume of offshore outsourcing, the more precise they are written, the

least likely it is that the programmer will misunderstand them. As such, we recommend that you

use either pseudocode or a formal language such as UML’s Object Constraint Language.28

METHOD SPECIFICATION

Once the analyst has communicated the big picture of how the system needs to be put

together, he or she needs to describe the individual classes and methods in enough detail

so that programmers can take over and begin writing code. Methods on the CRC cards,

class diagram, and contracts are described using method specifications. Method specifica-

tions are written documents that include explicit instructions on how to write the code to

implement the method. Typically, project team members write a specification for each

method and then pass them along to programmers, who write the code during the Imple-

mentation phase of the project. Specifications need to be very clear and easy to understand,

or programmers will be slowed down trying to decipher vague or incomplete instructions.

There is no formal syntax for a method specification, so every organization uses its own

format, often using a form like the one in Figure 10-14. Typical method specification forms

contain four components that convey the information that programmers will need to write the

appropriate code: general information, events, message passing, and algorithm specification.

General Information

The top of the form in Figure 10-14 contains general information, such as the name of the

method, name of the class in which this implementation of the method will reside, ID

number, Contract ID that identifies the contract associated with this method implementa-

tion, programmer assigned, the date due, and the target programming language. This

information is used to help manage the programming effort.

312 Chapter 10 Class and Method Design

Using the CRC card in Figure 10-11, the class diagram in
Figure 10-12, and the sample contract format in Figure 10-13

as guides, create contracts for the Calculate subtotal, Calcu-
late tax, Calculate shipping, and Calculate total methods.

10-6 ContractYOUR

TURN

28 See Warmer and Kleppe, The Object Constraint Language: Precise Modeling with UML.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Events

The second section of the form is used to list the events that trigger the method. An event

is a thing that happens or takes place. Clicking the mouse generates a mouse event, press-

ing a key generates a keystroke event—in fact, almost everything the user does generates an

event to occur.

In the past, programmers used procedural programming languages (e.g., COBOL, C)

that contained instructions that were implemented in a predefined order, as determined by

the computer system, and users were not allowed to deviate from the order. Many pro-

grams today are event-driven (e.g., programs written in languages such as Visual Basic,

Smalltalk, C++, or Java), and event-driven programs include methods that are executed in

response to an event initiated by the user, system, or another method. After initialization,

the system waits for an event to occur. When it does, a method is fired which carries out

the appropriate task, and then the system waits once again.

Method Specification 313

Method Name: Class Name: ID:

Contract ID: Programmer: Date Due:

Programming Language:

o Visual Basic o Smalltalk o C++ o Java

Triggers/Events:

Arguments Received:

Data Type: Notes:

Messages Sent & Arguments Passed:

ClassName.MethodName: Data Type: Notes:

Argument Returned:

Data Type: Notes:

Algorithm Specification:

Misc.Notes:FIGURE 10-14

Method Specification

Form

TEMPLATE

can be found at
www.wiley.com
/college/dennis

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

We have found that many programmers still use method specifications when pro-

gramming in event-driven languages, and they include the event section on the form to

capture when the method will be invoked. Other programmers have switched to other

design tools that capture event-driven programming instructions, such as the behavioral

state machine described in Chapter 8.

Message Passing

The next set of sections of the method specification describes the message passing to and

from the method, which are identified on the sequence and collaboration diagrams. Pro-

grammers will need to understand what arguments are being passed into, from, and

returned by the method since the arguments ultimately will translate into attributes and

data structures within the actual method.

Algorithm Specification

Algorithm specifications can be written in Structured English, some form of pseudocode,

or some type of formal language.29 Structured English is simply a formal way of writing

instructions that describe the steps of a process. Because it is the first step toward the imple-

mentation of the method, it looks much like a simple programming language. Structured

English uses short sentences that clearly describe exactly what work is performed on what

data. There are many versions of Structured English because there are no formal standards;

each organization has its own type of Structured English.

Figure 10-15 shows some examples of commonly used Structured English statements.

Action statements are simple statements that perform some action. An If statement

314 Chapter 10 Class and Method Design

Profits = Revenues – Expenses

Action Statement Generate Inventory-Report

IF Customer Not in the Customer Object Store

THEN Add Customer record to Customer Object Store

If Statement ELSE Add Current-Sale to Customer’s Total-Sales

Update Customer record in Customer Object Store

FOR all Customers in Customer Object Store DO

For Statement Generate a new line in the Customer-Report

Add Customer’s Total-Sales to Report-Total

CASE

IF Income < 10,000: Marginal-tax-rate = 10 percent

IF Income < 20,000: Marginal-tax-rate = 20 percent

Case Statement IF Income < 30,000: Marginal-tax-rate = 31 percent

IF Income < 40,000: Marginal-tax-rate = 35 percent

ELSE Marginal-Tax-Rate = 38 percent

ENDCASE

Common Statements Example

FIGURE 10-15

Structured English

29 For our purposes, Structured English or pseudocode will suffice. However, there has been some work with the
Catalysis, Fusion, and Syntropy methodologies to include formal languages, such as VDM and Z, into specifying
object-oriented systems.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

controls actions that are performed under different conditions, and a For statement

(or a While statement) performs some actions until some condition is reached. Finally,

a Case statement is an advanced form of an If statement that has several mutually

exclusive branches.

Pseudocode is a language that contains logical structures including sequential state-

ments, conditional statements, and iteration. It differs from Structured English in that

pseudocode contains details that are programming-specific, like initialization instructions

or linking, and it also is more extensive so that a programmer can write the module by mir-

roring the pseudocode instructions. In general, pseudocode is much more like real code,

and its audience is the programmer as opposed to the analyst. Its format is not as impor-

tant as the information it conveys. Figure 10-16 shows a short example of pseudocode for

a module that is responsible for getting CD information.

Writing good pseudocode can be difficult—imagine creating instructions that some-

one else can follow without having to ask for clarification or make a wrong assumption. For

example, have you ever given a friend directions to your house, and they ended up getting

lost? To you, the directions may have been very clear, but that is because of your personal

assumptions. To you, the instruction “take the first left turn” may really mean, “take a left

turn at the first stoplight.” Someone else may have made the interpretation of “take a left

turn at the first road, with or without a light.” Therefore, when writing pseudocode, pay

special attention to detail and readability.

If the algorithm of a method is complex, a tool that can be useful for algorithm spec-

ification is UML’s activity diagram (see Chapter 6). If you recall, activity diagrams can be

used to specify any type of process. Obviously, an algorithm specification represents a

process. However, due to the nature of object-orientation, processes tend to be highly

distributed over many little methods over many objects. As such, needing to use an activ-

ity diagram to specify the algorithm of a method may, in fact, hint at a problem in the

design. For example, the method should be further decomposed or there could be miss-

ing classes.

The last section of the method specification

provides space for other information that needs to

be communicated to the programmer, such as cal-

culations, special business rules, calls to subrou-

tines or libraries, and other relevant issues. This

also can point out changes or improvements that

will be made to any of the other design documen-

tation based on problems that the analyst detected

during the specification process.30

Method Specification 315

(Get_CD_Info module)
Accept (CD.Title) {Required}
Accept (CD.Artist) {Required}
Accept (CD.Category) {Required}
Accept (CD.Length)

ReturnFIGURE 10-16

Pseudocode

Using the CRC card in Figure 10-11, the class diagram in
Figure 10-12, and the contract created in Your Turn 10-6
as guides, create method specifications for the Calculate

subtotal, Calculate tax, Calculate shipping, and Calculate
total methods.

10-7 Method SpecificationYOUR

TURN

30 Remember that the development process is very incremental and iterative in nature. Therefore, changes could
be cascaded back to any point in the development process (e.g., to use case descriptions, use case diagrams, CRC
cards, class diagrams, object diagrams, sequence diagrams, communication diagrams, behavioral state machines,
and package diagrams).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

APPLYING THE CONCEPTS AT CD SELECTIONS

Alec Adams, the senior systems analyst and project manager for the Internet sales system,

and his team began the detailed object design process by reviewing the class and package

diagram for the problem domain layer (see Figures 7-13 and 9-8). Upon their review, it was

discovered that there were quite a few many-to-many (*..*) association relationships on the

class diagram. Alec questioned whether this was a correct representation of the actual sit-

uation. Brian, one of the staff members on the Internet sales system project, admitted that

when they put together the class diagram, they had decided to model most of the associa-

tions as a many-to-many multiplicity, figuring that this could be easily fixed at a later point

in time when they had more precise information. Since Brian was the team member that

was most familiar with structural modeling and was the analyst in charge of the data man-

agement layer (see Chapter11), Alec assigned him to evaluate the multiplicity of each asso-

ciation in the model and to restructure and optimize the evolving problem domain model.

Figure 10-17 shows the updated version of the class diagram. As you can see, Brian

included both the lower and upper values of the multiplicity of the associations. He did this

to remove any ambiguity about the associations. Even though there is a one-to-one rela-

tionship between the CD class and the Mkt Info class, Brian considered merging them into

a single class. However, he decided that they were sufficiently different to keep them sepa-

rate. He reasoned this by assuming that not all customers would want to see all of the Mkt

Info associated with every CD.

Upon reviewing the new revised class diagram, Alec assigned different members of his

team to the different packages identified (see Figure 9-8). Because Brian had already spent

quite a bit of time on the classes in the CD package, Alec assigned it to him. The classes in

the CD package were CD, Vendor, Mkt Info, Review, Artist Info, and Sample Clip.

Next, Brian added invariants, pre-conditions, and post-conditions to the classes

and their methods. For example, Figure 10-18 portrays the back of the CRC card for the

CD class. He decided to add only the invariant information to the CRC cards and not

the class diagram to keep the class diagram as simple and as easy to understand as pos-

sible. Notice the additional set of multiplicity, domain, and referential integrity invari-

ants added to the attributes and relationships. During this process, he realized that not

all CDs had marketing information associated with them. As such, he modified the mul-

tiplicity from the CD class to the Mkt Info class. Furthermore, he needed to add con-

tracts for each method. Figure 10-19 portrays the contract for the GetReview() method

associated with the Mkt Info class. Notice that there is a pre-condition for this method

to succeed—Review attribute not Null.

Upon completing the CRC cards and contracts, Brian moved on to specifying the

detailed design for each method. For example, the method specification for the GetRe-

view() method is given in Figure 10-20. Brian developed this specification by reviewing the

Places Order use case (see Figure 6-15), the sequence diagram (see Figure 8-5), and the

contract (see Figure 10-19). Notice that Brian is enforcing the pre-condition on the con-

tract by testing to see whether the Review attribute that contains the list of reviews contains

a value or not. Since the method is to be implemented in Java, he has specified that an

exception is to be thrown if there are no reviews.

Finally, Brian updated the class diagram for the CD package (see Figure 10-21).

SUMMARY

Revisiting the Basic Characteristics of Object-Oriented Systems

A class is a template on which objects can be instantiated. An object is a person, place,

or thing about which we want to capture information. Each object has attributes and

316 Chapter 10 Class and Method Design

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

S
u

m
m

a
r
y

3
1
7

Credit Card
Clearance Center0..*

0..*

checks

places

makes consists of

Individual Organizational

Search Req CD List

Customer Order
1..1 0..*

0..*

0..*1..1 0..1

Order Item Review

Artist Info

Sample Clip

CD

Vendor

Mkt Info

1..*

0..*

1..*

1..1

1..1

1..1

1..1

1..1

1..1

1..1

1..1

0..*

0..*

0..*

0..*

1..1

results in

Includes

contains

distributes

promotes

FIGURE 10-17 Revised CD Selections Internet Sales System Class Diagram (Places Order Use Case View)

C
op

yr
ig

ht
ed

 M
at

er
ia

l
Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

318 Chapter 10 Class and Method Design

Back:

Attributes:

Relationships:

Generalization (a-kind-of):

Aggregation (has-parts):

Other Associations: Order Item {0..*} CD List {0..*} Vendor {1..1} Mkt Info {0..1}

CD Number (1..1) (unsigned long)

CD Name (1..1) (String)

Pub Date (1..1) (Date)

Artist Name (1..1) (String)

Artist Number (1..1) (unsigned long)

Vendor (1..1) (Vendor)

Vendor ID (1..1) (unsigned long) {Vendor ID = Vendor.GetVendorID()}

FIGURE 10-18
Back of CD CRC Card

Method Name: GetReview() Class Name:

Clients (Consumers): CD Detailed Report

ID:

Associated Use Cases:

Places Order

Type of Value Returned:

List of Review objects

Review attribute not Null

Description of Responsibilities:

Return review objects for the Detailed Report Screen to display

Arguments Received:

Pre-Conditions:

Post-Conditions: FIGURE 10-19
Get Review Method

Contract

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

methods. The methods are executed by objects sending messages that trigger them.

Encapsulation and information hiding allows an object to conceal its inner processes

and data from the other objects. Polymorphism and dynamic binding allows a message

to be interpreted differently by different kinds of objects. However, if polymorphism is

not used in a semantically consistent manner, polymorphism can make an object design

incomprehensible. Classes can be arranged in a hierarchical fashion in which subclasses

inherit attributes and methods from superclasses to reduce the redundancy in develop-

ment. However, through redefinition capabilities or multiple inheritance, inheritance

conflicts can be introduced into the design.

Summary 319

Triggers/Events:

Detail Button on Basic Report is pressed

Algorithm Speculation:

IF Review Not Null
 Return Review
Else
 Throw Null Exception

Misc. Notes:

Data Type: Notes:

Arguments Received:

List List of Review objects

Data Type: Notes:

Arguments Returned:

ClassName.MethodName: Data Type: Notes:

Messages Sent & Arguments Passed:

FIGURE 10-20
Create Review Method

Specification

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Design Criteria

Coupling, cohesion, and connascence have been put forth as a set of criteria by which a

design of an object-oriented system can be evaluated. Two types of coupling, interaction

and inheritance, and three types of cohesion, method, class, and generalization/specializa-

tion, were described. Interaction coupling deals with the communication that takes place

among the objects, and inheritance coupling deals with the innate dependencies in the use

of inheritance in object-oriented systems. Method cohesion addresses how single-minded

a method is. The fewer things a method does, the more cohesive it is. Class cohesion does

the same for classes. A class should be a representation of one and only one thing. Gener-

alization/specialization cohesion deals with is the quality of an inheritance hierarchy. Good

inheritance hierarchies only support generalization and specialization (A-Kind-Of)

semantics and the principle of substitutability. Connascence generalizes coupling and

cohesion and then combines them with the different levels of encapsulation. The general

rule of thumb is to maximize the cohesion (connascence) within an encapsulation bound-

ary and minimize the coupling (connascence) between the encapsulation boundaries.

Object Design Activities

There are five basic object design activities. First, additional specification is possible by care-

fully reviewing the models, deciding on the proper visibility of the attributes and methods,

setting the signature for each method, and identifying any constraints associated with the

classes or the classes’ methods. Second, look for opportunities for reuse by reviewing the

model and looking at possible patterns, class libraries, frameworks, and components that

could be used to enhance the system. Third, restructure the model through the use of fac-

toring and normalization. Be sure to take the programming language into consideration. It

may be necessary to map the current design into the restricted capabilities of the language

320 Chapter 10 Class and Method Design

CD Package

0..*

Review

Artist Info

Sample Clip

Vendor

Mkt InfoCD

1..1

0..11..1

1..1

1..1

1..1

0..*

0..*

0..*

distributes

promotes

FIGURE 10-21
Revised Package Dia-

gram for the CD Pack-

age on the PD Layer of

CD Selections Internet

Sales System

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Key Terms 321

KEY TERMS

Active value

ActiveX

Activity diagram

Application program interface (API)

Attribute

Class

Class cohesion

Class library

Client

Cohesion

Component

Connascence

Constraint

Consumer

Contract

Coupling

Derived attribute

Design Patterns

Dynamic binding

Encapsulation

Event

Event-driven

Exceptions

Factoring

Fan-out

Framework

Generalization/Specialization cohesion

Homonyms

Ideal class cohesion

Information hiding

Inheritance

Inheritance conflict

Inheritance coupling

Instance

Interaction coupling

Invariant

JavaBean

Law of Demeter

Message

Method

Method cohesion

Method specification

(e.g., the language only supports single inheritance). Also, be certain that the inheritance in

your model only supports generalization/specialization (A-Kind-Of) semantics and the

principle of substitutability. Fourth, optimize the design. However, be careful in the process

of optimizing the design. Optimizations typically decrease the understandability of the

model. Fifth, map the problem domain classes to an implementation language.

Constraints and Contracts

There are three types of constraints associated with object-oriented design: invariants, pre-

conditions, and post-conditions. Invariants capture constraints that must always be true

for all instances of a class (e.g., domains and values of attributes or multiplicity of rela-

tionships). Typically, invariants are attached to class diagrams and CRC cards. However, for

clarity purposes, we suggest only placing them on the CRC cards.

Contracts formalize the interaction between objects (i.e., the message passing). As such,

they include the pre- and post-conditions that must be enforced for a method to execute

properly. Contracts provide an approach to model the rights and obligations when client

and server objects interact. From a practical perspective, every interaction that can take place

between all possible client and server objects are not modeled on separate contracts. Instead,

a single contract is drawn up for using each visible method of a server object.

Method Specification

A method specification is a written document that provides clear and explicit instructions

on how a method is to behave. Without clear and unambiguous method specifications,

critical design decisions will have to be made by programmers instead of by designers.

Given the volume of offshore outsourcing, this is not advisable. Even though there is no

standard format for a method specification, typically four types of information are cap-

tured. First, there is general information such as the name of the method, name of the class,

Contract ID, programmer assigned, the date due, and the target programming language.

Second, due to the rise in popularity of GUI-based and event-driven systems, events also

are captured. Third, the information that deals with the signature of the method, data

received, data passed on to other methods, and data returned by the method is recorded.

Finally, an unambiguous specification of the algorithm is given. The algorithm typically is

modeled using Structured English, pseudocode, an activity diagram, or a formal language.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

322 Chapter 10 Class and Method Design

Multiple inheritance

Normalization

Object

Object-based language

Patterns

Polymorphism

Post-condition

Pre-condition

Pseudocode

Redefinition

Server

Signature

Single inheritance

State

Structured English

Substitutability

Supplier

Synonyms

Trigger

Visibility

QUESTIONS

1. What are the basic characteristics of object-oriented

systems?

2. What is dynamic binding?

3. Define polymorphism. Give one example of a “good”

use of polymorphism and one example of a “bad” use

of polymorphism.

4. What is an inheritance conflict? How does an inheri-

tance conflict affect the design?

5. Why is cancellation of methods a bad thing?

6. Give the guidelines to avoid problems with inheri-

tance conflicts.

7. How important is it to know which object-oriented

programming language is going to be used to imple-

ment the system?

8. What are the additional types of inheritance conflicts

are there when using multiple inheritance?

9. What is the Law of Demeter?

10. What are the six types of interaction coupling? Give

one example of “good” interaction coupling and one

example of “bad” interaction coupling.

11. What are the seven types of method cohesion? Give

one example of “good” method cohesion and one

example of “bad” method cohesion.

12. What are the four types of class cohesion? Give one

example of each type.

13. What are the five types of connascence described in

your text? Give one example of each type.

14. When designing a specific class, what types of addi-

tional specification for a class could be necessary?

15. What are constraints? What are the three different

types of constraints?

16. What are exceptions?

17. What are patterns, frameworks, class libraries, and

components? How are they used to enhance the evolv-

ing design of the system?

18. How are factoring and normalization used in design-

ing an object system?

19. What are the different ways to optimize an object

system?

20. What is the typical downside of system optimization?

21. What is the purpose of a contract? How are contracts

used?

22. What is an invariant? How are invariants modeled in

a design of a class? Give an example of an invariant for

a hourly employee class.

23. Create a contract for a Compute-Pay method associ-

ated with an hourly employee class.

24. How do you specify a method’s algorithm? Give an

example of an algorithm specification for a Com-

pute-Pay method associated with an hourly

employee class.

25. How are methods specified? Give an example of a

method specification for a Compute-Pay method

associated with an hourly employee class.

EXERCISES

A. For the Health Club exercises in Chapter 6 (N, O),

Chapter 7 (O), Chapter 8 (C, D), and Chapter 9 (D),

choose one of the classes and create a set of invariants

for attributes and relationships and add them to the

CRC card for the class.

B. Choose one of the methods in the class that you chose

for Exercise A and create a contract and a method

specification for it. Use Structured English for the

algorithm specification.

C. For the Picnics R Us exercises in Chapter 6 (P, Q),

Chapter 7 (P), Chapter 8 (H), and Chapter 9 (E),

choose one of the classes and create a set of invariants

for attributes and relationships and add them to the

CRC card for the class.

D. Choose one of the methods in the class that you chose

for Exercise C and create a contract and a method

specification for it. Use Structured English for the

algorithm specification.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Minicases 323

E. For the Of-the-Month Club exercises in Chapter 6

(R, S), Chapter 7 (Q), Chapter 8 (I), and Chapter 9

(F), choose one of the classes and create a set of invari-

ants for attributes and relationships and add them to

the CRC card for the class.

F. Choose one of the methods in the class that you chose

for Exercise E and create a contract and a method

specification for it. Use Structured English for the

algorithm specification.

G. For the Library exercises in Chapter 6 (T, U), Chap-

ter 7 (R), Chapter 8 (J), and Chapter 9 (G), choose

one of the classes and create a set of invariants for

attributes and relationships and add them to the

CRC card for the class.

H. Choose one of the methods in the class that you chose

for Exercise G and create a contract and a method

specification for it. Use Structured English for the

algorithm specification.

I. Describe the difference in meaning between the fol-

lowing two class diagrams. Which is a better model?

Why?

J. From a cohesion, coupling, and connascence perspec-

tive, is the following class diagram a good model? Why

or why not?

K. From a cohesion, coupling, and connascence perspec-

tive, are the following class diagrams good models?

Why or why not?

L. Create a set of inheritance conflicts for the two inher-

itance structures in the class diagrams of Exercise K.

Robot-Employee

Employee Robot

Car-Person

Person Car

Credit Customer Cash Customer Check Customer

Customer

Person

Name-Address Name-AddressPerson Person

1..10..*

Employee Employee

1. Your boss has been in the software development field

for thirty years. He has always prided himself on his

ability to adapt his skills from one approach to devel-

oping software to the next approach. For example, he

had no problem learning structured analysis and

design in the early 1980s and information engineering

in the early 1990s. He even understands the advantage

of rapid application development. But the other day,

when you and he were talking about the advantages of

object-oriented approaches, he became totally con-

fused. He thought that characteristics such as poly-

morphism and inheritance were an advantage for

object-oriented systems. However, when you

explained the problems with inheritance conflicts,

redefinition capabilities, and the need for semantic

consistency across different implementations of

methods, he was ready to simply give up. To make

matters worse, you then went on to explain the

importance of contracts in controlling the develop-

ment of the system. At this point in the conservation,

he basically threw in the towel. As he walked off, you

heard him say something like “I guess it’s true, it’s too

hard to teach an old dog new tricks.”

Being a loyal employee and friend, you decided to

write a short tutorial to give your boss on object-oriented

systems development. As a first step, create a detailed

outline for the tutorial. As a subtle example, use good

design criteria, such as coupling and cohesion, in the

design of your tutorial outline.

2. You have been working with the Holiday Travel Vehi-

cle problem for quite a while. You should go back and

refresh your memory about the problem before

MINICASES

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

324 Chapter 10 Class and Method Design

attempting to solve this situation. Refer back to your

solutions for Minicase 2 in Chapter 7 and Minicase 2

in Chapter 8.

In the new system for Holiday Travel Vehicles, the

system users follow a two-stage process to record com-

plete information on all of the vehicles sold. When an

RV or trailer first arrives at the company from the

manufacturer, a clerk from the inventory department

creates a new vehicle record for it in the computer sys-

tem. The data entered at this time include basic

descriptive information on the vehicle such as manu-

facturer, name, model, year, base cost, and freight

charges. When the vehicle is sold, the new vehicle

record is updated to reflect the final sales terms and the

dealer-installed options added to the vehicle. This

information is entered into the system at the time of

sale when the salesperson completes the sales invoice.

When it is time for the clerk to finalize the new vehi-

cle record, the clerk will select a menu option from the

system, which is called Finalize New Vehicle Record.

The tasks involved in this process are described below.

When the user selects the “Finalize New Vehicle

Record” from the system menu, the user is immedi-

ately prompted for the serial number of the new

vehicle. This serial number is used to retrieve the

new vehicle record for the vehicle from system stor-

age. If a record cannot be found, the serial number

is probably invalid. The vehicle serial number is

then used to retrieve the option records that

describe the dealer-installed options that were

added to the vehicle at the customer’s request.

There may be zero or more options. The cost of the

option specified on the option record(s) is totaled.

Then, the dealer cost is calculated using the vehi-

cle’s base cost, freight charge, and total option cost.

The completed new vehicle record is passed back to

the calling module.

a. Update the structural model (CRC cards and class

diagram) with this additional information.

b. For each class in the structural model create a set of

invariants for attributes and relationships and add

them to the CRC cards for the classes.

c. Choose one of the classes in the structural model.

Create a contract for each method in that class. Be

as complete as possible.

d. Create a method specification for each method in

the class you chose for question c. Use Structured

English for the algorithm specification.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

A project team designs the data management layer of the system using a four-step

process: selecting the format of the storage, mapping the problem domain classes to the

selected format, optimizing the storage to perform efficiently, and then designing the nec-

essary data access and manipulation classes. This chapter first describes the different ways

in which objects can be stored and several important characteristics that should be consid-

ered when choosing among object-persistence formats. Second, the chapter describes a

problem domain class to object-persistence format mapping process for the most impor-

tant object-persistence formats. Third, since the most popular storage format today is the

relational database, the chapter focuses on the optimization of relational databases from

both storage and access perspectives. Last, the chapter describes how to design data access

and manipulation classes.

OBJECTIVES

■ Become familiar with several object-persistence formats.
■ Be able to map problem domain objects to different object-persistence formats.
■ Be able to apply the steps of normalization to a relational database.
■ Be able to optimize a relational database for object storage and access.
■ Become familiar with indexes for relational databases.
■ Be able to estimate the size of a relational database.
■ Be able to design the data access and manipulation classes.

CHAPTER OUTLINE

Introduction

Object-Persistence Formats

Sequential and Random Access Files

Relational Databases

Object-Relational Databases

Object-Oriented Databases

Selecting an Object-Persistence Format

Mapping Problem Domain Objects to

Object-Persistence Formats

Mapping Problem Domain Objects to

an OODBMS Format

Mapping Problem Domain Objects to

an ORDBMS Format

Mapping Problem Domain Objects to

an RDBMS Format

Optimizing RDBMS-Based Object Storage

Optimizing Storage Efficiency

Optimizing Data Access Speed

Estimating Data Storage Size

Designing Data Access and

Manipulation Classes

Applying the Concepts at CD Selections

Select Object-Persistence Format

Mapping Problem Domain Objects to

the Object-Persistence Format

Data Optimization and Sizing

Data Access and Manipulation

Class Design

Summary

C H A P T E R 1 1

Data Management Layer Design

325

C
op

yr
ig

ht
ed

 M
at

er
ia

l

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

INTRODUCTION

As explained in Chapter 9, the work done by any application can be divided into a set of

layers. This chapter focuses on the data management layer, which includes both data access

and manipulation logic along with the actual design of the storage. The data storage com-

ponent of the data management layer manages how data is stored and handled by the pro-

grams that run the system. This chapter describes how a project team designs the storage

for objects (object persistence) using a four step approach: selecting the format of the stor-

age, mapping the problem domain objects to the object-persistence format, optimizing the

object-persistence format, and designing the data access and manipulation classes neces-

sary to handle the communication between the system and the database.

Applications are of little use without the data that they support. How useful is a mul-

timedia application that can’t support images or sound? Why would someone log into a

system to find information if it took him or her less time to locate the information manu-

ally? The design phase of the system development life cycle (SDLC) includes four steps to

object-persistence design that decrease the chances of ending up with inefficient systems,

long system response times, and users who cannot get to the information that they need in

the way that they need it—all of which can affect the success of the project.

The first part of this chapter describes a variety of storage formats and explains how

to select the appropriate one for your application. From a practical perspective, there are

four basic types of formats that can be used to store objects for application systems: files

(sequential and random), object-oriented databases, object-relational databases, or rela-

tional databases.1 Each type has certain characteristics that make it more appropriate for

some types of systems over others.

Once the object-persistence format is selected to support the system, the problem domain

objects need to drive the design of the actual object storage. Then the object storage needs to be

designed to optimize its processing efficiency, which is the focus of the next part of the chapter.

One of the leading complaints by end users is that the final system is too slow, so to avoid such

complaints project team members must allow time during the design phase to carefully make

sure that the file or database performs as fast as possible. At the same time, the team must keep

hardware costs down by minimizing the storage space that the application will require. The

goals to maximize access to the objects and minimize the amount of space taken to store objects

can conflict, and designing object persistence efficiency usually requires trade-offs.

Finally, it is necessary to design a set of data access and manipulation classes to ensure

the independence of the problem domain classes from the storage format. The data access

and manipulation classes handle all communication with the database. In this manner, the

problem domain is decoupled from the object storage allowing the object storage to be

changed without impacting the problem domain classes.

OBJECT-PERSISTENCE FORMATS

There are four main types of object-persistence formats: files (sequential and random

access), object-oriented databases, object-relational databases, and relational databases.

Files are electronic lists of data that have been optimized to perform a particular transac-

tion. For example, Figure 11-1 shows a customer order file with information about cus-

tomers’ orders, in the form in which it is used, so that the information can be accessed and

processed quickly by the system.

326 Chapter 11 Data Management Layer Design

1 There are other types of files, such as relative, indexed sequential, and multi-indexed sequential, and databases, such
as hierarchical, network, and multidimensional. However, these formats typically are not used for object persistence.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

A database is a collection of groupings of information that is related to each other in some

way (e.g., through common fields). Logical groupings of information could include such cat-

egories as customer data, information about an order, product information, and so on. A data-

base management system (DBMS) is software that creates and manipulates these databases (see

Figure 11-2 for a relational database example). Such end-user DBMSs as Microsoft Access sup-

port small-scale databases that are used to enhance personal productivity, while enterprise

DBMSs, such as DB2, Jasmine, and Oracle can manage huge volumes of data and support

applications that run an entire company. An end-user DBMS is significantly less expensive and

easier for novice users to use than its enterprise counterpart, but it does not have the features

or capabilities that are necessary to support mission-critical or large-scale systems.

The next set of sections describe sequential and random access files, relational data-

bases, object-relational databases, and object-oriented databases that can be used to han-

dle a system’s object persistence requirements. Finally, we describe a set of characteristics

on which the different formats can be compared.

Sequential and Random Access Files

From a practical perspective, most object-oriented programming languages support

sequential and random access files as part of the language.2 In this section, we describe

what sequential access and random access files are.3 We also describe how sequential access

and random access files are used to support an application. For example, they can be used

to support master files, look-up files, transaction files, audit files, and history files.

Object-Persistence Formats 327

 Order Cust Last First Prior Payment
 Number Date ID Name Name Amount Tax Total Customer Type

 234 11/23/00 2242 DeBerry Ann $ 90.00 $5.85 $ 95.85 Y MC

 235 11/23/00 9500 Chin April $ 12.00 $0.60 $ 12.60 Y VISA

 236 11/23/00 1556 Fracken Chris $ 50.00 $2.50 $ 52.50 N VISA

 237 11/23/00 2242 DeBerry Ann $ 75.00 $4.88 $ 79.88 Y AMEX

 238 11/23/00 2242 DeBerry Ann $ 60.00 $3.90 $ 63.90 Y MC

 239 11/23/00 1035 Black John $ 90.00 $4.50 $ 94.50 Y AMEX

 240 11/23/00 9501 Kaplan Bruce $ 50.00 $2.50 $ 52.50 N VISA

 241 11/23/00 1123 Williams Mary $ 120.00 $9.60 $ 129.60 N MC

 242 11/24/00 9500 Chin April $ 60.00 $3.00 $ 63.00 Y VISA

 243 11/24/00 4254 Bailey Ryan $ 90.00 $4.50 $ 94.50 Y VISA

 244 11/24/00 9500 Chin April $ 24.00 $1.20 $ 25.20 Y VISA

 245 11/24/00 2242 DeBerry Ann $ 12.00 $0.78 $ 12.78 Y AMEX

 246 11/24/00 4254 Bailey Ryan $ 20.00 $1.00 $ 21.00 Y MC

 247 11/24/00 2241 Jones Chris $ 50.00 $2.50 $ 52.50 N VISA

 248 11/24/00 4254 Bailey Ryan $ 12.00 $0.60 $ 12.60 Y AMEX

 249 11/24/00 5927 Lee Diane $ 50.00 $2.50 $ 52.50 N AMEX

 250 11/24/00 2242 DeBerry Ann $ 12.00 $0.78 $ 12.78 Y MC

 251 11/24/00 9500 Chin April $ 15.00 $0.75 $ 15.75 Y MC

 252 11/24/00 2242 DeBerry Ann $ 132.00 $8.58 $ 140.58 Y MC

 253 11/24/00 2242 DeBerry Ann $ 72.00 $4.68 $ 76.68 Y AMEX

FIGURE 11-1 Customer Order File

2 For example, see the FileInputStream, FileOutputStream, and RandomAccessFile classes in the java.io package.
3 For a more complete coverage of issues related to the design of files, see Owen Hanson, Design of Computer Data
Files (Rockville, MD: Computer Science Press, 1982).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Sequential access files only allow sequential file operations to be performed (e.g., read,

write, and search). Sequential access files are very efficient for sequential operations, such

as report writing. However, for random operations, such as finding or updating a specific

object, they are very inefficient. On the average, 50 percent of the contents of a sequential

access file will have to be searched through before finding the specific object of interest in

the file. They come in two flavors: ordered and unordered.

328 Chapter 11 Data Management Layer Design

 Cust Last First Prior
 ID Name Name Customer

 2242 DeBerry Ann Y

 9500 Chin April Y

 1556 Fracken Chris N

 1035 Black John Y

 9501 Kaplan Bruce N

 1123 Williams Mary N

 4254 Bailey Ryan Y

 2241 Jones Chris N

 5927 Lee Diane N

Customer

 Payment Payment
 Type Description

 MC Mastercard

 VISA Visa

 AMEX American Express

Payment Type

 Order Cust Payment
 Number Date ID Amount Tax Total Type

 234 11/23/00 2242 $ 90.00 $5.85 $ 95.85 MC

 235 11/23/00 9500 $ 12.00 $0.60 $ 12.60 VISA

 236 11/23/00 1556 $ 50.00 $2.50 $ 52.50 VISA

 237 11/23/00 2242 $ 75.00 $4.88 $ 79.88 AMEX

 238 11/23/00 2242 $ 60.00 $3.90 $ 63.90 MC

 239 11/23/00 1035 $ 90.00 $4.50 $ 94.50 AMEX

 240 11/23/00 9501 $ 50.00 $2.50 $ 52.50 VISA

 241 11/23/00 1123 $ 120.00 $9.60 $ 129.60 MC

 242 11/24/00 9500 $ 60.00 $3.00 $ 63.00 VISA

 243 11/24/00 4254 $ 90.00 $4.50 $ 94.50 VISA

 244 11/24/00 9500 $ 24.00 $1.20 $ 25.20 VISA

 245 11/24/00 2242 $ 12.00 $0.78 $ 12.78 AMEX

 246 11/24/00 4254 $ 20.00 $1.00 $ 21.00 MC

 247 11/24/00 2241 $ 50.00 $2.50 $ 52.50 VISA

 248 11/24/00 4254 $ 12.00 $0.60 $ 12.60 AMEX

 249 11/24/00 5927 $ 50.00 $2.50 $ 52.50 AMEX

 250 11/24/00 2242 $ 12.00 $0.78 $ 12.78 MC

 251 11/24/00 9500 $ 15.00 $0.75 $ 15.75 MC

 252 11/24/00 2242 $ 132.00 $8.58 $ 140.58 MC

 253 11/24/00 2242 $ 72.00 $4.68 $ 76.68 AMEX

Order

Tables related through Cust ID

Tables related through Payment Type

FIGURE 11-2 Customer Order Database

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

An unordered sequential access file basically is an electronic list of information that is stored

on disk. Unordered files are organized serially (i.e., the order of the file is the order in which the

objects are written to the file). Typically, new objects simply are added to the file’s end.

Ordered sequential access files are placed into a specific sorted order (e.g., in ascending

order by customer number). However, there is overhead associated with keeping files in a

particular sorted order. The file designer can keep the file in sorted order by always creat-

ing a new file each time a delete or addition occurs, or he or she can keep track of the sorted

order via the use of pointers, which is information about the location of the related record.

A pointer is placed at the end of each record, and it “points” to the next record in a series

or set. The underlying data/file structure in this case is a linked list.4

Random access files allow only random or direct file operations to be performed. This

type of file is optimized for random operations, such as finding and updating a specific

object. Random access files typically give a faster response time to find and update opera-

tions than any other type of file. However, since they do not support sequential processing,

applications such as report writing are very inefficient. The various methods to implement

random access files are beyond the scope of this book.5

There are times when it is necessary to be able to process files in both a sequential and ran-

dom manner. One simple way to do this is to use a sequential file that contains a list of the keys

(the field in which the file is to be kept in sorted order) and a random access file for the actual

objects. This will minimize the cost of additions and deletions to a sequential file, while allow-

ing the random file to be processed sequentially by simply passing the key to the random file to

retrieve each object in sequential order. It also allows for fast random processing to occur by

using only the random access file, thus optimizing the overall cost of file processing. However,

if a file of objects needs to be processed in both a random and sequential manner, the developer

should look toward using a database (relational, object-relational, or object-oriented) instead.

There are many different types of application files—for example, master files, look-up

files, transaction files, audit files, and history files. Master files store core information that

is important to the business and, more specifically, to the application, such as order infor-

mation or customer mailing information. They usually are kept for long periods of time,

and new records are appended to the end of the file as new orders or new customers are

captured by the system. If changes need to be made to existing records, programs must be

written to update the old information.

Look-up files contain static values, such as a list of valid zip codes or the names of the

U.S. states. Typically, the list is used for validation. For example, if a customer’s mailing

address is entered into a master file, the state name is validated against a look-up file that

contains U.S. states to make sure that the operator entered the value correctly.

A transaction file holds information that can be used to update a master file. The trans-

action file can be destroyed after changes are added, or the file may be saved in case the

transactions need to be accessed again in the future. Customer address changes, for one,

would be stored in a transaction file until a program is run that updates the customer

address master file with the new information.

For control purposes, a company might need to store information about how data

changes over time. For example, as human resource clerks change employee salaries in a

human resource system, the system should record the person who made the changes to the

salary amount, the date, and the actual change that was made. An audit file records “before”

Object-Persistence Formats 329

4 For more information on various data structures, see Ellis Horowitz and Sartaj Sahni, Fundamentals of Data
Structures. (Rockville, MD: Computer Science Press, 1982), and Michael T. Goodrich and Roberto Tamassia, Data
Structures and Algorithms in Java (New York: Wiley, 1998).
5 For a more detailed look at the underlying data and file structures of the different types of files see Mary E. S.
Loomis, Data Management and File Structures, 2nd Ed. (Englewood Cliffs, NJ: Prentice Hall, 1989), and Michael
J. Folk and Bill Zoeellick, File Structures: A Conceptual Toolkit (Reading, MA: Addison-Wesley, 1987).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

and “after” images of data as it is altered so that an audit can be performed if the integrity

of the data is questioned.

Sometimes files become so large that they are unwieldy, and much of the information

in the file is no longer used. The history file (or archive file) stores past transactions (e.g.,

old customers, past orders) that are no longer needed by system users. Typically the file is

stored off-line, yet it can be accessed on an as-needed basis. Other files, such as master files,

can then be streamlined to include only active or very recent information.

Relational Databases
The relational database is the most popular kind of database for application development

today. A relational database is based on collections of tables with each table having a pri-

mary key—a field(s) whose value is unique for every row of the table. The tables are related

to each other by placing the primary key from one table into the related table as a foreign

key (see Figure 11-3). Most relational database management systems (RDBMS) support ref-

erential integrity, or the idea of ensuring that values linking the tables together through the

primary and foreign keys are valid and correctly synchronized. For example, if an order

entry clerk using the tables in Figure 11-3 attempted to add order 254 for customer num-

ber 1111, he or she would have made a mistake because no customer exists in the Customer

table with that number. If the RDBMS supported referential integrity, it would check the

customer numbers in the Customer table; discover that the number 1111 is invalid; and

return an error to the entry clerk. The clerk would then go back to the original order form

and recheck the customer information. Can you imagine the problems that would occur if

the RDBMS let the entry clerk add the order with the wrong information? There would be

no way to track down the name of the customer for order 254.

Tables have a set number of columns and a variable number of rows that contain occur-

rences of data. Structured query language (SQL) is the standard language for accessing the data

in the tables. SQL operates on complete tables, as opposed to the individual rows in the tables.

Thus, a query written in SQL is applied to all of the rows in a table all at once, which is differ-

ent than a lot of programming languages that manipulate data row by row. When queries must

include information from more than one table, the tables first are joined together based on

their primary key and foreign key relationships and treated as if they were one large table.

Examples of RDBMS software are Microsoft Access, Oracle, DB2, and Microsoft SQL Server.

To use a relational database management system to store objects, objects must be con-

verted so that they can be stored in a table. From a design perspective, this entails mapping

a UML class diagram to a relational database schema. We describe the mapping necessary

later in this chapter.

Object-Relational Databases
Object-relational database management systems (ORDBMS) are relational database man-

agement systems with extensions to handle the storage of objects in the relational table

330 Chapter 11 Data Management Layer Design

Pretend that you are building a Web-based system for
the admissions office at your university that will be
used to accept electronic applications from students.
All of the data for the system will be stored in a variety
of files.

Question:
1. Give an example using the above system for each of

the following file types: master, look-up, transaction,
audit, and history. What kind of information would
each file contain, and how would the file be used?

11-1 Student Admissions SystemYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Object-Persistence Formats 331

 Cust Last First Prior
 ID Name Name Customer

 2242 DeBerry Ann Y

 9500 Chin April Y

 1556 Fracken Chris N

 1035 Black John Y

 9501 Kaplan Bruce N

 1123 Williams Mary N

 4254 Bailey Ryan Y

 2241 Jones Chris N

 5927 Lee Diane N

Customer

 Payment Payment
 Type Description

 MC Mastercard

 VISA Visa

 AMEX American Express

Payment Type

Referential Integrity:

■ All payment type values in
Order must exist first in
the Payment Type table

■ All Cust ID values in order
must exist first in the
Customer table

 Order Cust Payment
 Number Date ID Amount Tax Total Type

 234 11/23/00 2242 $ 90.00 $5.85 $ 95.85 MC

 235 11/23/00 9500 $ 12.00 $0.60 $ 12.60 VISA

 236 11/23/00 1556 $ 50.00 $2.50 $ 52.50 VISA

 237 11/23/00 2242 $ 75.00 $4.88 $ 79.88 AMEX

 238 11/23/00 2242 $ 60.00 $3.90 $ 63.90 MC

 239 11/23/00 1035 $ 90.00 $4.50 $ 94.50 AMEX

 240 11/23/00 9501 $ 50.00 $2.50 $ 52.50 VISA

 241 11/23/00 1123 $ 120.00 $9.60 $ 129.60 MC

 242 11/24/00 9500 $ 60.00 $3.00 $ 63.00 VISA

 243 11/24/00 4254 $ 90.00 $4.50 $ 94.50 VISA

 244 11/24/00 9500 $ 24.00 $1.20 $ 25.20 VISA

 245 11/24/00 2242 $ 12.00 $0.78 $ 12.78 AMEX

 246 11/24/00 4254 $ 20.00 $1.00 $ 21.00 MC

 247 11/24/00 2241 $ 50.00 $2.50 $ 52.50 VISA

 248 11/24/00 4254 $ 12.00 $0.60 $ 12.60 AMEX

 249 11/24/00 5927 $ 50.00 $2.50 $ 52.50 AMEX

 250 11/24/00 2242 $ 12.00 $0.78 $ 12.78 MC

 251 11/24/00 9500 $ 15.00 $0.75 $ 15.75 MC

 252 11/24/00 2242 $ 132.00 $8.58 $ 140.58 MC

 253 11/24/00 2242 $ 72.00 $4.68 $ 76.68 AMEX

Order

Cust ID is a foreign key in Order

Payment Type is a foreign key in Order

Cust ID is the primary key of Customer table

Order Number is the
primary key of the
Order table

Payment Type is the primary key of the Payment Type table

FIGURE 11-3 Relational Database

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

structure. This is typically done through the use of user-defined types. For example, an

attribute in a table could have a data type of map, which would support storing a map. This

is an example of a complex data type. In pure RDBMSs, attributes are limited to simple or

atomic data types, such as integers, floats, or chars.

ORDBMS, since they are simply extensions to their RDBMS counterpart, also have

very good support for the typical data management operations that business has come to

expect from RDBMSs, including an easy-to-use query language (SQL), authorization, con-

currency-control, and recovery facilities. However, because SQL was designed to handle

only simple data types, it too has been extended to handle complex object data. Currently,

vendors deal with this issue in different manners. For example, DB2, Informix, and Oracle

all have extensions that provide some level of support for objects.

Many of the ORDBMSs on the market still do not support many of the object-oriented

features that can appear in an object-oriented design (e.g., inheritance). One of the prob-

lems in supporting inheritance is that inheritance support is language dependent. For

example, the manner in which Smalltalk supports inheritance is different than C++’s

approach, which is different than Java’s approach. As such, vendors currently must support

many different versions of inheritance, one for each object-oriented language, or decide on

a specific version and force developers to map their object-oriented design (and imple-

mentation) to their approach. As such, like RDBMSs, a mapping from a UML class diagram

to an object-relational database schema is required. We describe the mapping necessary

later in this chapter.

Object-Oriented Databases

The final type of database management system that we describe is the object-oriented data-

base management systems (OODBMS). There have been two primary approaches to sup-

porting object persistence within the OODBMS community: adding persistence extensions

to an object-oriented programming language and the creation of an entirely separate data-

base management system. In the case of OODBMS, the Object Data Management Group

(ODMG) has begun the standardization process for defining (Object Definition Language,

ODL), manipulating (Object Manipulating Language, OML), and querying (Object Query

Language, OQL) objects in an OODBMS.6

With an OODBMS, collections of objects are associated with an extent. An extent is

simply the set of instances associated with a particular class (i.e., it is the equivalent of a

table in a RDBMS). Technically speaking, each instance of a class has a unique identifier

assigned to it by the OODBMS: the Object ID. However, from a practical point of view, it

is still a good idea to have a semantically meaningful primary key (even though from an

OODBMS perspective this is unnecessary). Referential integrity is still very important. In

an OODBMS, from the user’s perspective, it looks as if the object is contained within the

other object. However, the OODBMS actually keeps track of these relationships through

the use of the Object ID, and as such, foreign keys are not necessary.7

OODBMSs provide support for some form of inheritance. However, as already dis-

cussed, inheritance tends to be language dependent. Currently, most OODBMSs are tied

closely to either a particular object-oriented programming language (OOPL) or a set of

OOPLs. Most OODBMSs originally supported either Smalltalk or C++. Today, many of the

commercially available OODBMSs provide support for C++, Java, and Smalltalk.

332 Chapter 11 Data Management Layer Design

6 See www.odmg.org for more information.
7 Depending on the storage and updating requirements, it usually is a good idea to use a foreign key in addition
to the Object ID. The Object ID has no semantic meaning. As such, in the case of needing to rebuild relation-
ships between objects, Object IDs are difficult to validate. Foreign keys, by contrast, should have some meaning
outside of the DBMS.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

OODBMSs also support the idea of repeating groups or multivalued attributes. These

are supported through the use of attribute sets and relationships sets. RDBMSs explicitly do

not allow for multivalued attributes or repeating groups. This is considered to be a viola-

tion of the first normal form (discussed later in this chapter) for relational databases. Some

ORDBMSs do support repeating groups and multivalued attributes.

Up until recently, OODBMSs have mainly been used to support multimedia applica-

tions or systems that involve complex data (e.g., graphics, video, and sound). Application

areas, such as computer-aided design and manufacturing (CAD/CAM), financial services,

geographic information systems, health care, telecommunications, and transportation,

have been the most receptive to OODBMSs. They also are becoming popular technology

for supporting electronic commerce, online catalogs, and large Web multimedia applica-

tions. Examples of pure OODBMSs include Gemstone, Jasmine, O2, Objectivity, Object-

Store, POET, and Versant.

Although pure OODBMS exist, most organizations currently invest in ORDBMS tech-

nology. The market for OODBMS is expected to grow, but its ORDBMS and RDBMS

counterparts dwarf it. One reason for this situation is that there are many more experi-

enced developers and tools in the RDBMS arena. Furthermore, relational users find that

using an OODBMS comes with a fairly steep learning curve.

Selecting an Object-Persistence Format

Each of the file and database storage formats that have been presented has its strengths and

weaknesses, and no one format is inherently better than the others are. In fact, sometimes

a project team will choose multiple formats (e.g., a relational database for one, a file for

another, and an object-oriented database for a third). Thus, it is important to understand

the strengths and weaknesses of each format and when to use each one. Figure 11-4 pre-

sents a summary of the characteristics of each and the characteristics that can help identify

when each type of format is more appropriate.

Major Strengths and Weaknesses The major strengths of files include that some sup-

port for sequential and random access files are normally part of an OOPL, files can be

designed to be very efficient, and they are a good alternative for temporary or short-term

storage. However, all file manipulation must be done through the OOPL. Files do not have

any form of access control beyond that of the underlying operating system. Finally, in most

cases, if files are used for permanent storage, redundant data most likely will result. This

can cause many update anomalies.

RDBMS bring with them proven commercial technology. They are the leaders in the

DBMS market. Furthermore, they can handle very diverse data needs. However, they typically

do not handle complex data types. Therefore, all objects must be converted to a form that can

be stored in tables composed of atomic or simple data. They provide no support for object-

orientation. This lack of support causes an impedance mismatch between the objects con-

tained in the OOPL and the data stored in the tables. An impedance mismatch refers to the

amount of work, done by both the developer and DBMS, and the potential information loss

that can occur when converting objects to a form that can be stored in tables.

Since ORDBMSs are typically object-oriented extensions to RDBMSs, they inherit the

strengths of RDBMSs. They are based on established technologies, such as SQL, and unlike

their predecessors, they can handle complex data types. However, they only provide limited

support for object-orientation. The level of support varies among the vendors; therefore,

ORDBMSs also suffer from the impedance mismatch problem.

OODBMSs support complex data types and have the advantage of directly supporting

object-orientation. Therefore, they do not suffer from the impedance mismatch that the

Object-Persistence Formats 333

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

previous DBMSs do. Even though the ODMG has released version 3.0 of its set of standards,

the OODBMS community is still maturing. As such, this technology may still be too risky

for some firms. The other major problems with OODBMS are the lack of skilled labor and

the perceived steep learning curve of the RDBMS community.

Data Types Supported The first issue is the type of data that will need to be stored in the

system. Most applications need to store simple data types, such as text, dates, and numbers,

and all files and DBMSs are equipped to handle this kind of data. The best choice for sim-

ple data storage, however, usually is the RDBMS because the technology has matured over

time and has continuously improved to handle simple data very effectively.

Increasingly, applications are incorporating complex data, such as video, images, or

audio. ORDBMSs or OODBMSs are best able to handle data of this type. Complex data

stored as objects can be manipulated much faster than with other storage formats.

Type of Application System There are many different kinds of application systems that

can be developed. Transaction processing systems are designed to accept and process many

simultaneous requests (e.g., order entry, distribution, and payroll). In transaction process-

ing systems, the data continuously are updated by a large number of users, and the queries

that are asked of the systems typically are predefined or targeted at a small subset of records

(e.g., “List the orders that were backordered today.” Or “What products did customer #1234

order on May 12, 2001?”).

334 Chapter 11 Data Management Layer Design

Sequential and Object Relational Object-Oriented
Random Access Files Relational DBMS DBMS DBMS

Major
Strengths

Major
Weaknesses

Data Types
Supported

Types of
Application
Systems
Supported

Existing
Storage
Formats

Future
Needs

FIGURE 11-4 Comparison of Object Persistence Formats

Usually part of an object-
oriented programming lan-
guage

Files can be designed for
fast performance

Good for short-term data
storage

Redundant data

Data must be updated using
programs, i.e., no manipula-
tion or query language

No access control

Simple and Complex

Transaction processing

Organization dependent

Poor future prospects

Leader in the database
market

Can handle diverse data
needs

Cannot handle complex
data

No support for object-
orientation

Impedance mismatch
between tables and objects

Simple

Transaction processing and
decision making

Organization dependent

Good future prospects

Based on established,
proven technology, e.g.,
SQL

Able to handle complex
data

Limited support for object-
orientation

Impedance mismatch
between tables and objects

Simple and Complex

Transaction processing and
decision making

Organization dependent

Good future prospects

Able to handle complex
data

Direct support for object-
orientation

Technology is still maturing

Skills are hard to find

Simple and Complex

Transaction processing and
decision making

Organization dependent

Good future prospects

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Another set of application systems are those designed to support decision making,

such as decision support systems (DSS), management information systems (MIS), executive

information systems (EIS), and expert systems (ES). These decision-making support systems

are built to support users who need to examine large amounts of read-only historical data.

The questions that they ask are often ad hoc, and they include hundreds or thousands of

records at a time (e.g., “List all customers in the West region who purchased a product cost-

ing more than $500 at least three times.” or “What products had increased sales in the sum-

mer months that have not been classified as summer merchandise?”).

Transaction processing and decision support systems thus have very different data storage

needs. Transaction processing systems need data storage formats that are tuned for a lot of data

updates and fast retrieval of predefined, specific questions. Files, relational databases, object-

relational databases, and object-oriented databases can all support these kinds of requirements.

By contrast, systems to support decision making are usually only reading data (not updating it),

often in ad hoc ways. The best choices for these systems usually are RDBMSs because these for-

mats can be configured specially for needs that may be unclear and less apt to change the data.

Existing Storage Formats The storage format should be selected primarily on the basis of

the kind of data and application system being developed. However, project teams should con-

sider the existing storage formats in the organization when making design decisions. In this

way, they can better understand the technical skills that already exist and how steep the learn-

ing curve will be when the storage format is adopted. For example, a company that is famil-

iar with RDBMS will have little problem adopting a relational database for the project,

whereas an OODBMS may require substantial developer training. In the latter situation, the

project team may have to plan for more time to integrate the object-oriented database with

the company’s relational systems, or possibly consider moving toward an ORDBMS solution.

Future Needs Not only should a project team consider the storage technology within the

company, but also it should be aware of current trends and technologies that are being used

by other organizations. A large number of installations of a specific type of storage format

suggest that skills and products are available to support the format. Therefore, the selection

of that format is “safe.” For example, it would probably be easier and less expensive to find

RDBMS expertise when implementing a system than to find help with an OODBMS.

Other Miscellaneous Criteria Other criteria that should be considered include cost, licens-

ing issues, concurrency control, ease of use, security and access controls, version management,

storage management, lock management, query management, language bindings, and APIs. We

also should consider performance issues, such as cache management, insertion, deletion,

retrieval, and updating of complex objects. Finally, the level of support for object-orientation

Mapping Problem Domain Objects to Object-Persistence Formats 335

A major public university graduates approximately
10,000 students per year, and the development office has
decided to build a Web-based system that solicits and
tracks donations from the university’s large alumni body.
Ultimately, the development officers hope to use the
information in the system to better understand the alumni
giving patterns so that they can improve giving rates.

Question:

1. What kind of system is this? Does it have character-
istics of more than one? What different kinds of data
will this system use? On the basis of your answers,
what kind of data storage format(s) do you recom-
mend for this system?

11-2 Donation Tracking SystemYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

(such as objects, single inheritance, multiple inheritance, polymorphism, encapsulation and

information hiding, methods, multi-valued attributes, and repeating groups) is critical.

MAPPING PROBLEM DOMAIN OBJECTS TO OBJECT-PERSISTENCE FORMATS8

As described in the previous section, there are many different formats from which to

choose to support object persistence. Each of the different formats can have some con-

version requirements. Regardless of the object-persistence format chosen, we suggest

supporting primary keys and foreign keys by adding them to the problem domain classes

at this point in time. However, this does imply some additional processing required. The

developer now will have to set the value for the foreign key when adding the relationship

to an object. In some cases, this overhead may be too costly. In those cases, this suggestion

should be ignored. In the remainder of this section, we describe how to map the problem

domain classes to the different object-persistence formats. From a practical perspective, file

formats are used mostly for temporary storage. As such, we do not consider them further.

We also recommend that the data management functionality specifics, such as retrieval

and updating of data from the object storage, be included only in classes contained in the Data

Management layer. This will ensure that the Data Management classes are dependent on the

Problem Domain classes and not the other way around. Furthermore, this allows the design of

Problem Domain classes to be independent of any specific object persistence environment,

thus increasing their portability and their potential for reuse. Like our previous recommenda-

tion, this one also implies additional processing. However, the increased portability and poten-

tial for reuse realized should more than compensate for the additional processing required.

Mapping Problem Domain Objects to an OODBMS Format

If we support object persistence with an OODBMS, the mappings between the problem

domain objects and the OODBMS tend to be fairly straightforward. As a starting point, we

suggest that each concrete problem domain class should have a corresponding object per-

sistence class in the OODBMS. Furthermore, there will be a data access and manipulation

(DAM) class that contains the functionality required to manage the interaction between the

object persistence class and the problem domain layer. For example, using the appointment

system example from the previous chapters, the Patient class is associated with an OODBMS

class (see Figure 11-5). The Patient class essentially will be unchanged from the analysis

phase. The Patient-OODBMS class will be a new class that is dependent on the Patient class,

while the Patient-DAM class will be a new class that is dependent on both the Patient class

and the Patient-OODBMS class. The Patient-DAM class must be able to read from and write

to the OODBMS. Otherwise, it will not be able to store and retrieve instances of the Patient

class. Even though this does add overhead to the installation of the system, it allows the

Problem Domain class to be independent of the OODBMS being used. As such, if at a lat-

ter point in time another OODBMS or object-persistence format is adopted, only the data

access and management classes will have to be modified. This approach increases both the

portability and the potential for reuse of the Problem Domain classes.

Even though we are implementing the data management layer using an OODBMS, a

mapping from the problem domain layer to the OODBMS classes in the data management

layer may be required, depending on the level of support of inheritance in the OODBMS

336 Chapter 11 Data Management Layer Design

8 The rules presented in this section are based on material in Ali Bahrami, Object Oriented Systems Development
using the Unified Modeling Language, McGraw Hill, 1999, Michael Blaha and William Premerlani, Object-Oriented
Modeling and Design for Database Applications, Prentice Hall, 1998, Akmal B.Chaudri and Roberto Zicari, Suc-
ceeding with Object Databases: A Practical Look at Today’s Implementations with Java and XML, John Wiley and
Sons, 2001, Peter Coad and Edward Yourdon, Object-Oriented Design, Yourdon Press, 1991, and Paul R. Read, Jr.,
Developing Applications with Java and UML (Boston: Addison-Wesley, 2002).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

and the level of inheritance used in the problem domain classes. If multiple inheritance is

used in the problem domain, but not supported by the OODBMS, then the multiple inher-

itance must be factored out of the OODBMS classes. For each case of multiple inheritance

(i.e., more than one superclass), the following rules can be used to factor out the multiple

inheritance effects in the design of the OODBMS classes.

RULE 1a: Add an attribute(s) to the OODBMS class(es) that represents the sub-

class(es) that will contain an Object ID of the instance stored in the OODBMS class

that represents the “additional” superclass(es). This is similar in concept to a foreign

key in an RDBMS. The multiplicity of this new association from the subclass to the

“superclass” should be 1..1. Add an attribute(s) to the OODBMS class(es) that repre-

sents the superclass(es) that will contain an Object ID of the instance stored in the

OODBMS class that represents the subclass(es). If the superclasses are concrete, that

is, they can be instantiated themselves, then the multiplicity from the superclass to

the subclass is 0..*, otherwise, it is 1..1. Furthermore, an exclusive-or (XOR) constraint

must be added between the associations. Do this for each “additional” superclass.

OR

RULE 1b: Flatten the inheritance hierarchy of the OODBMS classes by copying the

attributes and methods of the additional OODBMS superclass(es) down to all of the

OODBMS subclasses and remove the additional superclass from the design.9

These multiple inheritance rules are very similar to those described previously in Chap-

ter 10. Figure 11-6 demonstrates the application of the above rules. The right side of the fig-

ure portrays a set of problem domain classes that are involved in a set of multiple inheritance

relationships where Class 1 inherits from both SuperClass1 and SuperClass2, and Class 2

inherits from both SuperClass2 and SuperClass3. Part A of the figure portrays the mapping

Mapping Problem Domain Objects to Object-Persistence Formats 337

PD Layer

DAM Layer

ApptPatient

Appt-OODBMSPatient-OODBMS

Appt-DAMPatient-DAM

FIGURE 11-5
Appointment System

Problem Domain and

Data Access and Man-

agement Layers

9 It is also a good idea to document this modification in the design so that in the future, modifications to the
design can be maintained easily.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

3
3
8

C
h

a
p

te
r 1

1
D

a
ta

 M
a
n

a
g

e
m

e
n

t L
a
y
e

r
 D

e
s
ig

n

SuperClass3-OODBMS

-attribute7
-attribute8

Class2-OODBMS

-attribute9
-attribute10
-SuperClass2-OODBMS

SuperClass3-OODBMS

-attribute7
-attribute8

Class1-OODBMS

-attribute5
-attribute6
-SuperClass2-OODBMS

SuperClass2-OODBMS

-attribute3
-attribute4
-Class1-OODBMS
-Class1-OODBMS

Class2-OODBMS

-attribute3
-attribute4
-attribute9
-attribute10

SuperClass1-OODBMS

-attribute1
-attribute2

Class1-OODBMS

-attribute3
-attribute4
-attribute5
-attribute6

0..*

1..1

1..1

0..*

(A)

SuperClass1-OODBMS

-attribute1
-attribute2

SuperClass1

-attribute1
-attribute2

XOR

Class1

-attribute5
-attribute6

SuperClass1

-attribute1
-attribute2

Class1

-attribute5
-attribute6

Class2

-attribute9
-attribute10

SuperClass3

-attribute7
-attribute8

SuperClass2

-attribute3
-attribute4

Class2

-attribute9
-attribute10

SuperClass2

-attribute3
-attribute4

SuperClass3

-attribute7
-attribute8

FIGURE 11-6 Mapping Problem Domain Objects to Single Inheritance-Based OODBMSC
op

yr
ig

ht
ed

 M
at

er
ia

l
Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Mapping Problem Domain Objects to Object-Persistence Formats 339

of multiple inheritance relationships into a single inheritance-based OODBMS using Rule 1a.

Assuming that SuperClass2 is concrete, we apply Rule 1a to the problem domain classes, and

we end up with the OODBMS classes on the left side of Part A where we have

■ added an attribute to Class1-OODBMS that represents an association with Super-

Class2-OODBMS,

■ added attributes to Class2-OODBMS that represents an association with Super-

Class2-OODBMS,

■ added a pair of attributes to SuperClass2-OODBMS that represents an association with

Class1-OODBMS and Class2-OODBMS, for completeness sale, and

■ added associations between Class2-OODBMS and SuperClass2-OODBMS and

Class1-OODBMS and SuperClass2-OODBMS that have the correct multiplicities

and the XOR constraint explicitly shown.

We also display the dependency relationships from the OODBMS classes to the problem

domain classes. Furthermore, we illustrate the fact that the association between Class1-

OODBMS and SuperClass2-OODBMS and the association between Class2-OODBMS and

SuperClass2-OODBMS are based on the original factored out inheritance relationships in

the problem domain classes by showing dependency relationships from the associations to

the inheritance relationships.

On the other hand, if we apply Rule 1b to map the problem domain classes to a sin-

gle-inheritance based OODBMS, we end up with the mapping in Part B where all of the

attributes of SuperClass2 have been copied into the Class1-OODBMS and Class2-

OODBMS classes. In this latter case, you may have to deal with the effects of inheritance

conflicts (see Chapter 10).

The advantage of Rule 1a is that all problem domain classes identified during analysis

are preserved in the database. This allows for maximum flexibility of maintenance of the

design of the data management layer. However, Rule 1a increases the amount of message

passing required in the system, and it has added processing requirements involving the XOR

constraint, thus reducing the overall efficiency of the design. As such, our recommendation

is to limit Rule 1a to only be applied when dealing with “extra” superclasses that are concrete

because they have an independent existence in the problem domain. Use Rule 1b when they

are abstract because they do not have an independent existence from the subclass.

In either case, additional processing will be required. In the first case, cascading of

deletes will work, not only from the individual object to all of its elements, but also from

the “superclass” instances to all of the “subclass” instances. Most OODBMSs do not sup-

port this type of deletion. However, to enforce the referential integrity of the system, it

must be done. In the second case, there will be a lot of copying and pasting of the structure

of the superclass to the subclasses. In the case that a modification of the structure of the

superclass is required, then the modification must be cascaded to all of the subclasses.

Again, most OODBMSs do not support this type of modification cascading. Therefore, the

developer must address it. However, multiple inheritance is rare in most business prob-

lems. As such, in most situations the above rules will never be necessary.

When instantiating problem domain objects from OODBMS objects, additional pro-

cessing also will be required. The additional processing will be in the retrieval of the

OODBMS objects and taking their elements to create a problem domain object. Also, when

storing the problem domain object, the conversion to a set of OODBMS objects is required.

Basically speaking, anytime that an interaction takes place between the OODBMS and the

system, if multiple inheritance is involved and the OODBMS only supports single inheri-

tance, a conversion between the two formats will be required. This conversion is the pur-

pose of the data access and manipulation classes.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Mapping Problem Domain Objects to an ORDBMS Format

If we support object persistence with an ORDBMS, then the mapping from the problem

domain objects to the data management objects is much more involved. Depending on

the level of support for object-orientation, different mapping rules are necessary. For our

purposes, we assume that the ORDBMS supports Object IDs, multivalued attributes, and

stored procedures. However, we assume that the ORDBMS does not provide any support

for inheritance. Based on these assumptions, Figure 11-7 lists a set of rules that can be

used to design the mapping from the problem domain objects to the ORDBMS-based

data access and management layer tables.

340 Chapter 11 Data Management Layer Design

Rule 1: Map all concrete problem domain classes to the ORDBMS tables. Also, if an abstract problem domain class has multiple
direct subclasses, map the abstract class to an ORDBMS table.

Rule 2: Map single valued attributes to columns of the ORDBMS tables.

Rule 3: Map methods and derived attributes to stored procedures or to program modules.

Rule 4: Map single-valued aggregation and association relationships to a column that can store an Object ID. Do this for both sides
of the relationship.

Rule 5: Map multi-valued attributes to a column that can contain a set of values.

Rule 6: Map repeating groups of attributes to a new table and create a one-to-many association from the original table to the new
one.

Rule 7: Map multi-valued aggregation and association relationships to a column that can store a set of Object IDs. Do this for both
sides of the relationship.

Rule 8: For aggregation and association relationships of mixed type (one-to-many or many-to one), on the single-valued side (1..1
or 0..1) of the relationship, add a column that can store a set of Object IDs. The values contained in this new column will be the
Object IDs from the instances of the class on the multi-valued side. On the multi-valued side (1..* or 0..*), add a column that can
store a single Object ID that will contain the value of the instance of the class on the single-valued side.

For generalization/inheritance relationships:

Rule 9a: Add a column(s) to the table(s) that represents the subclass(es) that will contain an Object ID of the instance stored in the
table that represents the superclass. This is similar in concept to a foreign key in an RDBMS. The multiplicity of this new associa-
tion from the subclass to the “superclass” should be 1..1. Add a column(s) to the table(s) that represents the superclass(es) that will
contain an Object ID of the instance stored in the table that represents the subclass(es). If the superclasses are concrete, that is,
they can be instantiated themselves, then the multiplicity from the superclass to the subclass is 0..*, otherwise, it is 1..1. Further-
more, an exclusive-or (XOR) constraint must be added between the associations. Do this for each superclass.

OR

Rule 9b: Flatten the inheritance hierarchy by copying the superclass attributes down to all of the subclasses and remove the super-
class from the design.10

FIGURE 11-7 Mapping Problem Domain Objects to ORDBMS Schema

10 Again, it is also a good idea to document this modification in the design so that in the future, modifications to
the design can be maintained easily.

In the previous chapters, we have been using a den-
tist office appointment system as an example. Assume
that you now know that the OODBMS that will be

used to support the system will only support single-
inheritance. Using a class diagram, draw the design
for the database.

11-3 Dentist Office Appointment SystemYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

First, all concrete problem domain classes must be mapped to the tables in the

ORDBMS. For example in Figure 11-8, the Patient class has been mapped to Patient

ORDBMS table. Notice that the Person class has been mapped also to an ORDBMS table.

Even though the Person class is abstract, this mapping was done since in the complete class

diagram (see Figure 7-2), the Person class had multiple direct subclasses (Employee and Patient).

Second, single-valued attributes should be mapped to columns in the ORDBMS

tables. Again, referring to Figure 11-8, we see that the amount attribute of the Patient class

has been included in the Patient Table class.

Mapping Problem Domain Objects to Object-Persistence Formats 341

ORDBMS Tables Problem Domain Classes

Person Table

-lastname[1..1]
-firstname[1..1]
-address[1..1]
-phone[1..1]
-birthdate[1..1]
-SubClassObjects[1..1]

Patient Table

-amount[1..1]
-Person[1..1]
-Appts[0..*]
-Symptoms[1..*]
-Insurance carrier[0..*]
-Primary Insurance Carrier[0..*]

Symptom Table

-name[1..1]
-Patients[0..*]

Appt Table

-Patient[1..1]
-time[1..1]
-date[1..1]
-reason[1..1]

1..1

1..1

0..* 0..*

0..* 0..*

0..*

1

1

1..* 1..*

+ primary
insurance
carrier

0..*

1

1

suffers

schedules

Appt

-time
-date
-reason

+cancel without notice()Patient

-amount
-insurance carrier

+make appointment()
+calculate last visit()
+change status()
+provides medical history()

Person

-lastname
-firstname
-address
-phone
-birthdate
-/ age

Symptom

-name

FIGURE 11-8 Mapping Problem domain Objects to ORDBMS Schema Example

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Third, depending on the level of support of stored procedures, the methods and

derived attributes should be mapped either to stored procedures or program modules.

Fourth, single-valued (one-to-one) aggregation and association relationships should

be mapped to a column that can store an Object ID. This should be done for both sides of

the relationship.

Fifth, multivalued attributes should be mapped to columns that can contain a set of values.

For example in Figure 11-8, the insurance carrier attribute in the Patient class may contain

multiple values because a patient may have more than one insurance carrier. As such, in the

Patient table, a multiplicity has been added to the insurance carrier attribute to portray this fact.

The sixth mapping rule addresses repeating groups of attributes in a problem domain

object. In this case, the repeating group of attributes should be used to create a new table

in the ORDBMS. Furthermore, it may imply a missing class in the problem domain layer.

Normally, when a set of attributes repeat together as a group, it implies a new class. Finally,

you should create a one-to-many association from the original table to the new one.

The seventh rule supports mapping multi-valued (many-to-many) aggregation and

association relationships to columns than can store a set of Object IDs. Basically, this is a

combination of the fourth and fifth rules. Like the fourth rule, this should be done for both

sides of the relationships. For example in Figure 11-8, the Symptom table has a multival-

ued attribute (Patients) that can contain multiple Object IDs to Patient Table objects, and

Patient table has a multivalued attribute (Symptoms) that can contain multiple Object IDs

to Symptom Table objects.

The eighth rule combines the intentions of rules 4 and 7. In this case, the rule maps

one-to-many and many-to one relationships. On the single-valued side (1..1 or 0..1) of the

relationship, a column that can store a set of Object IDs from the table on the multivalued

side (1..* or 0..*) of the relationship should be added. On the multi-valued side, a column

should be added to the table that can store an Object ID from an instance stored in the

table on the single-valued side of the relationship. For example, in Figure 11-8, the Patient

table has a multivalued attribute (Appts) that can contain multiple Object IDs to Appt

Table objects, while the Appt table has a single-valued attribute (Patient) that can contain

an Object ID to a Patient Table object.

The ninth, and final, rule deals with the lack of support for generalization and inheri-

tance. In this case, there are two different approaches. These approaches virtually are iden-

tical to the rules described with OODBMS object-persistence formats above. For example

in Figure 11-8, the Patient table contains an attribute (Person) that can contain an Object

ID for a Person Table object, and the Person table contains an attribute (SubClassObjects)

that contain an Object ID for an object, in this case, stored in the Patient table. In the other

case, the inheritance hierarchy is flattened.

Of course, there will be additional processing required anytime that an interaction

takes place between the database and the system. Every time an object must be created,

retrieved from the database, updated, or deleted, the ORDBMS object(s) must be con-

verted to the problem domain object or vice versa. Again, this is the purpose of the data

access and manipulation classes. The only other choice is to modify the problem domain

objects. However, this can cause problems between the problem domain layer and the

physical architecture and human computer interface layers. Generally speaking, the cost

of conversion between the ORDBMS and the problem domain layer will be more than off-

set by the savings in development time associated with (1) the interaction between the

problem domain and physical architecture and human computer interaction layers, and

(2) the ease of maintenance of a semantically clean problem domain layer. In the long run,

due to the conversions necessary, the development and production cost of using an

OODBMS may be less than the development and production cost implementing the

object persistence in an ORDBMS.

342 Chapter 11 Data Management Layer Design

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Mapping Problem Domain Objects to an RDBMS Format

If we support object persistence with an RDBMS, then the mapping from the problem

domain objects to the RDBMS tables is similar to the mapping to an ORDBMS. However,

the assumptions made for an ORDBMS are no longer valid. Figure 11-9 lists a set of rules

that can be used to design the mapping from the problem domain objects to the RDBMS-

based data management layer tables.

The first four rules are basically the same set of rules that are used to map problem

domain objects to ORDBMS-based data management objects. First, all concrete problem

domain classes must be mapped to tables in the RDBMS. Second, single-

valued attributes should be mapped to columns in the RDBMS table. Third, methods

should be mapped either to stored procedures or program modules, depending on the

complexity of the method. Fourth, single-valued (one-to-one) aggregation and association

relationships are mapped to columns that can store the foreign keys of the related tables.

This should be done for both sides of the relationship. For example in Figure 11-10, we

needed to include tables in the RDBMS for the Person, Patient, Symptom, and Appt classes.

Mapping Problem Domain Objects to Object-Persistence Formats 343

Rule 1: Map all concrete problem domain classes to the RDBMS tables. Also, if an abstract problem domain class has multiple
direct subclasses, map the abstract class to a RDBMS table.

Rule 2: Map single valued attributes to columns of the tables.

Rule 3: Map methods to stored procedures or to program modules.

Rule 4: Map single-valued aggregation and association relationships to a column that can store the key of the related table, i.e.,
add a foreign key to the table. Do this for both sides of the relationship.

Rule 5: Map multi-valued attributes and repeating groups to new tables and create a one-to-many association from the original
table to the new ones.

Rule 6: Map multi-valued aggregation and association relationships to a new associative table that relates the two original tables
together. Copy the primary key from both original tables to the new associative table, i.e., add foreign keys to the table.

Rule 7: For aggregation and association relationships of mixed type, copy the primary key from the single-valued side (1..1 or 0..1)
of the relationship to a new column in the table on the multi-valued side (1..* or 0..*) of the relationship that can store the key of
the related table, i.e., add a foreign key to the table on the multi-valued side of the relationship.

For generalization/inheritance relationships:

Rule 8a: Ensure that the primary key of the subclass instance is the same as the primary key of the superclass. The multiplicity of
this new association from the subclass to the “superclass” should be 1..1. If the superclasses are concrete, that is, they can be
instantiated themselves, then the multiplicity from the superclass to the subclass is 0..*, otherwise, it is 1..1. Furthermore, an exclu-
sive-or (XOR) constraint must be added between the associations. Do this for each superclass.

OR

Rule 8b: Flatten the inheritance hierarchy by copying the superclass attributes down to all of the subclasses and remove the super-
class from the design.11

FIGURE 11-9 Mapping Problem Domain Objects to RDBMS Schema

11 Again, it is also a good idea to document this modification in the design so that in the future, modifications to
the design can be maintained easily.

In Your Turn 11-3, you created a design for the database
assuming that the database would be implemented using
an OODBMS that only supported single-inheritance. In
this case, assume that you now know that an ORDBMS

will be used and that it does not support any inheritance.
However, it does support Object IDs, multivalued attrib-
utes, and stored procedures. Using a class diagram, draw
the design for the database.

11-4 Dentist Office Appointment SystemYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

344 Chapter 11 Data Management Layer Design

RDBMS Tables Problem Domain Classes

Person Table

-lastname[1..1]
-firstname[1..1]
-address[1..1]
-phone[1..1]
-birthdate[1..1]
-personNumber[1..1]

Patient Table

-amount[1..1]
-personNumber[1..1]
-primaryInsuranceCarrier[0..*]

Symptom Table

-name[1..1]

Suffer Table

-personNumber[1..1]
-name[1..1]

Insurance Carrier Table

-name[1..1]
-personNumber[1..1]

Appt Table

-time[1..1]
-date[1..1]
-reason[1..1]
-personNumber[1..1]

1..1

1..1

1..1

1..1

1..1

1..1

0..*

0..* 0..*

0..*

0..*

0..*

1

1

1..*

1..*

+ primary
insurance
carrier

suffers

schedules

Appt

-time
-date
-reason
-personNumber[1..1]

+cancel without notice()
Patient

-amount
-insurance carrier

+make appointment()
+calculate last visit()
+change status()
+provides medical history()

Person

-lastname
-firstname
-address
-phone
-birthdate
-/ age
-personNumber

Symptom

-name

FIGURE 11-10 Mapping Problem Domain Objects to RDBMS Schema Example

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

The fifth rule addresses multi-valued attributes and repeating groups of attributes in a

problem domain object. In these cases, the attributes should be used to create new tables in the

RDBMS. Furthermore, like in the ORDBMS mappings, repeating groups of attributes may

imply missing classes in the problem domain layer. As such, a new problem domain class may

be required. Finally, you should create a one-to-many or zero-to-many association from the

original table to the new one. For example, in Figure 11-10, we needed to create a new table for

insurance carrier because it was possible for a patient to have more than one insurance carrier.

The sixth rule supports mapping multi-valued (many-to-many) aggregation and

association relationships to a new table that relates the two original tables together. In this

case, the new table should contain foreign keys back to the original tables. For example, in

Figure 11-10, we needed to create a new table that represents the suffer association

between the Patient and Symptom problem domain classes.

The seventh rule addresses one-to-many and many-to-one relationships. With these

types of relationships, the multivalued side (0..* or 1..*) should be mapped to a column in

its table that can store a foreign key back to the single-valued side (0..1 or 1..1). It is possi-

ble that you have already taken care of this situation since we recommended earlier that you

include both primary and foreign key attributes in the problem domain classes. In the case

of Figure 11-10, we had already added the primary key from the Patient class to the Appt

class as a foreign key (see personNumber). However, in the case of the reflexive relation-

ship, primary insurance carrier, associated with the Patient class, we need to add a new

attribute (primaryInsuranceCarrier) to be able to store the relationship.

The eighth, and final, rule deals with the lack of support for generalization and inher-

itance. Like in the case of an ORDBMS, there are two different approaches. These

approaches virtually are identical to the rules described with OODBMS and ORDBMS

object-persistence formats above. The first approach is to add a column to each table that

represents a subclass for each of the concrete superclasses of the subclass. Essentially, this is

ensuring that the primary key of the subclass is the same as the primary key for the super-

class. If you had previously added the primary and foreign keys to the problem domain

objects, as we recommended above, then you do not have to do anything else. The primary

keys of the tables will be used to join back together the instances stored in the tables that

represent each of the pieces of the problem domain object. Conversely, the inheritance

hierarchy can be flattened and the rules (Rules 1 through 7) reapplied.

As in the case of the ORDBMS approach, additional processing will be required any-

time that an interaction takes place between the database and the system. Every time an

object must be created, retrieved from the database, updated, or deleted, the mapping

between the problem domain and the RDBMS must be used to convert between the two

different formats. In this case, a great deal of additional processing will be required. How-

ever, from a practical point of view, it is more likely that you will use a RDBMS for storage

of objects than the other approaches because RDBMSs are by far the most popular format

in the marketplace. As such, we will focus on how to optimize the RDBMS format for

object persistence in the next section of this chapter.

OPTIMIZING RDBMS-BASED OBJECT STORAGE

Once the object-persistence format is selected, the second step is to optimize the object per-

sistence for processing efficiency. The methods of optimization will vary based on the for-

mat that you select; however, the basic concepts will remain the same. Once you

understand how to optimize a particular type of object persistence, you will have some idea

as to how to approach the optimization of other formats. This section focuses on the opti-

mization of the most popular storage format: relational databases.

Optimizing RDBMS-Based Object Storage 345

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

There are two primary dimensions in which to optimize a relational database: for stor-

age efficiency and for speed of access. Unfortunately, these two goals often conflict because

the best design for access speed may take up a great deal of storage space as compared to

other less speedy designs. This section describes how to optimize the object persistence for

storage efficiency using a process called normalization. The next section presents design

techniques, such as denormalization and indexing, which can speed up the performance of

the system. Ultimately, the project team will go through a series of trade-offs until the ideal

balance of the two optimization dimensions is reached. Finally, the project team must esti-

mate the size of the data storage needed to ensure there is enough capacity on the server(s).

Optimizing Storage Efficiency

The most efficient tables in a relational database in terms of storage space have no redun-

dant data and very few null values because the presence of these suggest that space is being

wasted (and more data to store means higher data storage hardware costs). For example,

notice that the table in Figure 11-11 repeats customer information, such as name and state,

each time a customer places an order, and it contains many null values in the product

related columns. These nulls occur whenever a customer places an order for less than three

items (the maximum number on an order).

In addition to wasting space, redundancy and null values also allow more room for

error and increase the likelihood that problems will arise with the integrity of the data.

What if customer 1035 moved from Maryland to Georgia? In the case of Figure 11-11, a

program must be written to ensure that all instances of that customer are updated to show

“GA” as the new state of residence. If some of the instances are overlooked, then the table

will contain an update anomaly whereby some of the records contain the correctly updated

value for state and other records contain the old information.

Nulls threaten data integrity because they are difficult to interpret. A blank value in the

Order table’s product fields could mean (1) the customer did not want more than one or

two products on his or her order, (2) the operator forgot to enter in all three products on

the order, or (3) the customer cancelled part of the order and the products were deleted by

the operator. It is impossible to be sure of the actual meaning of the nulls.

For both of these reasons—wasted storage space and data integrity threats—project teams

should remove redundancy and nulls from the table. During the design phase, the class diagram

is used to examine the design of the RDBMS tables (e.g., see Figure 11-10) and optimize it for

storage efficiency. If you follow the modeling instructions and guidelines that were presented in

Chapter 7, you will have little trouble creating a design that is highly optimized in this way

because a well-formed logical object model does not contain redundancy or many null values.

Sometimes, however, a project team needs to start with a model that was poorly con-

structed or with one that was created for files or a non-relational type of format. In these

346 Chapter 11 Data Management Layer Design

In Your Turn 11-3, you created a design for the database
assuming that the database would be implemented using
an OODBMS that only supported single-inheritance. And
in Your Turn 11-4, you created a design for the database
assuming that the database would be implemented using

an ORDBMS that did not support any inheritance, but did
support Object IDs, multi-valued attributes, and stored
procedures. In this case, you should assume that the sys-
tem will be supported by a RDBMS. Using a class dia-
gram, draw the design for the database.

11-5 Dentist Office Appointment SystemYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

O
p

tim
iz

in
g

 R
D

B
M

S
-B

a
s
e

d
 O

b
je

c
t S

to
r
a
g

e
3
4
7

Redundant Data Null Cells

Sample Records:

Order

-Order Number : unsigned long
-Date : Date
-Cust ID : unsigned long
-Last Name : String
-First Name : String
-State : String
-Tax Rate : float
-Product 1 Number : unsigned long
-Product 1 Desc. : String
-Product 1 Price : double
-Product 1 Qty. : unsigned long
-Product 2 Number : unsigned long
-Product 2 Desc. : String
-Product 2 Price : double
-Product 2 Qty. : unsigned long
-Product 3 Number : unsigned long
-Product 3 Desc. : String
-Product 3 Price : double
-Product 3 Qty. : unsigned long

 Order Cust Last First Tax Prod. 1 Prod. 1 Prod. 1 Prod. 1 Prod. 2 Prod. 2 Prod. 2 Prod. 2 Prod. 2
Number Date ID Name Name State Rate Number Desc. Price Qty. Number Desc. Price Qty. Number

 239 11/23/00 1035 Black John MD 0.05 555 Cheese Tray $45.00 2

 260 11/24/00 1035 Black John MD 0.05 444 Wine Gift Pack $60.00 1

 273 11/27/00 1035 Black John MD 0.05 222 Bottle Opener $12.00 1

 241 11/23/00 1123 Williams Mary CA 0.08 444 Wine Gift Pack $60.00 2

 262 11/24/00 1123 Williams Mary CA 0.08 222 Bottle Opener $12.00 2

 287 11/27/00 1123 Williams Mary CA 0.08 222 Bottle Opener $12.00 2

 290 11/30/00 1123 Williams Mary CA 0.08 555 Cheese Tray $45.00 3

 234 11/23/00 2242 DeBerry Ann DC 0.065 555 Cheese Tray $45.00 2

 237 11/23/00 2242 DeBerry Ann DC 0.065 111 Wine Guide $15.00 1 444 Wine Gift Pack $60.00 1

 238 11/23/00 2242 DeBerry Ann DC 0.065 444 Wine Gift Pack $60.00 1

 245 11/24/00 2242 DeBerry Ann DC 0.065 222 Bottle Opener $12.00 1

 250 11/24/00 2242 DeBerry Ann DC 0.065 222 Bottle Opener $12.00 1

 252 11/24/00 2242 DeBerry Ann DC 0.065 222 Bottle Opener $12.00 1 444 Wine Gift Pack $60.00 2

 253 11/24/00 2242 DeBerry Ann DC 0.065 222 Bottle Opener $12.00 1 444 Wine Gift Pack $60.00 1

 297 11/30/00 2242 DeBerry Ann DC 0.065 333 Jams & Jellies $20.00 2

 243 11/24/00 4254 Bailey Ryan MD 0.05 555 Cheese Tray $45.00 2

 246 11/24/00 4254 Bailey Ryan MD 0.05 333 Jams & Jellies $20.00 3

 248 11/24/00 4254 Bailey Ryan MD 0.05 222 Bottle Opener $12.00 1 333 Jams & Jellies $20.00 2 111

 235 11/23/00 9500 Chin April KS 0.05 222 Bottle Opener $12.00 1

 242 11/23/00 9500 Chin April KS 0.05 333 Jams & Jellies $20.00 3

 244 11/24/00 9500 Chin April KS 0.05 222 Bottle Opener $12.00 2

 251 11/24/00 9500 Chin April KS 0.05 111 Wine Guide $15.00 2

FIGURE 11-11 Optimizing Storage

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

cases, the project team should follow a series of steps that serve to check the model for stor-

age efficiency. These steps make up a process called normalization.12

Normalization is a process whereby a series of rules are applied to the RDBMS tables

to determine how well formed they are (see Figure 11-12). These rules help analysts iden-

tify tables that are not represented correctly. Here, we describe three normalization rules

that are applied regularly in practice. Figure 11-11 shows a model in 0 Normal Form, which

is an unnormalized model before the normalization rules have been applied.

A model is in first normal form (1NF) if it does not lead to multi-valued fields, fields that

allow a set of values to be stored, or repeating fields, which are fields that repeat within a table

to capture multiple values. The rule for 1NF says that a table must contain the same num-

ber of columns (i.e., fields) and that all of the columns must contain a single value. Notice

that the model in Figure 11-11 violates 1NF because it causes product number, description,

price, and quantity to repeat three times for each order in the table. The resulting table has

many records that contain nulls in the product-related columns, and orders are limited to

three products because there is no room to store information for more.

A much more efficient design (and one that conforms to 1NF) leads to a separate table

to hold the repeating information; to do this, we create a separate table on the model to

capture product order information. A zero-to-many relationship then would exist between

the two tables. As shown in Figure 11-13, the new design eliminates nulls from the Order

table and supports an unlimited number of products that can be associated with an order.

348 Chapter 11 Data Management Layer Design

Do any tables have repeating fields? Do some
records have a different number of columns
from other records?

Yes: Remove the repeating fields. Add a new
table that contains the fields that repeat.

No: The data model is in 1NF

0 Normal Form

Is the primary key made up of more than one
field? If so, do any fields depend on only a part
of the primary key?

Yes: Remove the partial dependency. Add a
new table that contains the fields that are
partially dependent.

No: The data model is in 2NF

Do any fields depend on another nonprimary
key field?

Yes: Remove the transitive dependency.
Add a new table that contains the fields
that are transitively dependent.

No: The data model is in 3NF

Third Normal Form

Second Normal Form

First Normal Form

FIGURE 11-12
The Steps of

Normalization

12 Normalization also can be performed on the Problem Domain layer. However, the normalization process only
should be used on the Problem Domain layer to uncover missing classes. Otherwise, optimizations that have
nothing to do with the semantics of the problem domain can creep into the Problem Domain layer.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Optimizing RDBMS-Based Object Storage 349

Order

-Order Number : unsigned long
-Date : Date
-Cust ID : unsigned long
-Last Name : String
-First Name : String
-State : String
-Tax Rate : float

Product Order

-Order Number : unsigned long
-Product Number : String
-Product Desc : String
-Product Price : double
-Product Qty : unsigned long

Sample Records:

Revised Model:

0..* 1..*

Order Table

Order 248 has 3 products

Order 237 has 2 products

 Order Cust Last First Tax
 Number Date ID Name Name State Rate

 239 11/23/00 1035 Black John MD 0.05

 260 11/24/00 1035 Black John MD 0.05
 273 11/27/00 1035 Black John MD 0.05

 241 11/23/00 1123 Williams Mary CA 0.08

 262 11/24/00 1123 Williams Mary CA 0.08

 287 11/27/00 1123 Williams Mary CA 0.08

 290 11/30/00 1123 Williams Mary CA 0.08

 234 11/23/00 2242 DeBerry Ann DC 0.065

 237 11/23/00 2242 DeBerry Ann DC 0.065

 238 11/23/00 2242 DeBerry Ann DC 0.065

 245 11/24/00 2242 DeBerry Ann DC 0.065

 250 11/24/00 2242 DeBerry Ann DC 0.065

 252 11/24/00 2242 DeBerry Ann DC 0.065

 253 11/24/00 2242 DeBerry Ann DC 0.065

 297 11/30/00 2242 DeBerry Ann DC 0.065

 243 11/24/00 4254 Bailey Ryan MD 0.05

 246 11/24/00 4254 Bailey Ryan MD 0.05

 248 11/24/00 4254 Bailey Ryan MD 0.05

 235 11/23/00 9500 Chin April KS 0.05

 242 11/23/00 9500 Chin April KS 0.05

 244 11/24/00 9500 Chin April KS 0.05

 251 11/24/00 9500 Chin April KS 0.05

Product Order Table

 Order Product Product Product Product
 Number Number Desc Price Qty

 239 555 Cheese Tray $45.00 2

 260 444 Wine Gift Pack $60.00 1

 273 222 Bottle Opener $12.00 1

 241 444 Wine Gift Pack $60.00 2

 262 222 Bottle Opener $12.00 2

 287 222 Bottle Opener $12.00 2

 290 555 Cheese Tray $45.00 3

 234 555 Cheese Tray $45.00 2

 237 111 Wine Guide $15.00 1

 237 444 Wine Gift Pack $60.00 1

 238 444 Wine Gift Pack $60.00 1

 245 222 Bottle Opener $12.00 1

 250 222 Bottle Opener $12.00 1

 252 222 Bottle Opener $12.00 1

 252 444 Wine Gift Pack $60.00 2

 253 222 Bottle Opener $12.00 1

 253 444 Wine Gift Pack $60.00 1

 297 333 Jams & Jellies $20.00 2

 243 555 Cheese Tray $45.00 2

 246 333 Jams & Jellies $20.00 3

 248 222 Bottle Opener $12.00 1

 248 333 Jams & Jellies $20.00 2

 248 111 Wine Guide $15.00 1

 235 222 Bottle Opener $12.00 1

 242 333 Jams & Jellies $20.00 3

 244 222 Bottle Opener $12.00 2

 251 111 Wine Guide $15.00 2

Note: Order Number will serve as part
of the primary key of Product Order

Note: Product Number will serve as part
of the primary key of Product Order

Note: Order Number also will serve as a
foreign key in Product Order

Note: Order Number will serve as part
of the primary key of Order

Note: Cust ID also will serve as part of
the primary key of Order

FIGURE 11-13 1NF: Remove Repeating Fields

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Second normal form (2NF) requires first that the data model is in 1NF and second that

the data model leads to tables containing fields that are dependent on a whole primary key.

This means that the primary key value for each record can determine the value for all of

the other fields in the record. Sometimes fields depend only on part of the primary key (i.e.,

partial dependency), and these fields belong in another table.

For example, in the new Product Order table that was created in Figure 11-13, the pri-

mary key is a combination of the order number and product number, but the product

description and price attributes are dependent only upon product number. In other words,

by knowing product number, you can identify the product description and price. However,

knowledge of the order number and product number is required to identify the quantity.

To rectify this violation of 2NF, a table is created to store product information, and the

description and price attributes are moved into the new table. Now, product description is

stored only once for each instance of a product number as opposed to many times (every

time a product is placed on an order).

A second violation of 2NF occurs in the Order table: customer first name and last

name are dependent only upon the customer ID, not the whole key (Cust ID and Order

number). As a result, every time the customer ID appears in the Order table, the names also

appear. A much more economical way of storing the data is to create a Customer table with

the Customer ID as the primary key and the other customer-related fields (i.e., last name

and first name) listed only once within the appropriate record. Figure 11-14 illustrates how

the model would look when placed in 2NF.

Third normal form (3NF) occurs when a model is in both 1NF and 2NF and in the

resulting tables none of the fields are dependent on non-primary key fields (i.e., transitive

dependency). Figure 11-14 contains a violation of 3NF: the tax rate on the order depends

upon the state to which the order is being sent. The solution involves creating another table

that contains state abbreviations serving as the primary key and the tax rate as a regular

field. Figure 11-15 presents the end results of applying the steps of normalization to the

original model from Figure 11-11.

Optimizing Data Access Speed

After you have optimized the design of the object storage for efficiency, the end result is that

data is spread out across a number of tables. When data from multiple tables need to be

accessed or queried, the tables must be first joined together. For example, before a user can

print out a list of the customer names associated with orders, first the Customer and Order

tables need to be joined together based on the customer number field (see Figure 11-15).

350 Chapter 11 Data Management Layer Design

Pretend that you have been asked to build a system that
tracks student involvement in activities around campus.
You have been given a file with information that needs to
be imported into the system, and the file contains the fol-
lowing fields:

student social security number activity 1 start date
student last name activity 2 code

student first name activity 2 description
student advisor name activity 2 start date
student advisor phone activity 3 code
activity 1 code activity 3 description
activity 1 description activity 3 start date

Normalize the file. Show how the logical data model
would change at each step.

11-6 Normalizing a Student Activity FileYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Optimizing RDBMS-Based Object Storage 351

Customer

-Cust ID : unsigned long
-Last Name : String
-First Name : String

Order

-Order Number : unsigned long
-Date : Date
-Cust ID : unsigned long
-State : String
-Tax Rate : float

Product Order

-Order Number : unsigned long
-Product Number : unsigned long
-Qty : unsigned long

Product

-Product Number : unsigned long
-Product Desc : String
-Price : double1..1 0..*

1..*0..*

Sample Records:

Customer Table

 Cust Last First
 ID Name Name

 1035 Black John

 1123 Williams Mary

 2242 DeBerry Ann

 4254 Bailey Ryan

 9500 Chin April

Product Table

 Product Product Product
 Number Desc Price

 111 Wine Guide $15.00

 222 Bottle Opener $12.00

 333 Jams & Jellies $20.00

 444 Wine Gift Pack $60.00

 555 Cheese Tray $45.00

Product Order Table

 Order Product Product
 Number Number Qty

 239 555 2

 260 444 1

 273 222 1

 241 444 2

 262 222 2

 287 222 2

 290 555 3

 234 555 2

 237 111 1

 237 444 1

 238 444 1

 245 222 1

 250 222 1

 252 222 1

 252 444 2

 253 222 1

 253 444 1

 297 333 2

 243 555 2

 246 333 3

 248 222 1

 248 333 2

 248 111 1

 235 222 1

 242 333 3

 244 222 2

 251 111 2

Order Table

 Order Cust
 Number Date ID State

 239 11/23/00 1035 MD

 260 11/24/00 1035 MD

 273 11/27/00 1035 MD

 241 11/23/00 1123 CA

 262 11/24/00 1123 CA

 287 11/27/00 1123 CA

 290 11/30/00 1123 CA

 234 11/23/00 2242 DC

 237 11/23/00 2242 DC

 238 11/23/00 2242 DC

 245 11/24/00 2242 DC

 250 11/24/00 2242 DC

 252 11/24/00 2242 DC

 253 11/24/00 2242 DC

 297 11/30/00 2242 DC

 243 11/24/00 4254 MD

 246 11/24/00 4254 MD

 248 11/24/00 4254 MD

 235 11/23/00 9500 KS

 242 11/23/00 9500 KS

 244 11/24/00 9500 KS

 251 11/24/00 9500 KS

Note: Order Number will
serve as part of the
primary key of Product
Order

Note: Order Number also
will serve as a foreign key
in Product Order

Note: Product Number
will serve as part of the
primary key in Product
Order

Note: Product Number
also will serve as a foreign
key in Product Order

Note: Product Number will
serve as part of the primary
key of Product Order

Note: Order Number will serve
as the primary key of Order

Note: Cust ID will serve as a
foreign key in Order

Note: Cust ID will serve
as the primary key of
Customer

Product Desc and Price
was moved to the Product
table to eliminate
redundancy

Last Name and First
Name was moved
to the Customer
table to eliminate
redundancy

FIGURE 11-14 2NF Partial Dependencies Removed

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Only then can both the order and customer information be included in the query’s output.

Joins can take a lot of time, especially if the tables are large or if many tables are involved.

Consider a system that stores information about 10,000 different products, 25,000 cus-

tomers, and 100,000 orders, each averaging three products per order. If an analyst wanted

to investigate whether there were regional differences in music preferences, he or she would

need to combine all of the tables to be able to look at products that have been ordered while

knowing the state of the customers placing the orders. A query of this information would

result in a huge table with 300,000 rows (i.e., the number of products that have been

ordered) and 11 columns (the total number of columns from all of the tables combined).

The project team can use several techniques that to try to speed up access to the data

including denormalization, clustering, and indexing.

Denormalization After the object storage is optimized, the project team may decide to

denormalize, or add redundancy back into the design. Denormalization reduces the num-

ber of joins that need to be performed in a query, thus speeding up access. Figure 11-16

shows a denormalized model for customer orders. The customer last name was added back

into the Order table since the project team learned during the analysis phase that queries

about orders usually require the customer last name field. Instead of joining the Order table

repeatedly to the Customer table, the system now needs to access only the Order table

because it contains all of the relevant information.

Denormalization should be applied sparingly for the reasons described in the previous

section, but it is ideal in situations in which information is queried frequently yet updated

rarely. There are three cases in which you may rely upon denormalization to reduce joins and

352 Chapter 11 Data Management Layer Design

Customer

-Cust ID : unsigned long
-Last Name : String
-First Name : String

State

-State : String
-Tax Rate : float

Order

-Order Number : unsigned long
-Date : Date
-Cust ID : unsigned long
-State : String

Product Order

-Order Number : unsigned long
-Product Number : unsigned long
-Qty : unsigned long

Product

-Product Number : unsigned long (idl)
-Product Desc : String
-Price : double1..1

0..*

1..1

0..*

1..*0..*

FIGURE 11-15 3NF Normalized Model

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

improve performance. First, denormalization can be applied in the case of lookup tables,

which are tables that contain descriptions of values (e.g., a table of product descriptions or a

table of payment types). Because descriptions of codes rarely change, it may be more efficient

to include the description along with its respective code in the main table to eliminate the

need to join the lookup table each time a query is performed (see Figure 11-17a).

Optimizing RDBMS-Based Object Storage 353

Shipment

-Shipment ID (PK) : unsigned long
-Shipment Street Address : String
-Shipment City : String
-Shipment State : String
-Shipment Zip Code : String
-Shipment Method : String

Order

-Order: Number (PK) : unsigned long
-Date : Date
-State (FK) : String
-Cust ID (FK) : unsigned long
-Customer Last Name : String
-Payment Type (FK) : unsigned long
-Payment Description : String
-Shipment ID (FK) : unsigned long
-Shipment State : String
-Shipment Method : String

Order

-Order : Number (PK) : unsigned long
-Date : Date
-State (FK) : String
-Cust ID (FK) : unsigned long
-Customer Last Name : String
-Payment Type (FK) : unsigned long
-Payment Description : String

1..1 1..1

1..1 0..*

(A)
Notice that the payment description field
appears in both Payment Type and Order.

(B)
Notice that the shipment state and shipment method

are included in both Shipment and Order.

Payment Type

-Payment Type (PK) : String
-Payment Description : String

FIGURE 11-17
Denormalization Situa-

tions (FK = foreign key;

PK = primary key); (a)

Lookup table; (b) One-

to One Relationship

Customer

-Cust ID (PK) : unsigned long
-Last Name : String
-First Name : String

Order

-Order Number (PK) : unsigned long
-Date : Date
-State (FK) : String
-Cust ID (FK) : unsigned long
-Customer Last Name : String

1..1 1..*

Last name is now in both cases

FIGURE 11-16
Denormalized Physical

Data Model

(FK = foreign key;

PK = primary key)

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Second, one-to-one relationships are good candidates for denormalization. Although

logically two tables should be separated, from a practical standpoint the information from

both tables may regularly be accessed together. Think about an order and its shipping

information. Logically, it may make sense to separate the attributes related to shipping into

a separate table, but as a result the queries regarding shipping likely will always need a join

to the Order table. If the project team finds that certain shipping information like state and

shipping method are needed when orders are accessed, they may decide to combine the

tables or include some shipping attributes in the Order table (see Figure 11-17b).

Third, at times it will be more efficient to include a parent entity’s attributes in its child

entity on the physical data model. For example, consider the Customer and Order tables in

Figure 11-16, which share a one-to-many relationship, with Customer as the parent and

Order as the child. If queries regarding orders continuously require customer information,

the most popular customer fields can be placed in Order to reduce the required joins to the

Customer table as was done with Customer Last Name.

Clustering Speed of access also is influenced by the way that the data is retrieved. Think

about going shopping in a grocery store. If you have a list of items to buy, but you are unfa-

miliar with the store’s layout, then you need to walk down every aisle to make sure that you

don’t miss anything from your list. Likewise, if records are arranged on a hard disk in no

particular order (or in an order that is irrelevant to your data needs), then any query of the

records results in a table scan in which the DBMS has to access every row in the table before

retrieving the result set. Table scans are the most inefficient of data retrieval methods.

One way to improve access speed is to reduce the number of times that the storage

medium needs to be accessed during a transaction. One method is to cluster records

together physically so that similar records are stored close together. With intra-file cluster-

ing, like records in the table are stored together in some way, such as in order by primary

key or, in the case of a grocery store, by item type. Thus, whenever a query looks for

records, it can go directly to the right spot on the hard disk (or other storage medium)

because it knows in what order the records are stored, just as we can walk directly to the

bread aisle to pick up a loaf of bread. Inter-file clustering combines records from more than

one table that typically are retrieved together. For example, if customer information is usu-

ally accessed with the related order information, then the records from the two tables may

be physically stored in a way that preserves the customer-order relationship. Returning to

the grocery store scenario, an inter-file cluster would be similar to storing peanut butter,

jelly, and bread next to each other in the same aisle because they are usually purchased

together, not because they are similar types of items. Of course, each table can have only

one clustering strategy because the records can be arranged physically in only one way.

Indexing A time saver that you are familiar with is an index located in the back of a text-

book, which points you directly to the page or pages that contain your topic of interest.

Think of how long it would take you to find all of the times that “relational database”

354 Chapter 11 Data Management Layer Design

Consider the logical data model that you created for Your
Turn 11-6. Examine the model and describe possible
opportunities for denormalization. How would you

change the physical data model for this file, and what are
the benefits of your changes?

11-7 Denormalizing a Student Activity FileYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

appears in this textbook if you didn’t have the index to rely on! An index in data storage is

like an index in the back of a textbook; it is a mini table that contains values from one or

more columns in a table and the location of the values within the table. Instead of paging

through the entire textbook, you can move directly to the right pages and get the informa-

tion you need. Indexes are one of the most important ways to improve database perfor-

mance. Whenever you have performance problems, the first place to look is an index.

A query can use an index to find the locations of only those records that are included in

the query answer, and a table can have an unlimited number of indexes. Figure 11-18 shows

an index that orders records by payment type. A query that searches for all of the customers

who used American Express can use this index to find the locations of the records that con-

tain American Express as the payment type without having to scan the entire Order table.

Project teams can make indexes perform even faster by placing them into the main mem-

ory of the data storage hardware. Retrieving information from memory is much faster than

from another storage medium like a hard disk—think about how much faster it is to retrieve a

phone number that you have memorized versus one that you need to look up in a phone book.

Similarly, when a database has an index in memory, it can locate records very, very quickly.

Of course, indexes require overhead in that they take up space on the storage medium.

Also, they need to be updated as records in tables are inserted, deleted, or changed. Thus,

although indexes lead to faster access to the data, they slow down the update process. In

general, you should create indexes sparingly for transaction systems or systems that require

a lot of updates, but should apply indexes generously when designing systems for decision

support (see Figure 11-19).

Optimizing RDBMS-Based Object Storage 355

Order

 Order Cust Payment
 Number Date ID Amount Tax Total Type

 234 11/23/00 2242 $ 90.00 $5.85 $ 95.85 MC

 235 11/23/00 9500 $ 12.00 $0.60 $ 12.60 VISA

 236 11/23/00 1556 $ 50.00 $2.50 $ 52.50 VISA

 237 11/23/00 2242 $ 75.00 $4.88 $ 79.88 AMEX

 238 11/23/00 2242 $ 60.00 $3.90 $ 63.90 MC

 239 11/23/00 1035 $ 90.00 $4.50 $ 94.50 AMEX

 240 11/23/00 9501 $ 50.00 $2.50 $ 52.50 VISA

 241 11/23/00 1123 $ 120.00 $9.60 $ 129.60 MC

 242 11/24/00 9500 $ 60.00 $3.00 $ 63.00 VISA

 243 11/24/00 4254 $ 90.00 $4.50 $ 94.50 VISA

 244 11/24/00 9500 $ 24.00 $1.20 $ 25.20 VISA

 245 11/24/00 2242 $ 12.00 $0.78 $ 12.78 AMEX

 246 11/24/00 4254 $ 20.00 $1.00 $ 21.00 MC

 247 11/24/00 2241 $ 50.00 $2.50 $ 52.50 VISA

 248 11/24/00 4254 $ 12.00 $0.60 $ 12.60 AMEX

 249 11/24/00 5927 $ 50.00 $2.50 $ 52.50 AMEX

 250 11/24/00 2242 $ 12.00 $0.78 $ 12.78 MC

 251 11/24/00 9500 $ 15.00 $0.75 $ 15.75 MC

 252 11/24/00 2242 $ 132.00 $8.58 $ 140.58 MC

 253 11/24/00 2242 $ 72.00 $4.68 $ 76.68 AMEX

Payment Type Index

 Payment
 Type Pointer

 AMEX *

 AMEX *

 AMEX *

 AMEX *

 AMEX *

 AMEX *

 MC *

 MC *

 MC *

 MC *

 MC *

 MC *

 MC *

 VISA *

 VISA *

 VISA *

 VISA *

 VISA *

 VISA *

 VISA *

 VISA *

FIGURE 11-18 Payment Type Index

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Estimating Data Storage Size

Even if you have denormalized your physical data model, clustered records, and created

indexes appropriately, the system will perform poorly if the database server cannot handle

its volume of data. Therefore, one last way to plan for good performance is to apply volu-

metrics, which means estimating the amount of data that the hardware will need to sup-

port. You can incorporate your estimates into the database server hardware specification to

make sure that the database hardware is sufficient for the project’s needs. The size of the

database is based on the amount of raw data in the tables and the overhead requirements

of the DBMS. To estimate size you will need to have a good understanding of the initial size

of your data as well as its expected growth rate over time.

Raw data refers to all of the data that are stored within the tables of the database, and it

is calculated based on a bottom-up approach. First, write down the estimated average width

for each column (field) in the table and sum the values for a total record size (see Figure 11-

20). For example, if a variable width LAST NAME column is assigned a width of 20 charac-

ters, you can enter 13 as the average character width of the column. In Figure 11-20, the

estimated record size is 49.

Next, calculate the overhead for the table as a percentage of each record. Overhead

includes the room needed by the DBMS to support such functions as administrative

actions and indexes, and it should be assigned based on past experience, recommendations

from technology vendors, or parameters that are built into software that was written to cal-

culate volumetrics. For example, your DBMS vendor may recommend that you allocate 30

percent of the records’ raw data size for overhead storage space, creating a total record size

of 63.7 in the Figure 11-20 example.

356 Chapter 11 Data Management Layer Design

A Virginia-based mail-order company sends out approxi-
mately 25 million catalogs each year using a Customer
table with 10 million names. Although the primary key of
the Customer table is customer identification number, the
table also contains an index of Customer Last Name.
Most people who call to place orders remember their last
name, not their customer identification number, so this
index is used frequently.

An employee of the company explained that indexes
are critical to reasonable response times. A fairly compli-
cated query was written to locate customers by the state

in which they lived, and it took more than three weeks to
return an answer. A customer state index was created, and
that same query provided a response in 20 minutes: that’s
1,512 times faster!

Question:

1. As an analyst, how can you make sure that the
proper indexes have been put in place so that users
are not waiting for weeks to receive the answers to
their questions?

11-A Mail Order IndexCONCEPTS

IN ACTION

Use indexes sparingly for transaction systems.

Use many indexes to increase response times in decision support systems.

For each table, create a unique index that is based on the primary key.

For each table, create an index that is based on the foreign key to improve the performance of joins.

Create an index for fields that are used frequently for grouping, sorting, or criteria.

FIGURE 11-19
Guidelines for Creat-

ing Indexes

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Finally, record the number of initial records

that will be loaded into the table, as well as the

expected growth per month. This information

should have been collected during the analysis

phase. According to Figure 11-20, the initial

space required by the first table is 3,185,000, and

future sizes can be projected based on the

growth figure. These steps are repeated for each

table to get a total size for the entire database.

Many CASE tools will provide you with

database size information based on how you

set up the object persistence and they will cal-

culate volumetrics estimates automatically.

Ultimately, the size of the database needs to be

shared with the design team so that the proper

technology can be put in place to support the

system’s data and potential performance prob-

lems can be addressed long before they affect

the success of the system.

DESIGNING DATA ACCESS AND MANIPULATION CLASSES

The final step in developing the data management layer is to design the data access and manip-

ulation classes that act as a translator between the object persistence and the problem domain

objects. As such, they should always be capable of at least reading and writing both the object

persistence and problem domain objects. As described earlier, and in Chapter 9, the object per-

sistence classes are derived from the concrete problem domain classes while the data access and

manipulation classes are dependent on both the object persistence and problem domain classes.

Depending on the application, a simple rule to follow is that there should be one data

access and manipulation class for each concrete problem domain class. In some cases, it

might make sense to create data access and manipulation classes associated with the human

computer interaction classes (see Chapter 12). However, this creates a dependency from the

data management layer to the human computer interaction layer. Adding this additional

complexity to the design of the system normally is not recommended.

Returning to the ORDBMS solution for the Appointment system example (see Figure

11-8), we see that we have four problem domain classes and four ORDBMS tables. Following

the previous rule, the data access and management classes are rather simple. They only have

to support a one-to-one translation between the concrete problem domain classes and the

ORDBMS tables (see Figure 11-21). Since the Person problem domain class is an abstract

class, only three data access and manipulation classes are required: Patient-DAM, Symptom-

DAM, and Appt-DAM. However, the process to create an instance of the Patient problem

domain class can be fairly complicated. The Patient-DAM class may have to be able to retrieve

information from all four ORDBMS tables. To accomplish this, the Patient-DAM class

retrieves the information from the Patient table. Using the Object-IDs stored in the attribute

values associated with the Person, Appts, and Symptoms attributes, the remaining informa-

tion required to create an instance of Patient is easily retrieved by the Patient-DAM class.

In the case of using an RDBMS to provide persistence, the data access and manipulation

classes tend to become more complex. For example, in the Appointment system, there are still

Designing Data Access and Manipulation Classes 357

Field Average Size

Order Number 8

Date 7

Cust ID 4

Last Name 13

First Name 9

State 2

Amount 4

Tax Rate 2

Record Size 49

Overhead 30%

Total Record Size 63.7

Initial Table Size 50,000

Initial Table Volume 3,185,000

Growth Rate/Month 1,000

Table Volume @ 3 years 5,478,200FIGURE 11-20
Calculating Volumetrics

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

3
5
8

C
h

a
p

te
r 1

1
D

a
ta

 M
a
n

a
g

e
m

e
n

t L
a
y
e

r
 D

e
s
ig

n

Person Table

-lastname[1..1]
-firstname[1..1]
-address[1..1]
-phone[1..1]
-birthdate[1..1]
-SubClassObjects[1..1]

Patient-DAM

+ReadPatientTable()
+WritePatientTable()
+ReadPatient()
+WritePatient()

Symptom-DAM

+ReadSymptomTable()
+WriteSymptomTable()
+ReadSymptom()
+WriteSymptom()

Appt-DAM

+ReadApptTable()
+WriteApptTable()
+ReadAppt()
+WriteAppt()

Patient Table

-amount[1..1]
-Person[1..1]
-Appts[0..*]
-Symptoms[1..*]
-Insurance carrier[0..*]
-Primary Insurance Carrier[0..*]

Symptom Table

-name[1..1]
-Patients[0..*]

Appt Table

-Patient[1..1]
-time[1..1]
-date[1..1]
-reason[1..1]

1..1

1..1

0..* 0..*

0..* 0..*

0..*

1

1

1..* 1..*

+ primary
insurance
carrier

0..*

1

1

suffers

schedules

Appt

-time
-date
-reason

+cancel without notice()Patient

-amount
-insurance carrier

+make appointment()
+calculate last visit()
+change status()
+provides medical history()

Person

-lastname
-firstname
-address
-phone
-birthdate
-/ age

Symptom

-name

FIGURE 11-21 Mapping Problem Domain Objects to ORDBMS Using Data Access and Management Classes

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

four problem domain classes but, due to the limitations of RDBMSs, we have to support six

RDBMS tables (see Figure 11-10). The data access and manipulation class for the Appt prob-

lem domain class and the Appt RDBMS table is no different than those supported for the

ORDBMS solution (see Figures 11-21 and 11-22). However, due to the multivalued attributes

and relationships associated with the Patient and Symptom problem domain classes, the

mappings to the RDBMS tables were more complicated. As such, the number of dependen-

cies from the data access and manipulation classes (Patient-DAM and Symptom-DAM) to

the RDBMS tables (Patient table, Insurance Carrier table, Suffer table, and the Symptom

table) has increased. Furthermore, since the Patient problem domain class is associated with

the other three problem domain classes, the actual retrieval of all information necessary to

create an instance of the Patient class could involve joining together information from all six

RDBMS tables. To accomplish this, the Patient-DAM class must first retrieve information

from the Patient table, Insurance Carrier table, Suffer table, and the Appt table. Since the pri-

mary key of the Patient table and the Person table are identical, the Patient-DAM class can

either directly retrieve the information from the Person table, or they can join the informa-

tion together using the personNumber attributes of the two tables, which act as both primary

and foreign keys. Finally, using the information contained in the Suffer table, the information

in the Symptom table can be retrieved also. Obviously, the further we get from the object-ori-

ented problem domain class representation, the more work must be performed. However, as

in the case of the ORDBMS example, notice that absolutely no modifications were made to

the problem domain classes. Therefore, the data access and manipulation classes again have

prevented data management functionality from creeping into the problem domain classes.

APPLYING THE CONCEPTS AT CD SELECTIONS

The CD Selections Internet sales system needs to present CD information effectively to

users and to capture order data. Alec Adams, senior systems analyst and project manager

for the Internet sales system, recognized that these goals were dependent upon a good

design of the data management layer for the new application. He approached the design of

the data management layer in four steps: by selecting the object-persistence format, map-

ping the problem domain classes to the selected format, optimizing the selected format for

processing efficiency, and designing the data access and manipulation classes.

Select Object-Persistence Format

The project team met to discuss two issues that would drive the object-persistence format

selection: what kind of objects would be in the system and how they would be used. Using

a whiteboard, they listed the ideas that are presented in Figure 11-23. The project team

agreed that the bulk of the data in the system would be the text and numbers that are

exchanged with Web users regarding customers and orders. A relational database would be

able to handle the data effectively, and the technology would be well received at CD Selec-

tions because relational technology is already in place throughout the organization.

However, they realized that relational technology was not optimized to handle complex

data, such as the images, sound, and video that the marketing facet of the system ultimately

will require. Alec asked Brian, one of the staff members on the Internet sales system project,

to look into relational databases that offered object add-on products (i.e., an RDBMS that

could become an ORDBMS). It might be possible for the team to invest in a RDBMS foun-

dation and then upgrade to an ORDBMS version of the same product. However, in the

meantime, Alec decided to store sample clips using a random file. This way, they could still

deliver the system as envisioned while keeping the technology requirements reasonable.

Applying the Concepts at CD Selections 359

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

3
6
0

C
h

a
p

te
r 1

1
D

a
ta

 M
a
n

a
g

e
m

e
n

t L
a
y
e

r
 D

e
s
ig

n

Person Table

-lastname[1..1]
-firstname[1..1]
-address[1..1]
-phone[1..1]
-birthdate[1..1]
-personNumber[1..1]

Patient-DAM

+ReadPatientTable()
+WritePatientTable()
+ReadPatient()
+WritePatient()

Symptom-DAM

+ReadSymptomTable()
+WriteSymptomTable()
+ReadSymptom()
+WriteSymptom()

Appt-DAM

+ReadApptTable()
+WriteApptTable()
+ReadAppt()
+WriteAppt()

Patient Table

-amount[1..1]
-personNumber[1..1]
-primaryInsuranceCarrier[0..1]

Symptom Table

-name[1..1]

Appt Table

-Patient[1..1]
-time[1..1]
-date[1..1]
-reason[1..1]

1..1

1..1

1..1

0..* 0..*

0..*

1

1

1..1

1..*

Suffer Table

-name[1..1]
-personNumber[1..1]

Insurance Carrier Table

-name[1..1]
-personNumber[1..1]

0..*

1..*

+ primary
insurance
carrier

0..*

1

suffers

schedules

1..1

0..*

Symptom

-name

Appt

-time
-date
-reason

+cancel without notice()Patient

-amount
-insurance carrier

+make appointment()
+calculate last visit()
+change status()
+provides medical history()

Person

-lastname
-firstname
-address
-phone
-birthdate
-/ age

FIGURE 11-22 Mapping Problem Domain Objects to RDBMS Using Data Access and Management Classes

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

The team noted that it also must design two transaction files to handle the interface with

the distribution system and the Web shopping cart program. The Internet sales system will

regularly download order information to the distribution system using a transaction file con-

taining all the required information for that system. Also, the team must design the file that

stores temporary order information on the Web server as customers shop through the Web

site. The file would contain the fields that ultimately would be transferred to an order object.

Of course, Alec realized that other data needs might arise over time, but he felt con-

fident that the major data issues were identified (e.g., like the capability to handle com-

plex data) and that the design of the data management layer would be based on the proper

storage technologies.

Map Problem Domain Objects to Object-Persistence Format

Based on the decision to use an RDBMS and a random file to store the problem domain

objects, Alec asked Brian to create an object-persistence design. To begin, Brian first

reviewed the current class and package diagrams for the evolving Internet sales system (see

Figures 9-8, 10-17, and 10-21). Focusing on Figures 10-17 and 10-21, Brian began apply-

ing the appropriate mapping rules (see Figure 11-9). Based on Rule 1, Brian identified 12

problem domain classes that needed to have there objects stored; as such, Brian created 11

RDBMS tables and 1 file to represent these objects. These included Credit Card Center

table, Customer table, Individual table, Organizational table, Order table, Order Item table,

CD table, Vendor table, Mkt Info table, Review table, Artist Info table, and Sample Clip File.

He also created a set of tentative primary keys for each of the tables and the file. Based on

the fact that the objects in the Search Package (see Figures 9-8 and 10-17), Search Req, and

CD List, are only temporary, Brian decided that there was no real need to address them at

this point in the design.

Using Rule 4, Brian identified the need for the CD table and the Mkt Info table to

both have each others primary key stored as a foreign key to the other table. Upon fur-

ther reflection, Brian reasoned that because an actual instance of marketing informa-

tion was only going to be associated with a single instance of CD and vice versa, he

could have merged the two tables together. However, the team had earlier decided to

Applying the Concepts at CD Selections 361

Data Type Use Suggested Format

Customer information

Order Information

Marketing Information

Information that will be
exchanged with the Distri-
bution System

Temporary Information

Simple (mostly text)

Simple (text and numbers)

Both simple and complex
(eventually the system will
contain audio clips, video, etc.)

Simple text, formatted specifi-
cally for importing into the
Distribution System

The Web component will
likely need to hold informa-
tion for temporary periods of
time. (e.g., the shopping card
will store order information
before the order is actually
placed)

Transactions

Transactions

Transactions

Transactions

Transactions

Relational

Relational

Object add-on?

Transaction file

Transaction file

FIGURE 11-23
Types of Data in

Internet Sales System

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

keep them separate, so he decided to simply use the primary key of the CD table as the

primary key of the Mkt Info table.

While reviewing the current set of attributes for each of the tables, John (another

member of the data management layer design team) suggested that the team had left out

the idea of a CD containing a set of tracks. As such, they added a multivalued attribute,

tracks, to the CD problem domain class. However, Brian then pointed out that when they

apply Rule 5 to the CD class, they really needed to factor the tracks attribute out as a sepa-

rate table. Furthermore, as the team discussed the track attribute further, it was decided to

include it as a problem domain class also.

Next, the data management layer team applied Rule 6 to the evolving object-persistence

design. In doing this, Susan (another member of the data management layer design team)

pointed out that the checks relationship between the Customer and Credit Card Center

problem domain classes was a multivalued association. Therefore, it needed its own table in

the relational database. Not to be upstaged by Susan, John immediately pointed out that

Rule 7 was applicable to 8 associations: Customer places Order, Order includes Order Item,

Order Item contains CD, Vendor distributes CD, Mkt Info promotes CD, CD contains

Tracks, and the three aggregation associations with the Mkt Info class (Review, Artist Info,

and Sample Clip). As such, quite a few primary keys had to be copied into the relevant tables

as foreign keys (e.g., the primary key of the Customer table had to be copied to the Order

table). Can you identify the others?

Finally, Susan suggested the solution to the inheritance problem because RDBMSs do

not support inheritance. She pointed out that when applying Rule 8a to the Customer

superclass and the Individual and Organizational subclasses, the primary key of the Cus-

tomer table also had to be copied to the tables representing the subclasses. Furthermore,

she pointed out that an exclusive-or (XOR) condition existed between the two subclasses.

Based on all of the suggestions and hard work accomplished by the data management

layer team, Brian was able to create a design of the object persistence for the Internet sales

system (see Figure 11-24).

Optimize Object Persistence and Estimate its Size

After the meeting, Alec asked Brian to stay behind to discuss the data management layer

model. Now that the team had a good idea of the type of object-persistence formats that

would be used, they were ready for the third step: optimizing the design for performance

efficiency. Since Brian was the analyst in charge of the data management layer, Alec wanted

to discuss with him whether the model was optimized for storage efficiency. He also needed

this done before the team discussed access speed issues.

Brian assured Alec that the current object persistence model was in third normal form.

He was confident of this because the project team followed the modeling guidelines that

lead to a well-formed model.

Brian then asked about the file formats for the two transaction files identified in the

earlier meeting. Alec suggested that he normalize the files to better understand the various

tables that would be involved in the import procedure. Figure 11-25 shows the initial file

layout for the Distribution System import file as well as the steps that were taken as Brian

applied each normalization rule.

The next step for the design of the data management layer was to optimize the design

for access speed. Alec met with the analysts on the data management layer design team and

talked about the techniques that were available to speed up access. Together the team listed

all of the data that will be supported by the Internet Sales System and discussed how all of

the data would be used. They developed the strategy that is laid out in Figure 11-26 to iden-

tify the specific techniques to put in place.

362 Chapter 11 Data Management Layer Design

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

A
p

p
ly

in
g

 th
e

 C
o

n
c
e

p
ts

 a
t C

D
 S

e
le

c
tio

n
s

3
6
3

Checks Table

-CustPrimaryKey
-CCCPrimaryKey

Order Table

-CustPrimaryKey
-OrderPrimaryKey

0..*

1..1

Customer Table

-CustPrimaryKey

1..1

1..1

0..*

0..*

Individual Table

-CustPrimaryKey

0..1

1...1

Organizational Table

-CustPrimaryKey

0..1

1...1

Credit Card
Center Table

-CCCPrimaryKey

{XOR}

Order Item Table

-OrderPrimaryKey
-CDPrimaryKey

1..1

1..*

CD Table

-CDPrimaryKey
-VendorPrimaryKey

Vendor Table

-VendorPrimaryKey

1..* 1..1

Mkt Info Table

-CDPrimaryKey

Review Table

-CDPrimaryKey

Artist Info Table

-CDPrimaryKey

Sample Clip File

-CDPrimaryKey

1..1 0..1 1..1 0..*

0..*

0..*

1...1

Tracks Table

-CDPrimaryKey
-TracksPrimaryKey

0..*

1...1

1..1

0..*

1..1

FIGURE 11-24 Internet Sales System Object Persistence Design

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

364 Chapter 11 Data Management Layer Design

Order

-Order: No (PK)
-Cust F Name
-Cust L Name
-Cust Home Address
-Cust Ship Address
-Cust Payment

Item

-Item No (PK)
-Item Desc
-Item Price
-Item Qty
-Order No (PK) (FK)

1..*0..*

0NF:

1NF:

2NF:

3NF:

Order

-Order: No (PK)
-Cust F Name
-Cust L Name
-Cust Home Address
-Cust Ship Address
-Cust Payment

Item

-Item No (PK)
-Item Desc
-Item Price

Item

-Item No (PK)
-Item Desc
-Item Price

Order Item

-Order No (PK) (FK)
-Item No (PK) (FK)
-Item Qty

1..*0..*

0..*1..1

1..*0..*

Customer

-Cust: No (PK)
-Cust F Name
-Cust L Name
-Cust Home Address

Order

-Order No (PK)
-Cust Ship Address
-Cust Payment
-Cust No (FK)

Order Item

-Order No (PK) (FK)
-Item No (PK) (FK)
-Item Qty

File Layout Required for Distribution System

 Cust Cust
 Order Cust Cust Home Ship Cust Item Item Item Item
 Number Fname Lname Address Address Pay No* Desc* Price* Qty*

 A (7) A (20) A (20) A (150) A (150) 9999.99 A (7) A (20) 9999.99 9999

*Item No, Item Desc, Item Price, and Item Qty repeats four (4) times.

Remove transitive dependencies. Customer Home Address is dependent on Cust F
Name and Cust L Name (and these do not serve as the identifier for the Order entity);
therefore, a Customer entity is added to contain customer information. Order then
contains only order information and necessary foreign keys.

There is one partial dependency in the above data model since
Item Qty is dependent on the whole primary key while Item Desc
and Item Price are dependent only on Item No.

Remove repeating groups of items and place them in a separate Item entity.

FIGURE 11-25 Distribution System Import File Normalization Process

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Ultimately, clustering strategies, indexes, and denormalization decisions were

applied to the physical data model, and a volumetrics report was run from the CASE tool

to estimate the initial and projected size of the database. The report suggested that an ini-

tial storage capacity of about 450 megabytes would be needed for the expected one-year

life of the first version of the system. Additional storage capacity would be needed for the

second version that would include sound files for samples of the songs, but for the

moment not much storage would be needed.

Alec gave the estimates to the analyst in charge of managing the server hardware

acquisition so that the person could make sure that the technology could handle the

expected volume of data for the Internet sales system. The estimates would also go to the

DBMS vendor during the implementation of the software so that the DBMS could be

configured properly.

Data Access and Manipulation Class Design

The final step in designing the data management layer was to develop the design of the

data access and manipulation classes that would act as translators between the object

persistence and the problem domain classes. Since the CD package (see Figures 9-8 and

10-21) was the most important package, Alec asked Brian to complete the design of the

data management layer for the CD package and report back to Alec when he was fin-

ished. Upon reviewing the concrete problem domain classes in the CD package, Brian

realized that he needed to have seven data access and manipulation classes; one for each

concrete problem domain class. These classes would be fully dependent on their related

problem domain classes. Next, Brian mapped the data access and manipulation classes

down to the RDBMS tables and the random file associated with storing the objects. In

this case, there were six RDBMS tables and one random file. Again, the data access and

manipulation classes are dependent on the object-persistence format. Figure 11-27

depicts the data management layer and problem domain layer for the CD package of the

Internet sales system.

Based on Figures 9-8, 11-24, and 11-27, can you complete the design of the data man-

agement layer for Brian? (Hint: For some help, look at Figure 11-22.)

Summary 365

Suggestions to Improve
Target Comments Data Access Speed

All tables

All tables

CD information

Order Information

Entire Physical Model

Basic table manipulation

Sorts and Grouping

Users will need to search CD
information by title, artist, and
category

Operators should be able to
locate information about a
particular customer’s order

Investigate denormalization
opportunities for all fields that
are not updated very often

• Investigate if records should be clus-
tered physically by primary key

• Create indexes for primary keys

• Create indexes for foreign key fields

• Create indexes for fields that are fre-
quently sorted or grouped

• Create indexes for CD title, artist,
and category

• Create an index in the Order table
for orders by customer name

• Investigate one-to-one relationships

• Investigate lookup tables

• Investigate one-to-many relationships

FIGURE 11-26
Internet Sales System

Performance

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

3
6
6

C
h

a
p

te
r 1

1
D

a
ta

 M
a
n

a
g

e
m

e
n

t L
a
y
e

r
 D

e
s
ig

n

Vendor-DAM

CD-DAM

Mkt Info-DAM

Review-DAM

Tracks-DAM

Artist Info-DAM

Sample Clip-DAM

Vendor Table

Mkt Info Table

Review Table

Artist Info Table

Sample Clip File

CD TableTracks Table

Vendor

Mkt Info

Review

Artist Info

Sample Clip

CD Tracks

1..1

1..1

1..1

1..1 1..1

1..1
0..1

1..*

0..*

0..*

0..*

0..*

1..1

1..1

1..1

1..11..1

1..1
0..1

1..*

0..*

0..*

0..*

0..*

Object Persistence Data Access and Manipulation Classes Project Domain Classes

promotes

contains

distributes

FIGURE 11-27 Data Management Layer and Problem Domain Layer Design for the CD Package of the Internet Sales System

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

SUMMARY

Object-Persistence Formats

There are four basic types of object-persistence formats: files (sequential and random

access), object-oriented databases, object-relational databases, and relational databases.

Files are electronic lists of data that have been optimized to perform a particular transac-

tion. There are two different access methods (sequential and random), and there are five

different application types: master, look-up, transaction, audit, and history. Master files

typically are kept for long periods of time because they store important business informa-

tion, such as order information or customer mailing information. Look-up files contain

static values that are used to validate fields in the master files, and transaction files tem-

porarily hold information that will be used for a master file update. An audit file records

before and after images of data as they are altered so that an audit can be performed if the

integrity of the data is questioned. Finally, the history file stores past transactions (e.g., old

customers, past orders) that are no longer needed by the system.

A database is a collection of information groupings that are related to each other in

some way, and a DBMS (database management system) is software that creates and manip-

ulates databases. There are three types of databases that are likely to be encountered dur-

ing a project: relational, object-relational, and object-oriented. The relational database is

the most popular kind of database for application development today. It is based on col-

lections of tables that are related to each other through common fields, known as foreign

keys. Object-relational databases are relational databases that have extensions that provide

limited support for object-orientation. The extensions typically include some support for

the storage of objects in the relational table structure. Object-oriented databases come in

two flavors: full-blown DBMS products and extensions to an object-oriented program-

ming language. Both approaches typically fully support object-orientation.

Selecting an Object-Persistence Format

The application’s data should drive the storage format decision. Relational databases sup-

port simple data types very effectively; whereas, object databases are best for complex data.

The type of system also should be considered when choosing among data storage formats

(e.g., relational databases have matured to support transactional systems). Although less

critical to the format selection decision, the project team needs to consider what technology

exists within the organization and the kind of technology likely to be used in the future.

Mapping Problem Domain Objects to Object-Persistence Formats

There are many different approaches to support object persistence. Each of the different for-

mats for object persistence has some conversion requirements. The complexity of the con-

version requirements increases the further the format is from an object-oriented format. An

OODBMS has the fewest conversion requirements while a RDBMS tends to have the most.

No matter what format is chosen, all data management functionality should be kept out of

the problem domain classes to minimize the maintenance requirements of the system and

to maximize the portability and reusability of the problem domain classes.

Optimizing RDBMS-Based Object Storage

There are two primary dimensions by which to optimize a relational database: for storage

efficiency and for speed of access. The most efficient relational database tables in terms of

data storage are those that have no redundant data and very few null values. Normaliza-

tion is the process whereby a series of rules are applied to the data management layer to

Summary 367

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

determine how well-formed it is. A model is in first normal form (1NF) if it does not lead

to repeating fields, which are fields that repeat within a table to capture multiple values.

Second normal form (2NF) requires that all tables be in 1NF and lead to fields whose val-

ues are dependent on the whole primary key. Third normal form (3NF) occurs when a

model is in both 1NF and 2NF, and none of the resulting fields in the tables are depen-

dent on non-primary key fields (i.e., transitive dependency). With each violation, addi-

tional tables should be created to remove the repeating fields or improper dependencies

from the existing tables.

Once you have optimized the design of the object persistence for storage efficiency,

the data may be spread out across a number of tables. To improve speed, the project

team may decide to denormalize—add redundancy back into—the design. Denormal-

ization reduces the number of joins that need to be performed in a query, thus speed-

ing up data access. Denormalization is best in situations where data are accessed

frequently and updated rarely. There are three modeling situations that are good candi-

dates for denormalization: lookup tables, entities that share one-to-one relationships,

and entities that share one-to-many relationships. In all three cases, attributes from one

entity are moved or repeated in another entity to reduce the joins that must occur while

accessing the database.

Clustering occurs when similar records are stored close together on the storage

medium to speed up retrieval. In intra-file clustering, similar records in the table are stored

together in some way, such as in sequence. Inter-file clustering combines records from

more than one table that typically are retrieved together. Indexes also can be created to

improve the access speed of a system. An index is a mini-table that contains values from

one or more columns in a table and where the values can be found. Instead of performing

a table scan, which is the most inefficient way to retrieve data from a table, an index points

directly to the records that match the requirements of a query.

Finally, the speed of the system can be improved if the right hardware is purchased to

support it. Analysts can use volumetrics to estimate the current and future size of the data-

base and then share these numbers with the people who are responsible for buying and

configuring the database hardware.

Designing Data Access and Manipulation Classes

Once the object persistence has been designed, a translation layer between the problem

domain classes and the object persistence should be created. The translation layer is

implemented through data access and manipulation classes. In this manner, any

changes to the object-persistence format chosen will only require changes to the data

access and manipulation classes. The problem domain classes will be completely iso-

lated from the changes.

368 Chapter 11 Data Management Layer Design

Attribute sets

Audit file

Clustering

Data access and manipulation classes

Data management layer

Database

Database management system (DBMS)

Decision support systems (DSS)

Denormalization

End-user DBMS

Enterprise DBMS

Executive information systems (EIS)

Expert system (ES)

Extent

File

First normal form (1NF)

Foreign key

History file

Impedance mismatch

Index

Inter-file cluster

Intra-file cluster

Join

Linked list

KEY TERMS

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Exercises 369

QUESTIONS

1. Describe the four steps to object persistence design.

2. How are a file and a database different from each other?

3. What is the difference between an end-user database and

an enterprise database? Provide an example of each one.

4. What are the differences between sequential and ran-

dom access files?

5. Name five types of application files and describe the

primary purpose of each type.

6. What is the most popular kind of database today? Pro-

vide three examples of products that are based on this

database technology.

7. What is referential integrity and how is it imple-

mented in a RDBMS?

8. List some of the differences between an ORDBMS and

a RDBMS.

9. What are the advantages of using an ORDBMS over a

RDBMS?

10. List some of the differences between an ORDBMS and

an OODBMS.

11. What are the advantages of using an ORDBMS over

an OODBMS?

12. What are the advantages of using an OODBMS over a

RDBMS?

13. What are the advantages of using an OODBMS over

an ORDBMS?

14. What are the factors in determining the type of

object-persistence format that should be adopted for a

system? Why are these factors so important?

15. Why should you consider the storage formats that

already exist in an organization when deciding upon a

storage format for a new system?

16. When implementing the object persistence in an

ORDBMS, what types of issues must you address?

17. When implementing the object persistence in an

RDBMS, what types of issues must you address?

18. Name three ways in which null values can be inter-

preted in a relational database. Why is this problematic?

19. What are the two dimensions in which to optimize a

relational database?

20. What is the purpose of normalization?

21. How does a model meet the requirements of third

normal form?

22. Describe three situations that can be good candidates

for denormalization.

23. Describe several techniques that can improve perfor-

mance of a database.

24. What is the difference between inter-file and intra-file

clustering? Why are they used?

25. What is an index and how can it improve the perfor-

mance of a system?

26. Describe what should be considered when estimating

the size of a database.

27. Why is it important to understand the initial and pro-

jected size of a database during the design phase?

28. What are the key issues in deciding between using

perfectly normalized databases and denormalized

databases?

29. What is the primary purpose of the data access and

manipulation classes?

30. Why should the data access and manipulation classes

be dependent on the associated problem domain

classes instead of the other way around?

31. Why should the object persistence be dependent on

the associated problem domain classes instead of the

other way around?

32. Why should the data access and manipulation classes

be dependent on the associated object persistance

instead of the other way around?

Look-up file

Management information system

(MIS)

Master file

Multi-valued attributes (fields)

Normalization

Object ID

Object-oriented database manage-

ment system (OODBMS)

Object-oriented programming

language (OOPL)

Object persistence formats

Object-relational database manage-

ment system (ORDBMS)

Ordered sequential access file

Overhead

Partial dependency

Pointer

Primary key

Problem domain classes

Random access files

Raw data

Referential integrity

Relational databaseRelational data-

base management

system (RDBMS)

Relationship sets

Repeating groups (fields)

Second normal form (2NF)

Sequential access files

Structured query language (SQL)

Table scan

Third normal form (3NF)

Transaction file

Transaction processing system

Transitive dependency

Unordered sequential access file

Update anamoly

Volumetrics

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

370 Chapter 11 Data Management Layer Design

EXERCISES

A. Using the Web or other resources, identify a product

that can be classified as an end-user database and a

product that can be classified as an enterprise data-

base. How are the products described and marketed?

What kinds of applications and users do they support?

In what kinds of situations would an organization

choose to implement an end-user database over an

enterprise database?

B. Visit a commercial Web site (e.g., Amazon.com). If

files were being used to store the data supporting the

application, what types of files would be needed?

What access type would be required? What data would

they contain?

C. Using the Web, review a one of the products listed

below. What are the main features and functions of

the software? In what companies has the DBMS been

implemented, and for what purposes? According to

the information that you found, what are three

strengths and weaknesses of the product?

1. Relational DBMS

2. Object-relational DBMS

3. Object-oriented DBMS

D. You have been given a file that contains the following

fields relating to CD information. Using the steps of

normalization, create a model that represents this file

in third normal form. The fields include:

Musical group name CD title 2

Musicians in group CD title 3

Date group was formed CD 1 length

Group’s agent CD 2 length

CD title 1 CD 3 length

Assumptions:

• Musicians in group contains a list of the members of

the people in the musical group.

• Musical groups can have more than one CD, so both

group name and CD title are needed to uniquely

identify a particular CD.

E. Jim Smith’s dealership sells Fords, Hondas, and Toy-

otas. The dealership keeps information about each car

manufacturer with whom they deal so that they can

get in touch with them easily. The dealership also

keeps information about the models of cars that they

carry from each manufacturer. They keep information

like list price, the price the dealership paid to obtain

the model, and the model name and series (e.g.,

Honda Civic LX). They also keep information about

all sales that they have made (for instance, they will

record the buyer’s name, the car they bought, and the

amount they paid for the car). In order to contact the

buyers in the future, contact information is also kept

(e.g., address, phone number). Create a class diagram

for this situation. Apply the rules of normalization to

the class diagram to “check” the diagram for process-

ing efficiency.

F. Describe how you would denormalize the model that

you created in Question E. Draw the new class dia-

gram based on your suggested changes. How would

performance be affected by your suggestions?

G, Examine the model that you created in Question F.

Develop a clustering and indexing strategy for this

model. Describe how your strategy will improve the

performance of the database.

H. Calculate the size of the database that you created in

Question F. Provide size estimates for the initial size of

the database as well as for the database in one year’s

time. Assume that the dealership sells ten models of

cars from each manufacturer to approximately 20,000

customers a year. The system will be set up initially

with one year’s worth of data.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Minicases 371

MINICASES

1. The system development team at the Wilcon Com-

pany is working on developing a new customer order

entry system. In the process of designing the new sys-

tem, the team has identified the following class and

its attributes:

Inventory Order

Order Number (PK)

Order Date

Customer Name

Street Address

City

State

Zip

Customer Type

Initials

District Number

Region Number

1 to 22 occurrences of:

Item Name

Quantity Ordered

Item Unit

Quantity Shipped

Item Out

Quantity Received

a. State the rule that is applied to place a class in first

normal form. Revise the above class diagram so

that it is in first normal form.

b. State the rule that is applied to place a class into

second normal form. Create a class diagram for

the Wilcon Company using the class and attrib-

utes described (if necessary) to place it in second

normal form.

c. State the rule that is applied to place a class into

third normal form. Revise the class diagram to

place it in third normal form.

d. When planning for the physical design of this data-

base, can you identify any likely situations where

the project team may chose to denormalize the

class diagram? After going through the work of

normalizing, why would this be considered?

2. In the new system under development for Holiday

Travel Vehicles, seven tables will be implemented in

the new relational database. These tables are: New

Vehicle, Trade-in Vehicle, Sales Invoice, Customer,

Salesperson, Installed Option, and Option. The

expected average record size for these tables and the

initial record count per table are given below.

Average Initial Table

Table Name Record Size Size (records)

New Vehicle 65 characters 10,000

Trade-in Vehicle 48 characters 7,500

Sales Invoice 76 characters 16,000

Customer 61 characters 13,000

Salesperson 34 characters 100

Installed Option 16 characters 25,000

Option 28 characters 500

Perform a volumetrics analysis for the Holiday Travel

Vehicle system. Assume that the DBMS that will be used

to implement the system requires 35 percent overhead

to be factored into the estimates. Also, assume a growth

rate for the company of 10 percent per year. The sys-

tems development team wants to ensure that adequate

hardware is obtained for the next three years.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

A user interface is the part of the system with which the users interact. It includes the

screen displays that provide navigation through the system, the screens and forms that cap-

ture data, and the reports that the system produces (whether on paper, on the screen, or via

some other media). This chapter introduces the basic principles and processes of interface

design, discusses how to design the interface structure and standards, navigation design,

input design, and output design.

OBJECTIVES:

■ Understand several fundamental user interface design principles.
■ Understand the process of user interface design.
■ Understand how to design the user interface structure.
■ Understand how to design the user interface standards.
■ Understand commonly used principles and techniques for navigation design.
■ Understand commonly used principles and techniques for input design.
■ Understand commonly used principles and techniques for output design.
■ Be able to design a user interface.

CHAPTER OUTLINE

Introduction

Principles for User Interface Design

Layout

Content Awareness

Aesthetics

User Experience

Consistency

Minimize User Effort

User Interface Design Process

Use Scenario Development

Interface Structure Design

Interface Standards Design

Interface Design Prototyping

Interface Evaluation

Navigation Design

Basic Principles

Types of Navigation Controls

Messages

Navigation Design Documentation

Input Design

Basic Principles

Types of Inputs

Input Validation

Output Design

Basic Principles

Types of Outputs

Media

Applying the Concepts at CD Selections

Use Scenario Development

Interface Structure Design

Interface Standards Design

Interface Template Design

Design Prototyping

Interface Evaluation

Summary

C H A P T E R 1 2

Human Computer Interaction

Layer Design

372

C
op

yr
ig

ht
ed

 M
at

er
ia

l

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

INTRODUCTION

Interface design is the process of defining how the system will interact with external enti-

ties (e.g., customers, suppliers, other systems). In this chapter we focus on the design of user

interfaces, but it is also important to remember that there are sometimes system interfaces

that exchange information with other systems. System interfaces are typically designed as

part of a systems integration effort. They are defined in general terms as part of the physi-

cal architecture and data management layers.

The human computer interface layer defines the way in which the users will interact

with the system and the nature of the inputs and outputs that the system accepts and pro-

duces. The user interface includes three fundamental parts. The first is the navigation mech-

anism, the way in which the user gives instructions to the system and tells it what to do

(e.g., buttons, menus). The second is the input mechanism, the way in which the system

captures information (e.g., forms for adding new customers). The third is the output mech-

anism, the way in which the system provides information to the user or to other systems

(e.g., reports, Web pages). Each of these is conceptually different, but they are closely inter-

twined. All computer displays contain navigation mechanisms, and most contain input and

output mechanisms. Therefore, navigation design, input design, and output design are

tightly coupled.

First, this chapter introduces several fundamental user-interface design principles.

Second, it provides an overview of the design process for the human computer interaction

layer. Third, the chapter provides an overview of the navigation, input and output compo-

nents that are used in interface design. This chapter focuses on the design of Web-based

interfaces and Graphical User Interfaces (GUI) that use windows, menus, icons, and a

mouse (e.g., Windows, Macintosh).1 Although text-based interfaces are still commonly

used on mainframes and Unix systems, GUI interfaces are probably the most common type

of interfaces that you will use, with the possible exception of printed reports.2

PRINCIPLES FOR USER INTERFACE DESIGN

In many ways, user interface design is an art. The goal is to make the interface pleasing to

the eye and simple to use, while minimizing the effort the users need to accomplish their

work. The system is never an end in itself; it is merely a means to accomplish the “business”

of the organization.

We have found that the greatest problem facing experienced designers is using space

effectively. Simply put, there often is too much information that needs to be presented on

a screen or report or form than will fit comfortably. Analysts must balance the need for

simplicity and pleasant appearance against the need to present the information across mul-

tiple pages or screens, which decreases simplicity. In this section, we discuss some funda-

mental interface design principles, which are common for navigation design, input design,

and output design3 (see Figure 12-1).

Principles for User Interface Design 373

1 Many people attribute the origin of GUI interfaces to Apple or Microsoft. Some people know that Microsoft
copied from Apple, which in turn “borrowed” the whole idea from a system developed at the Xerox Palo Alto
Research Center (PARC) in the 1970s. Very few know that the Xerox system was based on a system developed by
Doug Englebart of Stanford that was first demonstrated at the Western Computer Conference in 1968. Around
the same time, Doug also invented the mouse, desktop video conferencing, groupware, and host of other things
we now take for granted. Doug is a legend in the computer science community and has won too many awards to
count, but is relatively unknown by the general public.
2 A good book on GUI design is Susan Fowler, GUI Design Handbook (New York, McGraw-Hill, 1998).
3 A good book on the design of interfaces is Susan Weinschenk, Pamela Jamar, and Sarah Yeo, GUI Design Essen-
tials (New York, Wiley, 1997).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Layout

The first element of design is the basic layout of the screen, form, or report. Most software

designed for personal computers follows the standard Windows or Macintosh approach for

screen design. The screen is divided into three boxes. The top box is the navigation area

through which the user issues commands to navigate through the system. The bottom box

is the status area, which displays information about what the user is doing. The middle—

and largest—box is used to display reports and present forms for data entry.

In many cases (particularly on the Web), multiple layout areas are used. Figure 12-2

shows a screen with five navigation areas, each of which is organized to provide different

functions and navigation within different parts of the system. The top area provides the

standard Internet Explorer navigation and command controls that change the contents of

the entire system. The navigation area on the left edge navigates between sections and

changes all content to its right. The other two section navigation areas at the top and bot-

tom of the page provide other ways to navigate between sections. The content in the mid-

dle of the page displays the results (i.e., a report on a book) plus provides additional

navigation within the page about this book.

This use of multiple layout areas for navigation also applies to inputs and outputs.

Data areas on reports and forms are often subdivided into subareas, each of which is used

for different types of information. These areas are almost always rectangular in shape,

although sometimes space constraints will require odd shapes. Nonetheless, the margins on

the edges of the screen should be consistent. Each of the areas within the report or form is

designed to hold different information. For example, on an order form (or order report)

one part may be used for customer information (e.g., name, address), one part for infor-

mation about the order in general (e.g., date, payment information), and one part for the

order details (e.g., how many units of which items at what price each). Each area is self-

contained so that information in one area does not run into another.

The areas and information within areas should have a natural intuitive flow to minimize

the users’ movement from one area to the next. People in westernized nations (e.g., United

374 Chapter 12 Human Computer Interaction Layer Design

Layout The interface should be a series of areas on the screen that are used
consistently for different purposes—for example, a top area for commands
and navigation, a middle area for information to be input or output, and a
bottom area for status information.

Content awareness Users should always be aware of where they are in the system and what
information is being displayed.

Aesthetics Interfaces should be functional and inviting to users through careful use of
white space, colors, and fonts. There is often a tradeoff between including
enough white space to make the interface look pleasing without losing so
much space that important information does not fit on the screen.

User experience Although ease of use and ease of learning often lead to similar design
decisions, there is sometimes a tradeoff between the two. Novice users or
infrequent users of software will prefer ease of learning, whereas frequent
users will prefer ease of use.

Consistency Consistency in interface design enables users to predict what will happen
before they perform a function. It is one of the most important elements in
ease of learning, ease of use, and aesthetics.

Minimal user effort The interface should be simple to use. Most designers plan on having no
more than three mouse clicks from the starting menu until users perform work.

Principle Description

FIGURE 12-1

Principles of User

Interface Design

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Principles for User Interface Design 375

Status Bar

Section
Navigation

System
Navigation

Page Navigation

FIGURE 12-2 Layout with Multiple Navigation Areas

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

States, Canada, Mexico) tend to read top-to-bottom left-to-right, so related information

should be placed so it is used in this order (e.g., address lines, followed by city, state/province,

and then zip code/postal code). Sometimes the sequence is in chronological order, or from the

general to the specific, or from most frequently to least frequently used. In any event, before

the areas are placed on a form or report, the analyst should have a clear understanding of what

arrangement makes the most sense for how the form or report will be used. The flow between

sections should also be consistent, whether horizontal or vertical (see Figure 12-3). Ideally, the

areas will remain consistent in size, shape, and placement for the forms used to enter infor-

mation (whether paper or on-screen) and the reports used to present it.

Content Awareness

Content awareness refers to the ability of an interface to make the user aware of the infor-

mation it contains with the least amount of effort on the user’s part. All parts of the inter-

face, whether navigation, input or output, should provide as much content awareness as

possible, but it is particularly important for forms or reports that are used quickly or irreg-

ularly (e.g., a Web site).

Content awareness applies to the interface in general. All interfaces should have titles (on

the screen frame, for example). Menus should show where you are and, if possible, where you

came from to get there. For example, in Figure 12-2, the line below the top section navigation

area shows that the user has browsed from the Wiley Home page, to the Computer Science sec-

tion, to the Networking section, to General Networking section, and then to this specific book.

Content awareness also applies to the areas within forms and reports. All areas should

be clear and well defined (with titles if space permits) so that it is difficult for the user to

become confused about the information in any area. Then users can quickly locate the part

of the form or report that is likely to contain the information they need. Sometimes the areas

are marked using lines, colors, or headings (e.g., the section area in Figure 12-2), while in

other cases the areas are only implied (e.g., the page controls at the bottom of Figure 12-2).

Content awareness also applies to the fields within each area. Fields are the individual

elements of data that are input or output. The field labels that identify the fields on the

interface should be short and specific—objectives that often conflict. There should be no

uncertainty about the format of information within fields, whether for entry or display. For

example a date of 10/5/03 is different depending on whether you are in the United States

(October 5, 2003) or in Canada (May 10, 2003). Any fields for which there is the possibil-

ity of uncertainty or multiple interpretations should provide explicit explanations.

Content awareness also applies to the information that a form or report contains. In

general, all forms and reports should contain a preparation date (i.e., the date printed or

the data completed) so that the age of information is obvious. Likewise, all printed forms

and software should provide version numbers so that users, analysts, and programmers can

identify outdated materials.

Figure 12-4 shows a form from the University of Georgia. This form illustrates the log-

ical grouping of fields into areas with an explicit box (top left), as well as an implied area

with no box (lower left). The address fields within the address area follow a clear, natural

order. Field labels are short where possible (see the top left) but long where more informa-

tion is needed to prevent misinterpretation (see the bottom left).

Aesthetics

Aesthetics refers to designing interfaces that are pleasing to the eye. Interfaces do not have

to be works of art, but they do need to be functional and inviting to use. In most cases, “less

is more,” meaning that a simple, minimalist design is the best.

376 Chapter 12 Human Computer Interaction Layer Design

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Principles for User Interface Design 377

Patient Information

Patient Name:

First Name:

Last Name:

Address:

Street:

City:

State/Province:

Zip Code/Postal Code:

Home phone:

Office phone:

Cell phone:

Referring Doctor:

First Name:

Last Name:

Street:

City:

State/Province:

Zip Code/Postal Code:

Office phone:

(A) Vertical Flow

Patient Information

Patient Name:

First Name: Last Name:

Street: City: State/Province: Zip Code/Postal Code:

Home Phone: Office Phone: Cell Phone:

Referring Doctor:

First Name: Last Name:

Street: City: State/Province: Zip Code/Postal Code:

Office Phone:

(B) Horizontal Flow

FIGURE 12-3 Flow Between Interface Sections (A) Vertical (B) Horizontal

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

3
7
8

C
h

a
p

te
r 1

2
H

u
m

a
n

 C
o

m
p

u
te

r
 In

te
r
a
c
tio

n
 L

a
y
e

r
 D

e
s
ig

n

FIGURE 12-4 Form Example C
op

yr
ig

ht
ed

 M
at

er
ia

l
Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Space is usually at a premium on forms and reports, and often there is the temptation

to squeeze as much information as possible onto a page or a screen. Unfortunately, this can

make a form or report so unpleasant that users do not want to use it. In general, all forms

and reports need a minimum amount of white space that is intentionally left blank.

What was your first reaction when you looked at Figure 12-4? This is the most unpleas-

ant form at University of Georgia, according to staff members. Its density is too high; it has

too much information packed into too small of a space with too little white space. While it

may be efficient in saving paper by using one page not two, it is not effective for many users.

In general, novice or infrequent users of an interface, whether on a screen or on paper,

prefer interfaces with low density, often one with a density of less than 50 percent (i.e., less

than 50 percent of the interface occupied by information). More experienced users prefer

higher densities, sometimes approaching 90 percent occupied because they know where

information is located and high densities reduce the amount of physical movement

through the interface. We suspect the form in Figure 12-4 was designed for the experienced

staff in the personnel office who use it daily, rather than for the clerical staff in academic

departments with less personnel experience who use the form only a few times a year.

The design of text is equally important. As a general rule, all text should be in the same

font and about the same size. Fonts should be no less than 8 points in size, but 10 points is

often preferred, particularly if the interface will be used by older people. Changes in font

and size are used to indicate changes in the type of information that is presented (e.g.,

headings, status indicators). In general, italics and underlining should be avoided because

they make text harder to read.

Serif fonts (i.e., those having letters with serifs or tails [e.g., Times Roman], such as the

font you are reading right now) are the most readable for printed reports, particularly for small

letters. San-serif fonts (i.e., those without serifs [e.g., Helvetica or Arial] such as the ones used

for the chapter titles in this book) are the most readable for computer screens and are often

used for headings in printed reports. Never use all capital letters, except possibly for titles.

Color and patterns should be used carefully and sparingly and only when they serve a

purpose. (About 10 percent of men are color blind, so the improper use of color can impair

their ability to read information.) A quick trip around the Web will demonstrate the prob-

lems caused by indiscriminate use of colors and patterns. Remember, the goal is pleasant

readability, not art; color and patterns should be use to strengthen the message, not over-

whelm it. Color is best used to separate and categorize items, such as showing the differ-

ence between headings and regular text, or to highlight important information. Therefore,

colors with high contrast should be used (e.g., black and white). In general, black text on a

white background is the most readable, with blue on red the least readable. (Most experts

agree that background patterns on Web pages should be avoided.) Color has been shown

to affect emotion, with red provoking intense emotion (e.g., anger) and blue provoking

lowered emotions (e.g., drowsiness).

User Experience
User experience, essentially, can be broken down into two levels: those with experience, and

those without. Interfaces should be designed for both types of users. Novice users usually

are most concerned with ease of learning—how quickly they can learn new systems. Expert

users are usually most concerned with ease of use—how quickly they can use the system

once they have learned how to use it. Often these two are complementary and lead to sim-

ilar design decisions, but sometimes there are trade-offs. Novices, for example, often prefer

menus, which show all available system functions, because these promote ease of learning.

Experts, on the other hand, sometimes prefer fewer menus that are organized around the

most commonly used functions.

Principles for User Interface Design 379

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Systems that will end up being used by many people on a daily basis are more likely to

have a majority of expert users (e.g., order entry systems). Although interfaces should try

to balance ease of use and ease of learning, these types of systems should put more empha-

sis on ease of use, rather than ease of learning. Users should be able to access the commonly

used functions quickly, with few keystrokes or a small number of menu selections.

In many other systems (e.g., decision support systems), most people will remain occa-

sional users for the lifetime of the system. In this case, greater emphasis may be placed on

ease of learning rather than ease of use.

Ease of use and ease of learning often go hand-in-hand—but sometimes they don’t.

Research shows that expert and novice users have different requirements and behavior patterns

in some cases. For example, novices virtually never look at the bottom area of a screen that pre-

sents status information, while experts refer the status bar when they need information. Most

systems should be designed to support frequent users, except for systems designed to be used

infrequently or when many new users or occasional users are expected (e.g., the Web). Likewise,

systems that contain functionality that is used only occasionally must contain a highly intuitive

interface, or an interface that contains clear explicit guidance regarding its use.

The balance of quick access to commonly used and well-known functions, and guid-

ance through new and less well known functions is challenging to the interface designer,

and this balance often requires elegant solutions. Microsoft Office, for example, addresses

this issue through the use of the “show me” functions that demonstrate the menus and but-

tons for specific functions. These features remain in the background until they are needed

by novice users (or even experienced users when they use an unfamiliar part of the system).

Consistency

Consistency in design is probably the single most important factor in making a system sim-

ple to use because it enables users to predict what will happen. When interfaces are consis-

tent, users can interact with one part of the system, and then know how to interact with the

rest, aside of course, from elements unique to those parts. Consistency usually refers to the

interface within one computer system, so that all parts of the same system work in the same

way. Ideally, the system also should be consistent with other computer systems in the orga-

nization, and with commercial software that is used (e.g., Windows). For example, many

users are familiar with the Web, so the use of Web-like interfaces can reduce the amount of

learning required by the user. In this way, the user can reuse Web knowledge, thus signifi-

cantly reducing the learning curve for a new system. Many software development tools sup-

port consistent system interfaces by providing standard interface objects (e.g., list boxes,

pull down menus, and radio buttons).

Consistency occurs at many different levels. Consistency in the navigation controls con-

veys how actions in the system should be performed. For example, using the same icon or

command to change an item clearly communicates how changes are made throughout the

system. Consistency in terminology is also important. This refers to using the same words for

elements on forms and reports (e.g., not “customer” in one place and “client” in another). We

also believe that consistency in report and form design is important, although a recent study

suggests that being too consistent can cause problems.4 When reports and forms are very sim-

ilar except for very minor changes in titles, users sometimes mistakenly use the wrong form,

and either enter incorrect data or misinterpret its information. The implication for design is

to make the reports and forms similar, but give them some distinctive elements (e.g., color,

size of titles) that enable users to immediately detect differences.

380 Chapter 12 Human Computer Interaction Layer Design

4 John Satzinger and Lorne Olfman, “User Interface Consistency Across End-User Application: The Effects of
Mental Models,” Journal of Management Information Systems (Spring 1998), 167–193.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Minimize User Effort

Finally, interfaces should be designed to minimize the amount of effort needed to accom-

plish tasks. This means using the fewest possible mouse clicks or keystrokes to move from

one part of the system to another. Most interface designers follow the three clicks rule: users

should be able to go from the start or main menu of a system to the information or action

they want in no more than three mouse clicks or three keystrokes.

USER INTERFACE DESIGN PROCESS

User interface design is a five-step process that is iterative—analysts often move back and forth

between steps, rather than proceeding sequentially from step one to step five (see Figure 12-5).

First, the analysts examine the use cases (see Chapter 6) and sequence diagrams (see Chapter 8)

developed in the analysis phase and interview users to develop use scenarios that describe

commonly employed patterns of actions the users will perform so the interface enables users

to quickly and smoothly perform these scenarios. Second, the analysts develop a windows nav-

igations system that defines the basic structure of the interface. These diagrams show all the

interfaces (e.g., screens, forms, and reports) in the system and how they are connected. Third,

the analysts design interface standards, which are the basic design elements on which interfaces

in the system are based. Fourth, the analysts create an interface design prototype for each of

the individual interfaces in the system, such as navigation controls (including the conversion

of the essential use cases to real use cases), input screens, output screens, forms (including

preprinted paper forms), and reports. Finally, the individual interfaces are subjected to inter-

face evaluation to determine if they are satisfactory and how they can be improved.

Interface evaluations almost always identify improvements, so the interface design

process is repeated in a cyclical process until no new improvements are identified. In prac-

tice, most analysts interact closely with the users during the interface design process so that

users have many chances to see the interface as it evolves, rather than waiting for one over-

all interface evaluation at the end of the interface design process. It is better for all con-

cerned (both analysts and users) if changes are identified sooner, rather than later. For

example, if the interface structure or standards need improvements, it is better to identify

changes before most of the screens that use the standards have been designed.5

Use Scenario Development

A use scenario is an outline of the steps that the users perform to accomplish some part of their

work. A use scenario is one path through an essential use case. For example, Figure 6-17 shows

the use case diagram for the Web section of the Internet sales system. This figure shows that the

Maintain Order use case is distinct from the Checkout use case.We model the two use cases sep-

arately since they represent two separate processes that are included in the Place Order use case.

User Interface Design Process 381

Visit the Web home page for your university and navigate
through several of its Web pages. Evaluate the extent to

which they meet the six design principles.

12-1 Web Page CritiqueYOUR

TURN

5 A good source for more information on user interface evaluation is Deborah Hix and H. Rex Hartson, Devel-
oping User Interfaces: Ensuring Usability Through Product & Process (New York: Wiley, 1993).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

The use case diagram was designed to model all possible uses of the system—its com-

plete functionality or all possible paths through the use case at a fairly high-level of abstrac-

tion. In one use scenario, a user will browse for many CDs, much like someone browsing

through a real music store looking for interesting CDs. He or she will search for a CD, read

the marketing materials for it, perhaps add it to the shopping cart, browse for more, and so

on. Eventually, the user will want to place the order, perhaps removing some things from

the shopping cart beforehand.

In another use scenario, a user will want to buy one specific CD. He or she will go directly

to the CD, price it, and buy it immediately, much like someone running into a store, making

a beeline for the one CD he or she wants, and immediately paying and leaving the store. This

user will enter the CD information in the search portion of the system, look at the resulting

cost information, and immediately place an order. Anything that slows him or her down will

risk loss of the sale. For this use scenario, we need to ensure that the path through the use case

as presented by the interface is short and simple, with very few menus and mouse clicks.

Use scenarios are presented in a simple narrative description that is tied to the essen-

tial use cases developed during the analysis phase (see Chapter 6). Figure 12-6 shows the

two use scenarios just described. The key point with using use cases for interface design is

not to document all possible use scenarios within a use case. The goal is to document two

or three of the most common use scenarios so the interface can be designed to enable the

most common uses to be performed simply and easily.

382 Chapter 12 Human Computer Interaction Layer Design

Interface
standards

design

Interface
design

prototyping

Interface
evaluation

Interface
structure
design

Use, scenario
development

FIGURE 12-5
Use Interface Design

Process

Visit the Web home page for your university and navi-
gate through several of its Web pages. Develop two use

scenarios for it.

12-2 Use Scenario Development for the WebYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Interface Structure Design

The interface structure defines the basic components of the interface and how they work

together to provide functionality to users. A window navigation diagram (WND)6 is used to

show how all the screens, forms, and reports used by the system are related and how the

user moves from one to another. Most systems have several WNDs, one for each major part

of the system.

A WND is very similar to a behavioral state machine (see Chapter 8), in that they both

model state changes. A behavioral state machine typically models the state changes of an object,

whereas a WND models the state changes of the user interface. In a WND, each state that the

user interface may be in is represented as a box. Furthermore, a box typically corresponds to a

user interface component, such as a window, form, button, or report. For example in Figure

12-7, there are thirteen separate states: Main Menu, Menu A, Menu B, Menu C, and so on.

User Interface Design Process 383

Pretend you have been charged with the task of redesign-
ing the interface for the ATM at your local bank. Develop

two use scenarios for it.

12-3 Use Scenario Development for an ATMYOUR

TURN

Use scenario: The Hurry-up Shopper

User knows exactly what he or she wants and

wants it quickly

1. User will search for a specific artist or CD

 (1).

2. User will look at the price and perhaps

 other information (3).

3. User will want to place the order (7) or do

 another search (1) or surf on the other Web

 sites (3a-2).

Use scenario: The Browsing Shopper

User is not sure what he or she wants to

 buy and will browse for several CDs

1. User may search for a specific artist or

 browse through a music category (1).

The numbers in parentheses refer

to specific events in the essential

use case.

2. User will likely read the basic information

 for several CDs, as well as the marketing

 material for some. He or she will likely

 listen to music samples and browse

 related CDs (after we implement

 these) (3).

3. User will put several CDs in the shopping

 cart and will continue browsing (5).

4. Eventually, the user will want to place the

 order but will probably want to look

 through the shopping cart, possibly

 discarding some CDs first (7).

FIGURE 12-6 Use Scenarios

6 The window navigation diagram is actually an adaptation of the behavioral state machine and object diagrams
(see Meilir Page-Jones, Fundamentals of Object-Oriented Design in UML [New York, NY: Dorset House, 2000]).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

3
8
4

C
h

a
p

te
r 1

2
H

u
m

a
n

 C
o

m
p

u
te

r
 In

te
r
a
c
tio

n
 L

a
y
e

r
 D

e
s
ig

n

<<window>>
 Menu A

<<form>>
 Form B

<<report>>
 Report F

<<form>>
 Form A

Select Menu A

Select Fo
rm

 B

<<window>>
Main Menu

<<window>>
 Menu B

<<report>>
 Report L

<<report>>
 Report K

<<form>>
 Form J

Select

M
en

u
 B

Select R
ep

o
rt L

<<window>>
 Menu C

<<report>>
 Report Y

<<report>>
 Report Z

<<form>>
 Form X

Select R
ep

o
rt Y

Se
le

ct

Fo
rm

 J

Se
le

ct

Fo
rm

 A

Se
le

ct

Fo
rm

 X

Select

Report Z

Select Menu C

Select

Report K

Select

Report F

FIGURE 12-7 An Example Window Navigation Diagram

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Transitions are modeled as either a single-headed or double-headed arrow. A single-

headed arrow represents that a return to the calling state is not required, while a double-

headed arrow represents a required return. For example in Figure 12-7, the transition from

the Main Menu state to the Menu A state does not require a return; however, the transition

from the Menu A state to the Form A state does. The arrows are labeled with the action that

causes the user interface to move from one state to another. For example, in Figure 12-7, to

move from the Main Menu state to the Menu A state, the user must “Select Menu A” from

the Main Menu.

The last item to be described in a window navigation diagram is the stereotype. A

stereotype is modeled as a text item enclosed within guillemets (<< >>) or angle brackets

(<< >>). The stereotype represents the type of user interface component of a box on the

diagram. For example, the Main Menu is a window, while Form A is a form.

The basic structure of the interface follows the basic structure of the business process

itself as defined in the use cases and behavioral models. The analyst starts with the essen-

tial use cases and develops the fundamental flow of control of the system as it moves from

object to object. The analyst then examines the use scenarios to see how well the WND sup-

ports them. Quite often, the use scenarios identify paths through the WND that are more

complicated then they should be. The analyst then reworks the WND to simplify the abil-

ity of the interface to support the use scenarios, sometimes by making major changes to the

menu structure, sometimes by adding shortcuts.

Interface Standards Design

The interface standards are the basic design elements that are common across the individ-

ual screens, forms, and reports within the system. Depending on the application, there may

be several sets of interface standards for different parts of the system (e.g., one for Web

screens, one for paper reports, one for input forms). For example, the part of the system

used by data entry operators may mirror other data entry applications in the company,

while a Web interface for displaying information from the same system may adhere to some

standardized Web format. Likewise, each individual interface may not contain all of the ele-

ments in the standards (e.g., a report screen might not have an “edit” capability), and they

may contain additional characteristics beyond the standard ones, but the standards serve

as the touchstone that ensures the interfaces are consistent across the system. The follow-

ing sections discuss some of the main areas in which interface standards should be consid-

ered: templates, metaphors, objects, actions, and icons.

Interface Templates The interface template defines the general appearance of all screens in

the information system and the paper-based forms and reports that are used. The template

design, for example, specifies the basic layout of the screens (e.g., where the navigation area(s),

status area, and form/report area(s) will be placed) and the color scheme(s) that will be applied.

It defines whether windows will replace one another on the screen or will cascade over the top

of each other. The template defines a standard placement and order for common interface

User Interface Design Process 385

Pretend you have been charged with the task of redesign-
ing the interface for the ATM at your local bank. Design

an interface structure design using a WND that shows
how a user would navigate among the screens.

12-4 Interface Structure DesignYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

actions (e.g., “File Edit View” rather than “File View Edit”). In short, the template draws

together the other major interface design elements: metaphors, objects, actions, and icons.

Interface Metaphor First of all, the analysts must develop the fundamental interface

metaphor(s) that defines how the interface will work. An interface metaphor is a concept

from the real world that is used as a model for the computer system. The metaphor helps

the user understand the system and enables the user to predict what features the interface

might provide, even without actually using the system. Sometimes systems have one

metaphor, while in other cases there are several metaphors in different parts of the system.

Often, the metaphor is explicit. Quicken, for example, uses a checkbook metaphor for

its interface, even to the point of having the users type information into an on-screen form

that looks like a real check. In other cases, the metaphor is implicit or unstated, but it is

there, nonetheless. Many Windows systems use the paper form or table as a metaphor.

In some cases, the metaphor is so obvious that it requires no thought. The CD Selec-

tions Internet sales system, for example, will use the music store as the metaphor (e.g.,

shopping cart). In other cases, a metaphor is hard to identify. In general, it is better not to

force a metaphor that really doesn’t fit a system, because an ill-fitting metaphor will con-

fuse users by promoting incorrect assumptions.

Interface Objects The template specifies the names that the interface will use for the

major interface objects, the fundamental building blocks of the system such as the classes.

In many cases, the object names are straightforward, such as calling the shopping cart the

“shopping cart.” In other cases, it is not so simple. For example, CD Selections sells both

CDs and tapes. When users search for items to buy, should they search for “CDs” or “CDs

& Tapes” or “CDs/Tapes” or “Music” or “Albums” or something else? Obviously, the object

names should be easily understood and help promote the interface metaphor.

In general, in cases of disagreements between the users and the analysts over names,

whether for objects or actions (discussed later), the users should win. A more “under-

standable” name always beats a more “precise” or more “accurate” one.

Interface Actions The template also specifies the navigation and command language

style (e.g., menus), and grammar (e.g., object-action order; see the navigation design sec-

tion later in this chapter). It gives names to the most commonly used interface actions in

the navigation design (e.g., “buy” versus “purchase” or “modify” versus “change”).

Interface Icons The interface objects and actions and also their status (e.g., “deleted” or

“overdrawn”) may be represented by interface icons. Icons are pictures that will appear on

command buttons as well as in reports and forms to highlight important information. Icon

design is very challenging because it means developing a simple picture less than half the

size of a postage stamp that needs to convey an often-complex meaning. The simplest and

best approach is to simply adopt icons developed by others (e.g., a blank page to indicate

“create a new file,” a diskette to indicate “save”). This has the advantage of quick icon devel-

opment, and the icons may already be well understood by users because they have seen

them in other software.

Commands are actions that are especially difficult to represent with icons because they are

in motion, not static. Many icons have become well known from widespread use, but icons are

not as well understood as first believed. Use of icons can sometimes cause more confusion than

insight. (For example, did you know that a picture of a sweeping broom [paintbrush?] in

Microsoft Word means “format painter”?) Icon meanings become clearer with use, but some-

times a picture is not worth even one word; when in doubt, use a word not a picture.

386 Chapter 12 Human Computer Interaction Layer Design

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Interface Design Prototyping

An interface design prototype is a mock-up or a simulation of a computer screen, form, or

report. A prototype is prepared for each interface in the system to show the users and the

programmers how the system will perform. In the “old days,” an interface design prototype

was usually specified on a paper form that showed what would be displayed on each part

of the screen. Paper forms are still used today, but more and more interface design proto-

types are being built using computer tools instead of paper. The three most common

approaches to interface design prototyping are storyboarding, HTML prototyping, and

language prototyping.

Storyboard At its simplest, an interface design prototype is a paper-based storyboard.

The storyboard shows hand-drawn pictures of what the screens will look like and how they

flow from one screen to another, in the same way a storyboard for a cartoon shows how the

action will flow from one scene to the next (see Figure 12-8). Storyboards are the simplest

technique because all they require is paper (often a flip chart) and a pen—and someone

with some artistic ability.

HTML Prototype One of the most common types of interface design prototypes used

today is the HTML prototype. As the name suggests, an HTML prototype is built using Web

pages created in HTML (hypertext mark-up language). The designer uses HTML to create

a series of Web pages that shows the fundamental parts of the system. The users can inter-

act with the pages by clicking on buttons and entering pretend data into forms (but because

there is no “system” behind the pages the data are never processed). The pages are linked

together so that as the user clicks on buttons, the requested part of the system appears.

HTML prototypes are superior to storyboards in that they enable users to interact with the

system and gain a better sense of how to navigate among the different screens. However,

HTML has limitations—the screens shown in HTML will never appear exactly like the real

screens in the system (unless, of course, the real system will be a Web system in HTML).

Language Prototype A language prototype is an interface design prototype built using

the actual language or tool that will be used to build the system. Language prototypes are

designed in the same ways as HTML prototypes (they enable the user to move from screen

to screen, but perform no real processing). For example, in Visual Basic, it is possible to cre-

ate and view screens without actually attaching program code to the screens. Language pro-

totypes take longer to develop than storyboards or HTML prototypes, but have the distinct

advantage of showing exactly what the screens will look like. The user does not have to

guess about the shape or position of the elements on the screen.

Selecting the Appropriate Techniques Projects often use a combination of different

interface design prototyping techniques for different parts of the system. Storyboard-

ing is the fastest and least expensive, but provides the least amount of detail. Language

User Interface Design Process 387

Pretend you have been charged with the task of redesign-
ing the interface for the ATM at your local bank. Develop

an interface standard that includes a template, metaphors,
objects, actions, and icons.

12-5 Interface Standards DevelopmentYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

prototyping is the slowest, most expensive, and most detailed approach. HTML proto-

typing falls between the two extremes. Therefore storyboarding is used for parts of the

system in which the interface is well understood and when more expensive prototypes

are thought to be unnecessary. HTML prototypes and language prototypes are used for

parts of the system that are critical yet not well understood.

Interface Evaluation

The objective of interface evaluation is to understand how to improve the interface design

before the system is complete. Most interface designers intentionally or unintentionally

design an interface that meets their personal preferences, which might or might not match

the preferences of the users. The key message, therefore, is to have as many people as pos-

sible evaluate the interface, and the more users the better. Most experts recommend involv-

ing at least ten potential users in the evaluation process.

Many organizations save interface evaluation for the very last step in the systems devel-

opment before the system is installed. Ideally, however, interface evaluation should be per-

formed while the system is being designed—before it is built—so that any major design

problems can be identified and corrected before the time and cost of programming has

been spent on a weak design. It is not uncommon for the system to undergo one or two

388 Chapter 12 Human Computer Interaction Layer Design

(Click on a client for more information)
Adams, Clare
Adams, John
Baker, Robin

Client List

Add Client
Find Client
List Clients

Add a Client

First name: Last Name:

Address:

City:

State: Zip Code:

Client Menu

First Name: Last Name:

Address:

City:

State: Zip Code:

Find a Client

(Type in information to search on)

First Name: Pat SmithLast Name:

Address: 1234 Anywhere St.

Apt 56

City: Somethingville

State: CA 90211Zip code:

Client Information

FIGURE 12-8 An Example Storyboard

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

major changes after the users see the first interface design prototype because they identify

problems that are overlooked by the project team.

As with interface design prototyping, interface evaluation can take many different

forms, each with different costs and different amounts of detail. Four common approaches

are heuristic evaluation, walk-through evaluation, interactive evaluation, and formal

usability testing. As with interface design prototyping, the different parts of a system can

be evaluated using different techniques.

Heuristic Evaluation A heuristic evaluation examines the interface by comparing it to a

set of heuristics or principles for interface design. The project team develops a checklist of

interface design principles—from the list at the start of this chapter, for example, as well as

the list of principles in the navigation, input, and output design sections later in this chap-

ter. At least three members of the project team then individually work through the interface

design prototype examining each and every interface to ensure it satisfies each design prin-

ciple on a formal checklist. After each has gone through the prototype separately, they meet

as a team to discuss their evaluation and identify specific improvements that are required.

Walkthrough Evaluation An interface design is a meeting conducted with the users who

will ultimately have to operate the system. The project team presents the prototype to the

users and walks them through the various parts of the interface. The project team shows

the storyboard or actually demonstrates the HTML or language prototype and explains

how the interface will be used. The users identify improvements to each of the interfaces

that are presented.

Interactive Evaluation With an interactive evaluation, the users themselves actually

work with the HTML or language prototype in a one-person session with member(s) of

the project team (an interactive evaluation cannot be used with a storyboard). As the

user works with the prototype (often by going through the use scenarios, using the real

use cases described later in this chapter, or just navigating at will through the system), he

or she tells the project team member(s) what he or she likes and doesn’t like, and what

User Interface Design Process 389

I was involved in the development of several decision
support systems (DSS) while working as a consultant. On
one project, a future user was frustrated because he could
not imagine what a DSS looked like and how one would
be used. He was a key user, but the project team had a
difficult time involving him in the project because of his
frustration. The team used SQLWindows (one of the most
popular development tools at the time) to create a lan-
guage prototype that demonstrated the future system’s
appearance, proposed menu system, and screens (with
fields, but no processing).

The team was amazed at the user’s response to the pro-
totype. He appreciated being given a context with which to
visualize the DSS, and he soon began to recommend

improvements to the design and flow of the system, and to
identify some important information that was overlooked
during the analysis phase. Ultimately, the user became one
of the strongest supporters of the system, and the project
team felt sure that the prototype would lead to a much bet-
ter product in the end.

—Barbara Wixom

Question:

1. Why do you think the team chose to use a language
prototype rather than a storyboard or HTML proto-
type? What trade-offs were involved in the decision?

12-A Interface design prototypes for a DSS ApplicationCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

additional information or functionality is needed. As the user interacts with the proto-

type, team member(s) record the cases when he or she appears to be unsure of what to

do, makes mistakes, or misinterprets the meaning of an interface component. If the pat-

tern of uncertainty, mistakes or misinterpretations reoccurs across several of the users

participating in the evaluation, it is a clear indication that those parts of the interface

need improvement.

Formal Usability Testing Formal usability testing is commonly done with commercial

software products and products developed by large organizations that will be widely used

through the organization. As the name suggests, it a very formal—almost scientific—

process that can be used only with language prototypes (and systems that have been com-

pletely built awaiting installation or shipping).7 As with interactive evaluation, usability

testing is done in one-person sessions in which a user works directly with the software.

However, it is typically done in a special lab equipped with video cameras and special soft-

ware that records each and every keystroke and mouse operation so they can be replayed

to understand exactly what the user did.

The user is given a specific set of tasks to accomplish (usually the use scenarios) and

after some initial instructions, the project teams member(s) are not permitted to interact

with the user to provide assistance. The user must work with the software without help,

which can be hard on the users if they become confused with the system. It is critical that

users understand that the goal is to test the interface, not their abilities, and if they are

unable to complete the task, the interface—not the user—has failed the test.

Formal usability testing is very expensive, because each one-user session can take one

to two days to analyze due to the volume of detail collected in the computer logs and video-

tapes. Sessions typically last one to two hours. Most usability testing involves five to ten

users, because fewer than five users makes the results depend too much on the specific indi-

vidual users who participated, and more than ten users is often too expensive to justify

(unless you work for a large commercial software developer).

NAVIGATION DESIGN

The navigation component of the interface enables the user to enter commands to navigate

through the system and perform actions to enter and review information it contains. The

navigation component also presents messages to the user about the success or failure of his

or her actions. The goal of the navigation system is to make the system as simple as possi-

ble to use. A good navigation component is one the user never really notices. It simply

functions the way the user expects, and thus the user gives it little thought.

390 Chapter 12 Human Computer Interaction Layer Design

Pretend you have been charged with the task of redesign-
ing the interface for the ATM at your local bank. What

type of prototyping and interface evaluation approach
would you recommend? Why?

12-6 Prototyping and EvaluationYOUR

TURN

7 A good source for usability testing is Jakob Nielsen, and Robert Mack (eds.) Usability Inspection Methods (New
York: Wiley, 1994). See also www.useit.com/papers.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Basic Principles

One of the hardest things about using a computer system is learning how to manipu-

late the navigation controls to make the system do what you want. Analysts usually

need to assume that users have not read the manual, have not attended training, and

do not have external help readily at hand. All controls should be clear and under-

standable, and placed in an intuitive location on the screen. Ideally, the controls should

anticipate what the user will do and simplify his or her efforts. For example, many

setup programs are designed so that for a “typical” installation the user can simply

keep pressing the “next” button.

Prevent Mistakes The first principle of designing navigation controls is to prevent the

user from making mistakes. A mistake costs time and creates frustration. Worse still, a

series of mistakes can cause the user to discard the system. Mistakes can be reduced by

labeling commands and actions appropriately and by limiting choices. Too many choices

can confuse the user, particularly when they are similar and hard to describe in the short

space available on the screen. When there are many similar choices on a menu, consider

creating a second level of menu or a series of options for basic commands.

Never display a command that cannot be used. For example, many Windows applica-

tions gray-out commands that cannot be used; they are displayed on pull-down menus in a

very light-colored font, but they cannot be selected. This shows that they are available, but

that they cannot be used in the current context. It also keeps all menu items in the same place.

When the user is about to perform a critical function that is difficult or impossible to

undo (e.g., deleting a file), it is important to confirm the action with the user (and make

sure the selection was not made by mistake). This is usually done by having the user

respond to a confirmation message, which explains what the user has requested and asks

the user to confirm that this action is correct.

Simplify Recovery from Mistakes No matter what the system designer does, users will

make mistakes. The system should make it as easy as possible to correct these errors. Ideally,

the system will have an Undo button that makes mistakes easy to override; however, writing

the software for such buttons can be very complicated.

Use Consistent Grammar Order One of the most fundamental decisions is the grammar

order. Most commands require the user to specify an object (e.g., file, record, word), and the

action to be performed on that object (e.g., copy, delete). The interface can require the user

to first choose the object and then the action (an object-action order), or first choose the action

and then the object (an action-object order). Most Windows applications use an object-action

grammar order (e.g., think about copying a block of text in your word processor).

The grammar order should be consistent throughout the system, both at the data ele-

ment level as well as at the overall menu level. Experts debate about the advantages of one

approach over the other, but because most users are familiar with the object-action order,

most systems today are designed using that approach.

Types of Navigation Controls

There are two traditional hardware devices that can be used to control the user interface:

the keyboard and a pointing device such as a mouse, trackball, or touch screen. In recent

years, voice recognition systems have made an appearance, but they are not yet common.

There are three basic software approaches for defining user commands: languages, menus,

and direct manipulation.

Navigation Design 391

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Languages With a command language, the user enters commands using a special lan-

guage developed for the computer system (e.g., UNIX and SQL both use command lan-

guages). Command languages sometimes provide greater flexibility than other approaches

because the user can combine language elements in ways not predetermined by developers.

However, they put a greater burden on users because users must learn syntax and type

commands, rather than select from a well-defined, limited number of choices. Systems

today use command languages sparingly, except in cases where there are an extremely large

number of command combinations that make it impractical to try to build all combina-

tions into a menu (e.g., SQL queries for databases).

Natural language interfaces are designed to understand the user’s own language (e.g.,

English, French, Spanish). These interfaces attempt to interpret what the user means, and

often they present back to the user a list of interpretations from which to choose. An exam-

ple of the use of natural language is Microsoft’s Office Assistant, which enables users to ask

free-form questions for help.

Menus The most common type of navigation system today is the menu. A menu presents

the user with a list of choices, each of which can be selected. Menus are easier to learn than

languages because a limited number of available commands are presented to the user in an

organized fashion. Clicking on an item with a pointing device or pressing a key that

matches the menu choice (e.g., a function key) takes very little effort. Therefore, menus are

usually preferred to languages.

Menu design needs to be done with care because the submenus behind a main menu

are hidden from users until they click on the menu item. It is better to make menus broad

and shallow (i.e., each menu containing many items with only one or two layers of menus)

rather than narrow and deep (i.e., each menu containing only a few items, but each lead-

ing to three or more layers of menus). A broad and shallow menu presents the user with

the most information initially so that he or she can see many options and only requires

only a few mouse clicks or keystrokes to perform an action. A narrow and deep menu

makes users hunt and seek for items hidden behind menu items and requires many more

clicks or keystrokes to perform an action.

Research suggests that in an ideal world, any one menu should contain no more than

eight items and it should take no more than two mouse clicks or keystrokes from any menu

to perform an action (or three from the main menu that starts a system).8 However, analysts

sometimes must break this guideline in the design of complex systems. In this case, menu

items are often grouped together and separated by a horizontal line (see Figure 12-9). Often

menu items have hot keys that enable experienced users to quickly invoke a command with

keystrokes in lieu of a menu choice (e.g., Ctrl-F in Word invokes the Find command or Alt-

F opens the file menu).

Menus should put together like items so that the user can intuitively guess what

each menu contains. Most designers recommend grouping menu items by interface

objects (e.g., customers, purchase orders, inventory) rather than by interface actions

(e.g., new, update, format), so that all actions pertaining to one object are in one menu,

all actions for another object are in a different menu, and so. However, this is highly

dependent on the specific interface. As Figure 12-9 shows, Microsoft Word groups

menu items by interface objects (e.g., File, Table, Window) and by interface actions

(e.g., Edit, Insert, Format) on the same menu. Some of the more common types of

menus include menu bars, drop-down menus, pop-up menus, tab menus, tool bars, and

image maps (see Figure 12-10).

392 Chapter 12 Human Computer Interaction Layer Design

8 Kent L. Norman, The Psychology of Menu Selection (Norwood NJ.: Ablex Publishing Corp., 1991).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Navigation Design 393

Line Dividing
Menu Group

Grayed Out
Commands

A pop-up menu
that is also a
tab menu

Menu Bar

Drop-Down Menu Tool Bar with Buttons

FIGURE 12-9 Common Types of Menus

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Direct Manipulation With direct manipulation, the user enters commands by working

directly with interface objects. For example, users can change the size of objects in Microsoft

PowerPoint by clicking on them and moving their sides, or they can move files in Windows

Explorer by dragging the filenames from one folder to another. Direct manipulation can be

simple, but it suffers from two problems. First, users familiar with language- or menu-based

interfaces don’t always expect it. Second, not all commands are intuitive (e.g., how do you

copy [not move] files in Windows explorer? On the Macintosh, why does moving a folder to

the trash delete the file if it is on the hard disk, but eject the diskette if the file is on a diskette?).

394 Chapter 12 Human Computer Interaction Layer Design

Type of Menu When to Use Notes

Menu bar
List of commands at the top
of the screen; always on-
screen

Main menu for system Use the same organization as the operating system and
other packages (e.g., File, Edit, View).

Menu items are always one word, never two.

Menu items lead to other menus rather than perform action.

Never allow users to select actions they can’t perform
(instead, use grayed-out items).

Drop-down menu
Menu that drops down imme-
diately below another menu;
disappears after one use

Second-level menu, often from
menu bar

Menu items are often multiple words.

Avoid abbreviations.

Menu items perform action or lead to another cascading
drop-down menu, pop-up menu, or tab menu.

Pop-up menu
Menu that pops up and
floats over the screen; disap-
pears after one use

As a shortcut to commands for
experienced users

Pop-up menus often (not always) invoked by a right click in
Windows-based systems.

These menus are often overlooked by novice users, so usually
they should duplicate functionality provided in other menus.

Tab menu
Multipage menu with one tab
for each page that pops up
and floats over the screen;
remains on-screen until closed

When user needs to change
several settings or perform
several related commands

Menu items should be short to fit on the tab label.

Avoid more than one row of tabs, because clicking on a tab
to open it can change the order of the tabs and in virtually
no other case does selecting from a menu rearrange the
menu itself.

Tool bar
Menu of buttons (often with
icons) that remains on-
screen until closed

As a shortcut to commands for
experienced users

All buttons on the same tool bar should be the same size.

If the labels vary dramatically in size, then use two differ-
ent sizes (small and large).

Buttons with icons should have a tool tip, an area that dis-
plays a text phrase explaining the button when the user
pauses the mouse over it.

Image map
Graphic image in which cer-
tain areas are linked to
actions or other menus

Only when the graphic image
adds meaning to the menu

The image should convey meaning to show which parts
perform action when clicked.

Tool tips can be helpful.

FIGURE 12-10 Types of Menus

Design a navigation system for a system into which users
must enter information about customers, products, and

orders. For all three, users will want to change, delete,
find one specific record, and list all records.

12-7 Design a Navigation SystemYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Messages

Messages are the way in which the system responds to a user and informs him or her of

the status of the interaction. There are many different types of messages, such as error

messages, confirmation messages, acknowledgment messages, delay messages, and help mes-

sages (see Figure 12-11). In general, messages should be clear, concise, and complete,

which are sometimes conflicting objectives. All messages should be grammatically correct

and free of jargon and abbreviations (unless they are the users’ jargon and abbreviations).

Avoid negatives because they can be confusing (e.g., replace “Are you sure you do not want

to continue?” with “Do you want to quit?”). Likewise, avoid humor, because it wears off

quickly after the same message appears dozens of times.

Messages should require the user to acknowledge them (by clicking for example),

rather than being displayed for a few seconds and then disappearing. The exceptions are

messages that inform the user of delays in processing, which should disappear once the

delay has passed. In general, messages are text, but sometimes standard icons are used. For

example, Windows displays an hourglass when the system is busy.

All messages should be carefully crafted, but error messages and help messages require

particular care. Messages (and especially error messages) should always explain the problem

in polite, succinct terms (e.g., what the user did incorrectly) and explain corrective action as

clearly and as explicitly as possible so the user knows exactly what needs to be done. In the

Navigation Design 395

Type of Messages When to Use Notes

Error message
Informs the user that he or
she has attempted to do
something to which the sys-
tem cannot respond

When user does something
that is not permitted or not
possible

Always explain the reason and suggest corrective action.

Traditionally, error messages have been accompanied by a
beep, but many applications now omit it or permit users
to remove it.

Confirmation message
Asks users to confirm that
they really want to perform
the action they have selected

When user selects a poten-
tially dangerous choice, such
as deleting a file

Always explain the cause and suggest possible action.

Often include several choices other than “OK” and “
cancel.”

Acknowledgment message
Informs the user that the sys-
tem has accomplished what
it was asked to do

Seldom or never. Users
quickly become annoyed
with all the unnecessary
mouse clicks

Acknowledgment messages are typically included because
novice users often like to be reassured that an action has
taken place.

The best approach is to provide acknowledgment informa-
tion without a separate message on which the user must
click. For example, if the user is viewing items in a list
and adds one, then the updated list on the screen show-
ing the added item is sufficient acknowledgment.

Delay message
Informs the user that the
computer system is working
properly

When an activity takes more
than seven seconds

Should permit the user to cancel the operation in case he
or she does not want to wait for its completion.

Should provide some indication of how long the delay
may last.

Help message
Provides additional informa-
tion about the system and its
components

In all systems Help information is organized by table of contents and/or
keyword search.

Context-sensitive help provides information that is depen-
dent on what the user was doing when help was
requested.

Help messages and on-line documentation are discussed in
Chapter 14.

FIGURE 12-11 Types of Messages

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

case of complicated errors, the error message should display what the user entered, suggest

probable causes for the error, and propose possible user responses. When in doubt, provide

either more information than the user needs or the ability to get additional information.

Error messages should provide a message number. Message numbers are not intended for

users, but their presence makes it simpler for help desks and customer support lines to iden-

tify problems and help users because many messages use similar wording.

Navigation Design Documentation

The design of the navigation for a system is done through the use of window navigation

diagrams (WND) and real use cases. Real use cases are derived from the essential use cases

(see Chapter 6), use scenarios, and WNDs. Recall that an essential use case is one that only

describes the minimum essential issues necessary to understand the required functionality.

A real use case describes a specific set of steps that a user performs to use a specific part of

a system. As such, real use cases are implementation dependent (i.e., they are detailed

descriptions of how to use the system once it is implemented).

To evolve an essential use case into a real use case, two changes must be made. First, the use

case type must be changed from essential to real. Second, all events must be specified in terms

of the actual user interface. Therefore, the Normal Flow of Events, SubFlows, and

Alternate/Exceptional Flows must be modified. The Normal Flow of Events, SubFlows, and

Alternate/Exceptional Flows for the real use case associated the storyboard user interface proto-

type given in Figure 12-8 is shown in Figure 12-12. For example, Step 2 of the Normal Flow of

Events states that “The System provides the Sales Rep with the Main Menu for the System,”

which allows the Sales Rep to interact with the Maintain Client List aspect of the system.

396 Chapter 12 Human Computer Interaction Layer Design

It used to take workers at Hydro Agri’s Canadian Fertilizer
stores about twenty seconds to process an order. After
installing SAP, it now takes ninety seconds. Entering an
order requires users to navigate through six screens to find
the data fields that were on one screen in the old system.
The problem became so critical during the spring plant-
ing rush that the project team installing the SAP system
was pressed into service to take telephone orders.

Many other customers have complained about simi-
lar problems in SAP, and the other leading ERP systems.
Ontario-based Algoma Steel uses PeopleSoft, and now
has to use a dozen screens to enter employee data that
were contained in two screens in their old custom-built
personnel system. A-dec, a dental equipment maker
based in Oregon, discovered the hard way that its Baan
inventory system was still counting products that had
been shipped in its on-hand inventories; the system
required users to confirm the order shipments before the
inventories were recorded as shipped—but didn’t auto-
matically take them to the confirmation screen.

So why have companies implemented ERP systems?
The driving force behind most implementations was not

to simplify the users’ jobs, but instead to improve the
quality of the data, simplify system maintenance, and/or
beat the Y2K problem. Ease-of-use wasn’t a consideration,
and what makes ERP systems so hard to use is that in the
attempt to make them one-size-fits-all, developers had to
include many little-used data items and processes.
Instead of having a small custom system collecting only
the data needed by the company itself (which could be
condensed to fit one or two screens), companies now find
themselves using a system designed to collect all the data
items that any company could possibly use—data items
that now require six to twelve screens.

Source: “ERP user interfaces drive workers nuts,” ComputerWorld

(November 2, 1998).

Question:

1. Suppose you were a systems analyst at one of the
leading ERP vendors (e.g., SAP, PeopleSoft, Baan).
How could you apply the interface design princi-
ples and techniques in this chapter to improve the
ease of use of your system?

12-B ERP User Interfaces Drive Users NutsCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

INPUT DESIGN

Inputs mechanisms facilitate the entry of data into the computer system, whether highly

structured data, such as order information (e.g., item numbers, quantities, costs) or

unstructured information (e.g., comments). Input design means designing the screens

used to enter the information, as well as any forms on which users write or type informa-

tion (e.g., timecards, expense claims).

Input Design 397

Use-Case Name: Maintain Client List ID: 12 Importance Level: High

Primary Actor: Sales Rep Use-Case Type: Detail. Real

Stakeholders and Interests: Sales Rep - wants to add. find or list clients

Brief Description: This use case describes how sales representatives can search and maintain the
client list.

Trigger: Patient calls and asks for a new appointment or asks to cancel or change an existing
appointment.

Type: External

Relationships:
Association: Sales Rep
Include:
Extend:
Generalization:

Normal Flow of Events:

1. The Sales Rep starts up the system.
2. The System provides the Sales Rep with the Main Menu for the System.
3. The System asks Sales Rep if he or she would like to Add a client. Find an existing Client, or to

List all existing clients.
If the Sales Rep wants to add a client, they click on the Add Client Link and execute S-1:

New Client.
If the Sales Rep wants to f ind a client, they click on the Find Client Link and execute S-2:

Find Client.
If the Sales Rep wants to list all clients, they click on the List Client Link and execute S-3:

List Clients.
4. The System returns the Sales Rep to the Main Menu of the System.

Subflows:
S-1: New Client

1. The System asks the Sales Rep for relevant information.
2. The Sales Rep types in the relevant information into the Form
3. The Sales Rep submits the information to the System.

S-2: Find Client
1. The System asks the Sales Rep for the search information.
2. The Sales Rep types in the search information into the Form
3. The Sales Rep submits the information to the System.
4. If the System finds a single Client that meets the search information.

the System produces a Client Information report and returns the Sales Rep to the Main
Menu of the System

Else If the System finds a list of Clients that meet the search information. the System executes
S-3: List Clients.

S-3: List Clients
1. If this Subflow is executed from Step 3

The System creates a List of All clients
Else

The System creates a List of clients that matched the S-2: Find Client search criteria.
2. The Sales Rep selects a client.
3. The System produces a Client Information report.

Alternate/Exceptional Flows:
S-2 4a. The System produces an Error Message.

FIGURE 12-12

Example Real Use Case

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Basic Principles

The goal of the input mechanism is to simply and easily capture accurate information for

the system. The fundamental principles for input design reflect the nature of the inputs

(whether batch or online) and ways to simplify their collection.

Online versus Batch Processing There are two general formats for entering inputs into

a computer system: online processing and batch processing. With online processing (some-

times called transaction processing), each input item (e.g., a customer order, a purchase

order) is entered into the system individually, usually at the same time as the event or trans-

action prompting the input. For example, when you take a book out from the library, buy

an item at the store, or make an airline reservation, the computer system that supports that

process uses online processing to immediately record the transaction in the appropriate

database(s). Online processing is most commonly used when it is important to have real-

time information about the business process. For example, when you reserve an airline seat,

the seat is no longer available for someone else to use.

With batch processing, all the inputs collected over some time period are gathered

together and entered into the system at one time in a batch. Some business processes nat-

urally generate information in batches. For example, most hourly payrolls are done using

batch processing because time cards are gathered together in batches and processed at once.

Batch processing also is used for transaction processing systems that do not require real-

time information. For example, most stores send sales information to district offices so that

new replacement inventory can be ordered. This information could be sent in real-time as

it is captured in the store so that the district offices are aware within a second or two that

a product is sold. If stores do not need this up-to-the-second real-time data, they will col-

lect sales data throughout the day and transmit it every evening in a batch to the district

office. This batching simplifies the data communications process and often saves in com-

munications costs, but does mean that inventories are not accurate in real time, but rather

are accurate only at the end of the day after the batch has been processed.

Capture Data at the Source Perhaps the most important principle of input design is to

capture the data in an electronic format at its original source or as close to the original

source as possible. In the early days of computing, computer systems replaced traditional

manual systems that operated on paper forms. As these business processes were automated,

many of the original paper forms remained, either because no one thought to replace them

or because it was too expensive to do so. Instead, the business process continued to contain

manual forms that were taken to the computer center in batches to be typed into the com-

puter system by a data entry operator.

Many business processes still operate this way today. For example, most organizations

have expense claim forms that are completed by hand and submitted to an accounting

department, which approves them and enters them into the system in batches. There are

three problems with this approach. First, it is expensive because it duplicates work (the form

is filled out twice, once by hand, once by keyboard9). Second, it increases processing time

because the paper forms must be physically moved through the process. Third, it increases

the cost and probability of error, because it separates the entry from the processing of infor-

mation; someone may misread the handwriting on the input form, data could be entered

incorrectly, or the original input may contain an error that invalidates the information.

398 Chapter 12 Human Computer Interaction Layer Design

9 Or in the case of the University of Georgia, three times: first by hand on an expense form, a second time when it
is typed onto a new form for the “official” submission because the accounting department refuses hand-written
forms, and finally when it is typed into the accounting computer system.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Most transaction processing systems today are designed to capture data at its

source. Source data automation refers to using special hardware devices to automatically

capture data without requiring anyone to type it. Stores commonly use bar code readers

that automatically scan products and that enter data directly into the computer system.

No intermediate formats such as paper forms are used. Similar technologies include

optical character recognition, which can read printed numbers and text (e.g., on checks),

magnetic stripe readers, which can read information encoded on a stripe of magnetic

material similar to a diskette (e.g., credit cards), and smart cards that contain micro-

processors, memory chips, and batteries (much like credit-card sized calculators). As

well as reducing the time and cost of data entry, these systems reduce errors because

they are far less likely to capture data incorrectly. Today, portable computers and scan-

ners allow data to be captured at the source even when in mobile settings (e.g., air

courier deliveries, use of rental cars).

These automatic systems are not capable of collecting a lot of information, so the next

best option is to capture data immediately from the source using a trained entry operator.

Many airline and hotel reservations, loan applications, and catalog orders are recorded

directly into a computer system while the customer provides the operator with answers to

questions. Some systems eliminate the operator altogether and allow users to enter their

own data. For example, several universities (e.g., the Massachusetts Institute of Technology

[MIT]) no longer accept paper-based applications for admissions; all applications are

typed by students into electronic forms.

The forms for capturing information (on a screen, on paper, etc.) should support the

data source. That is, the order of the information on the form should match the natural

flow of information from the data source, and data entry forms should match paper forms

used to initially capture the data.

Minimize Keystrokes Another important principle is to minimize keystrokes. Key-

strokes cost time and money, whether they are performed by a customer, user, or trained

data-entry operator. The system should never ask for information that can be obtained in

another way (e.g., by retrieving it from a database or by performing a calculation). Like-

wise, a system should not require a user to type information that can be selected from a list;

selecting reduces errors and speeds entry.

In many cases, some fields have values that often recur. These frequent values should

be used as the default value for the field so that the user can simply accept the value and not

have to retype it time and time again. Examples of default values are the current date, the

area code held by the majority of a company’s customers, and a billing address that is based

on the customer’s residence. Most systems permit changes to default values to handle data

entry exceptions as they occur.

Input Design 399

Pretend that you are designing the new interface for a
Career Services system at your university that accepts stu-
dent resumes and presents them in a standard format to
recruiters. Describe how you could incorporate the basic

principles of input design into your interface design.
Remember to include the use of online versus batch data
input, the capture of information, and plans to minimize
keystrokes.

12-8 Career ServicesYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Types of Inputs

Each data item that has to be input is linked to a field on the form into which its value is

typed. Each field also has a field label, which is the text beside, above, or below the field that

tells the user what type of information belongs in the field. Often the field label is similar

to the name of the data element, but they do not have to have identical words. In some

cases, a field will display a template over the entry box to show the user exactly how data

should be typed. There are many different types of inputs, in the same way that there are

many different types of fields (see Figure 12-13).

Text As the name suggests, a text box is used to enter text. Text boxes can be defined to

have a fixed length or can be scrollable and can accept a virtually unlimited amount of text.

In either case, boxes can contain single or multiple lines of textual information. Never use

a text box if you can use a selection box.

Text boxes should have field labels placed to the left of the entry area their size clearly

delimited by a box (or a set of underlines in a non-GUI interface). If there are multiple text

boxes, their field labels and the left edges of their entry boxes should be aligned. Text boxes

should permit standard GUI functions such as cut, copy, and paste.

Numbers A number box is used to enter numbers. Some software can automatically for-

mat numbers as they are entered, so that 3452478 becomes $34,524.78. Dates are a special

form of numbers that sometimes have their own type of number box. Never use a number

box if you can use a selection box.

Selection Box A selection box enables the user to select a value from a predefined list. The

items in the list should be arranged in some meaningful order, such as alphabetical for long

lists, or in order of most frequently used. The default selection value should be chosen with

care. A selection box can be initialized as “unselected.” However, it is better to start with the

most commonly used item already selected.

There are six commonly used types of selection boxes: check boxes, radio buttons, on-

screen list boxes, drop-down list boxes, combo boxes, and sliders (see Figure 12-14). The

choice among the types of text selection boxes generally comes down to one of screen space

and the number of choices the user can select. If screen space is limited and only one item

can be selected, then a drop-down list box is the best choice, because not all list items need

to be displayed on the screen. If screen space is limited but the user can select multiple

items, an on-screen list box that displays only a few items can be used. Check boxes (for

multiple selections) and radio buttons (for single selections) both require all list items to

be displayed at all times, thus requiring more screen space, but since they display all

choices, they are often simpler for novice users.

Input Validation

All data entered into the system need to be validated to ensure their accuracy. Input valida-

tion (also called edit checks) can take many forms. Ideally, computer systems should not accept

data that fail any important validation check to prevent invalid information from entering the

system. However, this can be very difficult, and invalid data often slip by data entry operators

and the users providing the information. It is up to the system to identify invalid data and

either make changes or notify someone who can resolve the information problem.

There are six different types of validation checks: completeness check, format check,

range check, check digit check, consistency check, and database check (see Figure 12-15). Every

system should use at least one validation check on all entered data, and ideally will perform

all appropriate checks where possible.

400 Chapter 12 Human Computer Interaction Layer Design

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

OUTPUT DESIGN

Outputs are the reports that the system produces, whether on the screen, on paper, or in other

media, such as the Web. Outputs are perhaps the most visible part of any system because a

primary reason for using an information system is to access the information that it produces.

Output Design 401

50

0 50 100

Interest Score:

On-Screen

List Box

Text

Box

Slider

Drop-Down

List Box

Radio

Buttons

Check

Boxes

FIGURE 12-13 Types of Input Boxes

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

402 Chapter 12 Human Computer Interaction Layer Design

Consider a Web form that a student would use to input
student information and resume information into a Career
Services application at your university. First, sketch out
how this form would look and identify the fields that the

form would include. What types of validity checks would
you use to make sure that the correct information is
entered into the system?

12-9 Career ServicesYOUR

TURN

Type of Box When to Use Notes

Check box
Presents a complete list of
choices, each with a square
box in front

When several items can be
selected from a list of items

Check boxes are not mutually exclusive.

Do not use negatives for box labels.

Check box labels should be placed in some logical order,
such as that defined by the business process, or failing
that, alphabetically or most commonly used first.

Use no more than ten check boxes for any particular set
of options. If you need more boxes, group them into
subcategories.

Radio button
Presents a complete list of
mutually exclusive choices,
each with a circle in front

When only one item can be
selected from a set of mutu-
ally exclusive items

Use no more than six radio buttons in any one list; if you
need more, use a drop-down list box.

If there are only two options, one check box is usually pre-
ferred to two radio buttons, unless the options are not clear.

Avoid placing radio buttons close to check boxes to pre-
vent confusion between different selection lists.

On-screen list box
Presents a list of choices in a
box

Seldom or never—only if there
is insufficient room for check
boxes or radio buttons

This type of box can permit only one item to be selected
(in which case it is an ugly version of radio buttons).

This type of box can also permit many items to be selected
(in which case it is an ugly version of check boxes), but
users often fail to realize they can choose multiple items.

This type of box permits the list of items to be scrolled,
thus reducing the amount of screen space needed.

Drop-down list box
Displays selected item in
one-line box that opens to
reveal list of choices

When there is insufficient
room to display all choices

This type of box acts like radio buttons but is more compact.

This type of box hides choices from users until it is opened,
which can decrease ease of use; conversely, because it
shelters novice users from seldom-used choices, it can
improve ease of use.

This type of box simplifies design if the number of choices
is unclear, because it takes only one line when closed.

Combo box
A special type of drop-down
list box that permits user to
type as well as scroll the list

Shortcut for experienced users This type of box acts like drop-down list but is faster for
experienced users when the list of items is long.

Slider
Graphic scale with a sliding
pointer to select a number

Entering an approximate
numeric value from a large
continuous scale

The slider makes it difficult for the user to select a precise
number.

Some sliders also include a number box to enable the user
to enter a specific number.

FIGURE 12-14 Types of Selection Boxes

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Basic Principles

The goal of the output mechanism is to present information to users so they can accurately

understand it with the least effort. The fundamental principles for output design reflect

how the outputs are used and ways to make it simpler for users to understand them.

Understand Report Usage The first principle in designing reports is to understand how they

are used. Reports can be used for many different purposes. In some cases—but not very often—

reports are read cover to cover because all information is needed. In most cases, reports are used

to identify specific items or used as references to find information, so the order in which items

are sorted on the report or grouped within categories is critical. This is particularly important for

Output Design 403

Type of Validation When to Use Notes

Completeness check
Ensures all required data
have been entered

When several fields must be
entered before the form can
be processed

If required information is missing, the form is returned to
the user unprocessed.

Format check
Ensures data are of the right
type (e.g., numeric) and in
the right format (e.g., month,
day, year)

When fields are numeric or
contain coded data

Ideally, numeric fields should not permit users to type text
data, but if this is not possible, the entered data must be
checked to ensure it is numeric.

Some fields use special codes or formats (e.g., license plates
with three letters and three numbers) that must be checked.

Range check
Ensures numeric data are
within correct minimum and
maximum values

With all numeric data, if pos-
sible

A range check permits only numbers between correct values.

Such a system can also be used to screen data for “reason-
ableness”—e.g., rejecting birthdates prior to 1880
because people do not live to be a great deal over 100
years old (most likely, 1980 was intended).

Check digit check
Check digits are added to
numeric codes

When numeric codes are used Check digits are numbers added to a code as a way of
enabling the system to quickly validate correctness. For
example, U.S. Social Security numbers and Canadian Social
Insurance numbers assign only eight of the nine digits in the
number. The ninth number—the check digit—is calculated
using a mathematical formula from the first eight numbers.

When the identification number is typed into a computer sys-
tem, the system uses the formula and compares the result
with the check digit. If the numbers don’t match, then an
error has occurred.

Consistency checks
Ensure combinations of data
are valid

When data are related Data fields are often related. For example, someone’s birth year
should precede the year in which he or she was married.

Although it is impossible for the system to know which
data are incorrect, it can report the error to the user for
correction.

Database checks
Compare data against a
database (or file) to ensure
they are correct

When data are available to be
checked

Data are compared against information in a database (or
file) to ensure they are correct. For example, before an
identification number is accepted, the database is
queried to ensure that the number is valid.

Because database checks are more “expensive” than the
other types of checks (they require the system to do more
work), most systems perform the other checks first and
perform database checks only after the data have passed
the previous checks.

FIGURE 12-15 Types of Input Validation

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

the design of electronic or Web-based reports. Web reports that are intended to be read end-to-

end should be presented in one long scrollable page, while reports that are primarily used to find

specific information should be broken into multiple pages, each with a separate link. Page num-

bers and the date on which the report was prepared also are important for reference reports.

The frequency of the report may also play an important role in its design and distrib-

ution. Real-time reports provide data that are accurate to the second or minute at which

they were produced (e.g., stock market quotes). Batch reports are those that report histor-

ical information that may be months, days, or hours old, and they often provide additional

information beyond the reported information (e.g., totals, summaries, historical averages).

There are no inherent advantages to real-time reports over batch reports. The only

advantages lie in the time value of the information. If the information in a report is time

critical (e.g., stock prices, air traffic control information) then real time reports have value.

This is particularly important because real-time reports often are expensive to produce;

unless they offer some clear business value, they may not be worth the extra cost.

Manage Information Load Most managers get too much information, not too little (i.e.,

the information load that the manager must deal with is too great). The goal of a well-

designed report is to provide all of the information needed to support the task for which it

was designed. This does not mean that the report needs to provide all the information avail-

able on the subject—just what the users decide they need in order to perform their jobs. In

some cases, this may result in the production of several different reports on the same topics

for the same users because they are used in different ways. This is not a bad design.

For users in westernized countries, the most important information should always be

presented first in the top-left corner of the screen or paper report. Information should be

provided in a format that is usable without modification. The user should not need to re-

sort the report’s information, highlight critical information to find it more easily amid a

mass of data, or perform additional mathematical calculations.

Minimize Bias No analyst sets out to design a biased report. The problem with bias is that

it can be very subtle; analysts can introduce it unintentionally. Bias can be introduced by the

way in which lists of data are sorted because entries that appear first in a list may receive

more attention than those later in the list. Data often are sorted in alphabetical order, mak-

ing those entries starting with the letter A more prominent. Data can be sorted in chrono-

logical order (or reverse chronological order), placing more emphasis on older (or most

recent) entries. Data may be sorted by numeric value, placing more emphasis on higher or

lower values. For example, consider a monthly sales report by state. Should the report be

listed in alphabetical order by state name, in descending order by the amount sold, or in

some other order (e.g., geographic region)? There are no easy answers to this, except to say

that the order of presentation should match the way in which the information is used.

Graphical displays and reports can present particularly challenging design issues.10 The

scale on the axes in graphs is particularly subject to bias. For most types of graphs, the scale

should always begin at zero; otherwise, comparisons among values can be misleading. For

example, in Figure 12-16, have sales increased by very much since 1993? The numbers in

both charts are the same, but the visual images the two present are quite different. A glance

at Figure 12-16(a) would suggest only minor changes, while a glance at Figure 12-16(b)

might suggest that there have been some significant increases. In fact, sales have increased by

a total of 15 percent over five years, or 3 percent per year. Figure 12-16(a) presents the most

accurate picture; Figure 12-16(b) is biased because the scale starts very close to the lowest

404 Chapter 12 Human Computer Interaction Layer Design

10 Some of the best books on the design of charts and graphical displays are by Edward R. Tufte, The Visual Display
of Quantitative Information (Cheshire, CT: Graphics Press, 1983); Edward R. Tufte, Envisioning Information
(Cheshire, CT: Graphics Press, 1990); Edward R. Tufte, Visual Explanations (Cheshire, CT: Graphics Press, 1997);
and William Cleveland, Visualizing Data (Summit, NJ: Hobart Press, 1993).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

value in the graph and misleads the eye into inferring that there have been major changes

(i.e., more than doubling from “two lines” in 1993 to “five lines” in 1998). Figure 12-16(b) is

the default graph produced by Microsoft Excel.

Types of Outputs

There are many different types of reports, such as detail reports, summary reports, exception

reports, turnaround documents and graphs (see Figure 12-17). Classifying reports is challenging

because many reports have characteristics of several different types. For example, some detail

reports also produce summary totals, making them summary reports.

Output Design 405

Read through recent copies of a newspaper or pop-
ular press magazine, such as Time, Newsweek, or

BusinessWeek, and find four graphs. Which of these
are biased? Why?

12-10 Finding BiasYOUR

TURN

140

120

100

80

60

40

20

0

Unbiased Graph with scale starting at 0

(A)

(B)

Biased Graph with scale starting at 90

120

115

110

105

100

95

90
1993 1994 19961995 1997 1998

1993 1994 19961995 1997 1998

FIGURE 12-16
Bias in Graphs

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

406 Chapter 12 Human Computer Interaction Layer Design

Type of Reports When to Use Notes

Detail report
Lists detailed information
about all the items requested

When user needs full informa-
tion about the items

This report is usually produced only in response to a query
about items matching some criteria.

This report is usually read cover to cover to aid under-
standing of one or more items in depth.

Summary report
Lists summary information
about all items

When user needs brief infor-
mation on many items

This report is usually produced only in response to a query
about items matching some criteria, but it can be a com-
plete database.

This report is usually read for the purpose of comparing
several items to each other.

The order in which items are sorted is important.

Turnaround document
Outputs that “turn around”
and become inputs

When a user (often a cus-
tomer) needs to return an
output to be processed

Turnaround documents are a special type of report that are
both outputs and inputs. For example, most bills sent to
consumers (e.g., credit card bills) provide information
about the total amount owed and also contain a form
that consumers fill in and return with payment.

Graphs
Charts used in addition to
and instead of tables of
numbers

When users need to compare
data among several items

Well-done graphs help users compare two or more items
or understand how one has changed over time.

Graphs are poor at helping users recognize precise
numeric values and should be replaced by or combined
with tables when precision is important.

Bar charts tend to be better than tables of numbers or other
types of charts when it comes to comparing values
between items (but avoid three-dimensional charts that
make comparisons difficult).

Line charts make it easier to compare values over time,
whereas scatter charts make it easier to find clusters or
unusual data.

Pie charts show proportions or the relative shares of a whole.

FIGURE 12-17 Types of Reports

I helped a university department develop a small decision
support system to analyze and rank students who applied
to a specialized program. Some of the information was
numeric and could easily be processed directly by the
system (e.g., grade point average, standardized test
scores). Other information required the faculty to make
subjective judgments among the students (e.g., extracur-
ricular activities, work experience). The users entered
their evaluations of the subjective information via several
data analysis screens in which the students were listed in
alphabetical order.

To make the system easier to use, it was designed
so that the reports listing the results of the analysis were
also presented in alphabetical order by student name
rather than in order from the highest ranked student to
the lowest ranked student. In a series of tests prior to
installation, the users selected the wrong students to

admit in 20 percent of the cases. They assumed,
wrongly, that the students listed first were the highest
ranked students and simply selected the first students on
the list for admission. Neither the title on the report nor
the fact that all the students’ names were in alphabeti-
cal order made users realize that they had read the
report incorrectly.

—Alan Dennis

Question:

1. This system was biased because users assumed that
the list of students implied ranking. Pretend that you
are an analyst charged with minimizing bias in this
application. Where else may you find bias in the
application? How would you eliminate it?

12-C Selecting the Wrong StudentsCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Media

There are many different types of media used to produce reports. The two dominant media

in use today are paper and electronic. Paper is the more traditional media. For almost as

long as there have been human organizations, there have been reports on paper or similar

media (e.g., papyrus, stone). Paper is permanent, easy to use, and accessible in most situa-

tions. It also is highly portable, at least for short reports.

Paper also has several rather significant drawbacks. It is inflexible. Once the report is

printed, it cannot be sorted or reformatted to present a different view of the information.

Likewise, if the information on the report changes, the entire report must be reprinted.

Paper reports are expensive, hard to duplicate, and require considerable supplies (paper,

ink) and storage space. Paper reports also are hard to quickly move long distances (e.g.,

from a head office in Toronto to a regional office in Bermuda).

Many organizations are therefore moving to electronic production of reports, whereby

reports are “printed,” but stored in electronic format on file servers or Web servers so that

users can easily access them. Often the reports are available in more predesigned formats

than their paper-based counterparts because the cost of producing and storing different

formats is minimal. Electronic reports also can be produced on demand as needed, and

they enable the user to more easily search for certain words. Furthermore, electronic

reports can provide a means to support ad-hoc reports where users customize the contents

of the report at the time the report is generated. Some users still print the electronic report

on their own printers, but the reduced cost of electronic delivery over distance and the ease

of enabling more users to access the reports than when they were only in paper form usu-

ally offsets the cost of local printing.

APPLYING THE CONCEPTS AT CD SELECTIONS

In the CD Selections example there are three different high-level use cases in the Internet sales

system (see Figure 6-17): Maintain CD Information, Place Order, and Maintain Marketing

Information. There are also six additional use cases, Maintain Order, Checkout, Create New

Customer, Place InStore Hold, Place Special Order, and Fill Mail Order, associated with the

Place Order use case. To keep the complexity of the current example under control, in this

section, we focus only on the Place Order, Maintain Order, and Checkout use cases.

Applying the Concepts at CD Selections 407

One of the Fortune 500 firms with which I have worked
had an eighteen-story office building for its world head-
quarters. It devoted two full floors of this building to noth-
ing more than storing “current” paper reports (a separate
warehouse was maintained outside the city for “archived”
reports such as tax documents). Imagine the annual cost
of office space in the headquarters building tied up in
these paper reports. Now imagine how a staff member
would gain access to the reports, and you can quickly
understand the driving force behind electronic reports,
even if most users end up printing them. Within one year

of switching to electronic reports (for as many reports as
practical) the paper report storage area was reduced to
one small storage room.

—Alan Dennis

Question:

1. What types of reports are most suited to electronic
format? What types of reports are less suited to elec-
tronic reports?

12-D Cutting Paper to Save MoneyCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Use Scenario Development

The first step in the interface design process was to develop the key use scenarios for the

Internet sales system. Alec Adams, senior systems analyst at CD Selections and project

manager for the Internet sales system, began by examining the essential use cases (see Fig-

ure 6-16) and thinking about the types of users and how they would interact with the sys-

tem. To begin with, Alec identified two use scenarios: the browsing shopper and the

hurry-up shopper (see Figure 12-6).11 Alec also thought of several other use scenarios for

the Web site in general, but omitted them since they were not relevant to the Internet sales

portion. Likewise, he thought of several use scenarios that did not lead to sales (e.g., fans

looking for information about their favorite artists and albums), and omitted them as well.

Interface Structure Design

Next, Alec created a window navigation diagram (WND) for the Web system. He began

with the Place Order, Maintain Order, and Checkout essential use cases to ensure that

all functionality defined for the system was included in the WND. Figure 12-18 shows

the WND for the Web portion of the Internet Sales System. The system will start with a

home page that contains the main menu for the sales system. Based on the essential use

cases, Alec identified four basic operations that he felt made sense to support on the

main menu: search the CD catalog, search by music category, review the contents of the

shopping cart, and to actually place the order. Each of these was modeled as a hyperlink

on the home page.

Alec decided to model the full search option as a pop-up search menu that allowed the

customer to choose to search the CD catalog based on artist, title, or composer. He further

decided that a textbox would be required to allow the customer to type in the name of the

artist, title, or composer depending on the type of search requested. Finally, he chose to use

a button to submit the request to the system. After the “submit” button is pressed, the sys-

tem produces a report that was composed of hyperlinks to the individual information on

each CD. A CD report containing the basic information is generated by clicking on the

hyperlink associated with the CD. On the basic report, Alec added buttons for choosing to

find out additional information on the CD and to add the CD to the shopping cart. If the

“Detail” Button is pressed, a detailed report containing the marketing information on the

CD is produced. Finally, Alec decided to include a button on this report to add the CD to

the shopping cart.

The second basic operation supported on the home page was to allow the user to search

the CD catalog by category of music. Like the previous operation, Alec chose to model the

category search with a pop up search menu. In this case, once the customer chose the cate-

gory, the system would produce the report with the hyperlinks to the individual information

on each CD. From that point on, the navigation would be identical to the previous searches.

The third operation supported was to review the contents of the shopping cart. In this

case, Alec decided to model the shopping cart as a report that contained three types of

hyperlinks; one for removing an individual CD from the shopping cart, one for removing

all CDs from the shopping cart, and one for placing the order. The removal hyperlinks

would remove the individual CD (or all of the CDs) from the shopping cart if the user

would confirm the operation. The place order link would send the customer to an order

form. Once the customer filled out the order form, the customer would press the order but-

ton. The system would then respond with an order confirmation message box.

408 Chapter 12 Human Computer Interaction Layer Design

11 Of course, it may be necessary to modify the original essential use cases in light of these new subtypes of cus-
tomer. Furthermore, the structural and behavioral models may have to be modified. Remember that object-ori-
ented systems analysis and design follows a RAD-based approach to developing systems, as such, additional
requirements can be uncovered at any time.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

A
p

p
ly

in
g

 th
e

 C
o

n
c
e

p
ts

 a
t C

D
 S

e
le

c
tio

n
s

4
0
9

Choose Category
Search

Choose Review
Cart

Choose Place
Order

<<window>>
Main Menu

(System Home Page)

Choose Full
Search

<<Hyperlink>>
Full Search

Click Link Click Link Click Link
Click Link

Click Place
Order Link

Choose
Artist Choose

Category

Click CD Link

P
re

ss
 A

d
d
 B

u
tt
o
n

P
re

ss
 A

d
d
 B

u
tt
o
n

Press Button

<<Pop Up Menu>>
Search Menu

<<TextBox>>
Artist List

<<Button>>
Submit

<<Pop Up Menu>>
Search Menu

<<Report>>
Shopping

Cart

<<Msg Box>>
Confirmation

Message

<<Msg Box>>
Order

Confirmation

<<Msg Box>>
Confirmation

Message

<<Hyperlink Rep>>
CD List

<<HyperLink>>
Search By Cat

<<HyperLink>>
Review Cart

<<Hyperlink>>
Place Order

<<Form>>
Order Form

<<Button>>
Order

Press Order
Button

Click
Delete

CD Link

Click Delete
All CDs Link

<<TextBox>>
Title List

<<Button>>
Submit

<<TextBox>>
Composer List

<<Button>>
Submit

<<Report>>
Basic Report

<<Button>>
Detail

<<Button>>
Add

<<Report>>
Detailed Report

<<Button>>
Add

Choose
Composer

Choose
Title

Press submit
Button

Press submit

Button

Pr
es

s s
ub

m
it

But
to

n

FIGURE 12-18 CD Selections Initial WND for the Web Portion of the Internet Sales System

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

The fourth operation supported on the home page was to allow the customer to place

an order directly. Upon review, Alec decided that the place order and review cart operations

were essentially identical. As such, he decided to force the user to have the Place Order and

Review Shopping Cart operations go through the same process.

Alec also envisioned that by using frames, the user would be able to return to the home

page from any screen. Documenting these would give the WND too many lines, so Alec

simply put a note describing it with the WND.

The Revised WND Alec then examined the use scenarios to see how well the initial

WND enabled different types of users to work through the system. He started with the

Browsing Shopping use scenario and followed it through the WND, imagining what

would appear on each screen and pretending to navigate through the system. He found

the WND to work well, but he noticed a couple of minor issues related to the shopping

cart. First, he decided that it would make sense to allow the customer to retrieve the

information related to the CDs contained in the shopping cart. As such, he changed the

stereotype of the user interface component from Report to HyperLink Rep and added a

hyperlink from the Shopping Cart to the Basic Report created by the different search

requests. Second, he noticed that the Shopping Cart was using hyperlinks to link to the

Removal and Place Order processes. However, in all the other elements of the WND, he

was using buttons to model the equivalent ideas. As such, he decided to change the Shop-

ping Cart component to model these connections as buttons. Of course, this forced him

to modify the transitions as well.

Alec next explored the Hurry-up Shopper use scenario. In this case, the WND did not

work as well. Moving from the home page, to the search page, to the list of matching CDs,

to the CD page with price and other information takes three mouse clicks. This falls within

the three clicks rule, but for someone in a hurry, this may be too many. Alec decided to add

a “quick-search” option to the home page that would enable the user to enter one search

criteria (e.g., just artist name or title, rather than a more detailed search as would be pos-

sible on the search page) that would with one click take the user to the one CD that

matched the criteria or to a list of CDs if there were more than one. This would enable an

impatient user to get to the CD of interest in one or two clicks.

Once the CD is displayed on the screen, the Hurry-up Shopper use scenario would

suggest that the user would immediately purchase the CD, do a new search, or abandon

the Web site and surf elsewhere. This suggested two important changes. First, there had

to be an easy way to go to the place order screen. As the WND stands (see Figure 12-18),

the user must add the item to the shopping cart and then click on the link on the HTML

frame to get to the place order screen. While the ability of users to notice the place order

link in the frame would await the interface evaluation stage, Alec suspected, based on

past experience, that a significant number of users would not see it. Therefore, he

decided to add a button to the Basic Report screen and the Detailed Report screen called

“Buy” (see Figure 12-19).

Second, since the Hurry-up Shopper might want to search for another CD instead

of buying the CD, Alec decided to include the quick-search item from the home page

on the frame. This would make all searches immediately available from anywhere in

the system. This would mean that all functionality on the home page would now be

carried on the frame. Alec updated the note on the bottom attached to the WND to

reflect the change.

Finally, upon review of the WND, Alec decided to remodel the Artist List, Title List,

and Composer Lists as window stereotypes instead of textbox stereotypes. He then added

a Search Item textbox to each of these elements. Figure 12-19 shows the revised WND for

the Web portion of the Place Order use case. All changes are highlighted.

410 Chapter 12 Human Computer Interaction Layer Design

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

A
p

p
ly

in
g

 th
e

 C
o

n
c
e

p
ts

 a
t C

D
 S

e
le

c
tio

n
s

4
1
1

Choose Full
Search

Choose Review
Search

Choose Place
Order

<<Window>>
Main Menu

(System Home Page)

Click Link Click Link

Clic
k Link

Choose
Category

Click CD Link

P
re

ss
 A

d
d
 B

u
tt
o
n

Press
 Button

<<TextBox>>
Search Item

<<Pop Up Menu>>
Search Menu

<<Msg Box>>
Confirmation

Message

<<Msg Box>>
Order

Confirmation
<<Msg Box>>
Confirmation

Message

<<Hyperlink Rep>>
CD List

<<Hyperlink>>
Full Search

<<Window>>
Quick Search

<<Hyperlink>>
Review Cart

<<Hyperlink>>
Place Order

<<DropDownList>>
Search Type

<<Button>>
Submit

<<Form>>
Order Form

<<Button>>
Order

Press Order
Button

Press
Delete
Button

Press
Delete
All CDs
Button

<<TextBox>>
Search Item

<<Button>>
Submit

<<TextBox>>
Search Item

<<Button>>
Submit

<<TextBox>>
Search Item

<<Button>>
Submit

<<Button>>
Detail

<<Button>>
Delete All

<<Button>>
Delete

<<Button>>
Buy

<<Button>>
Add

Choose Category
Search

Click Link

<<Pop Up Menu>>
Search Menu

<<Hyperlink>>
Search By Cat

Choose
Title

<<Button>>
Buy

<<Button>>
Add

Press Submit Button

<<Hyperlink Rep>>
Shopping Cart

<<Button>>
Place Order

Press
Button

Press
Submit
Button

Choose Quick
Search

<<Window>>
Artist List

<<Window>>
Title List

<<Window>>
Composer List

Press Button

<<Report>>
Basic Report

<<Report>>
Detailed Report

Pr
es

s
Su

bm
it

B
ut

to
n

P
re

ss
 S

u
b
m

it
B

u
tt
o
n

Press

CD Link

P
re

ss
 A

d
d
 B

u
tt
o
n

Press Button

Choose
Artist

Choose
Composer

FIGURE 12-19 CD Selections Revised WND for the Web Portion of the Internet Sales System

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Interface Standards Design

Once the WND was complete, Alec moved on to develop the interface standards for the sys-

tem. The interface metaphor was straightforward: a CD Selections music store. The key

interface objects and actions were equally straightforward, as was the use of the CD Selec-

tions logo icon. See Figure 12-20.

Interface Template Design

For the interface template, Alec decided on a simple, clean design that had a modern back-

ground pattern, with the CD-Selections logo in the upper-left corner. The template had

two navigation areas: one menu across the top for navigation within the entire Web site

(e.g., overall Web site home page, store locations) and one menu down the left edge for

navigation within the Internet sales system. The left edge menu contained the links to the

top-level operations (see WND in Figure 12-19), as well as the “quick search” option. The

center area of the screen is used for displaying forms and reports when the appropriate

operation is chosen (see Figure 12-21).

At this point, Alec decided to seek some quick feedback on the interface structure and

standards before investing time in prototyping the interface designs. Therefore, he met

with Margaret Mooney, the project sponsor, and Chris Campbell, the consultant, to discuss

the emerging design. Making changes at this point would be much simpler than after doing

the prototype. Margaret and Chris had a few suggestions, so after the meeting Alec made

the changes and moved into the design prototyping step.

Design Prototyping

Alec decided to develop a hypertext mark-up language (HTML) prototype of the system.

The Internet sales system was new territory for CD Selections and a strategic investment in

a new business model, so it was important to make sure that no key issues were overlooked.

The HTML prototype would provide the most detailed information and enable interactive

evaluation of the interface.

412 Chapter 12 Human Computer Interaction Layer Design

Interface Metaphor: A CD Selections Music Store

Interface Objects

• CD: All items, whether CD, tape, or DVD, unless it is important to distinguish among them

• Artist: Person or group who records the CD

• Title: Title or name of CD

• Composer: Person or group who wrote the music for the CD (primarily used for classical music)

• Music Category: Type of music. Current categories include: Rock, Jazz, Classical, Country, Alter-
native, Soundtracks, Rap, Folk, Gospel.

• CD List: List of CD(s) that match the specified criteria

• Shopping Cart: Place to store CDs until they are requested

Interface Actions

• Search for: Display a CD list that matches specified criteria

• Browse: Display a CD list sorted in order by some criteria

• Order: Authorize special order or place hold

Interface Icons

• CD Selections Logo: Will be used on all screens

FIGURE 12-20

CD-Selection Interface

Standards

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

In designing the prototype, Alec started with the home screen and gradually worked

his way through all the screens. The process was very iterative and he made many changes

to the screens as he worked. Once he had an initial prototype designed, he posted it on CD

Selections intranet and solicited comments from several friends with lots of Web experi-

ence. He revised it based on the comments he received. Figure 12-22 presents some screens

from the prototype.

Interface Evaluation

The next step was interface evaluation. Alec decided on a two-phase evaluation. The first eval-

uation was to be an interactive evaluation conducted by Margaret, her marketing managers,

selected staff members, selected store managers, and Chris. They worked hands-on with the

prototype and identified several ways to improve it. Alec modified the HTML prototype to

reflect the changes suggested by the group and asked Margaret and Chris to review it again.

The second evaluation was another interactive evaluation, this time by a series of two

focus groups of potential customers—one with little Internet experience, the other with

extensive Internet experience. Once again, several minor changes were identified. Alec

again modified the HTML prototype and asked Margaret and Chris to review it again.

Once they were satisfied, the interface design was complete.

Navigation Design Documentation

The last step that Alec completed was to document the navigation design through the use

of real use cases. To accomplish this, Alec gathered together the essential use case (see Fig-

ure 6-15), the use scenarios (see Figure 12-6), the window navigation diagram (see Figure

12-19), and the user interface prototype (see Figures 12-21 and 12-22). First, he copied the

contents of the essential use case to the real use case. He changed the type from detail,

Applying the Concepts at CD Selections 413

Home

Quick Search

Full Search

Browse by Music Type

Show Shopping Cart

Buy Now

Artist Name (last, first)

Go

News Store Information Internet Store Corporate Information

FIGURE 12-21
CD Selections Inter-

face Template for the

Web Portion of the

Internet Sales System

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

414 Chapter 12 Human Computer Interaction Layer Design

Home News Store Information Internet Store Corporate Information

Home

Quick Search Search Results for: Stewart, Al

24 Carrots

 Al Stewart (1993) $11.97

Best of Al Stewart

 Al Stewart (1987) $11.97

Between the Wars

 Al Stewart (1995) $15.97

Famous Last Words

 Al Stewart (1993) $15.97

Modern Times

 Al Stewart (1992) $11.97

Stewart, Al

Full Search

Browse by Music Type

Show Shopping Cart

Buy Now

Artist Name (last, first)

Go

News Store Information Internet Store Corporate Information

Quick Search Search Results for: Stewart, Al

24 Carrots by Al Stewart (1993)

CD Price: $11.97

Shipping Cost: $2.00

Usually ships within 2 days

Tracks:

1. Running Man

2. Midnight Rocks

3. Constantinople

4. Merlin’s Time

5. Mondo Sinistro

6. Mumansk Run

 Ellis Island

 7. Rocks in the Ocean

 8. Paint by Number

 9. Optical Illusion

10. Here in Angola

11. Pandora

12. Indian Summer

Stewart, Al

Full Search

Browse by Music Type

Show Shopping Cart

Buy Now

Artist Name (last, first)

Go

Buy it Now Add to Cart

More Information

(A)

(B)

Al Stewart

FIGURE 12-22
Sample Interfaces from

the CD Selections

Design Prototype

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

essential to detail, real and the primary actor was specialized to browsing customer instead

of simply customer. Second, he wrote the specific set of steps and responses that described

the interaction between the browsing customer and system. Figure 12-23 shows a partial

listing of the steps in the Normal Flow of Events and SubFlows sections of the real use case.

Last, he repeated the steps for the hurry-up customer.

SUMMARY

User Interface Design Principles

The first element of the user interface design is the layout of the screen, form or report,

which is usually depicted using rectangular shapes with a top area for navigation, a central

area for inputs and outputs, and a status line at the bottom. The design should help the user

Applying the Concepts at CD Selections 415

Use-Case Name: Place Order ID: 15 Importance Level: High

Primary Actor: The Browsing Customer Use-Case Type: Detail, Real

Stakeholders and Interests: Customer – Wants to search web site to purchase CD
EM Manager – Wants to maximize Customer satisfaction.

Brief Description: This use case describes how customers can search the web site and place orders.

Trigger: Customer visits web site
Type: External

Relationships:
Association: Customer
Include: Checkout, Maintain Order
Extend:
Generalization:

Normal Flow of Events:
1. The Customer visits the Web site.
2. The System displays the Home Page

If the Customer wants to do a Full Search, execute S-1:Full Search
If the Customer wants to Browse by Music Type, execute S-2: Browse by Music Type
If the Customer wants to see any Special Deals, execute S-3: Special Deals
If the Customer wants to see the contents of the Shopping Cart, execute S-4: Shopping Cart
If the Customer wants to Buy Now, execute S-5: Buy Now

3. The Customer leaves the site.

Subflows:
S-1: Full Search

1. The Customer clicks the Full Search hyperlink
2. The System displays the search type pop-up menu

If the Customer chooses an Artist search, execute S-1a: Artist List
If the Customer chooses an Title search, execute S-1a: Title List
If the Customer chooses an Composer search, execute S-1a:composer List

S-1a: Artist List
1. The System displays the Artist List window in the Center Area of the Home Page.
2. The Customer enters the Artist Name into the Search Item text box.
3. The Customer presses the “ Submit” button.
4. The System executes S-2a:CD List.

S-2a:CD List
1. The System displays the CD List hyperlink report.
2. The Customer chooses a CD to review by clicking the CD link.
3. The System executes s-2b: Display Basic Report
4. Iterate over steps 2 and 3.

Alternate/Exceptional Flows:

FIGURE 12-23

The Browsing Cus-

tomer Real Use Case

(Partial Listing Only)

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

be aware of content and context, both between different parts of the system as they navi-

gate through it and within any one form or report. All interfaces should be aesthetically

pleasing (not works of art) and need to include significant white space, use colors carefully,

and be consistent with fonts. Most interfaces should be designed to support both

novice/first time users, as well as experienced users. Consistency in design (both within the

system and across other systems used by the users) is important for the navigation controls,

terminology, and the layout of forms and reports. Finally, all interfaces should attempt to

minimize user effort, for example, by requiring no more than three clicks from the main

menu to perform an action.

The User Interface Design Process

First, analysts develop use scenarios that describe commonly used patterns of actions that

the users will perform. Second, they design the interface structure via a WND based on the

essential use cases. The WND is then tested with the use scenarios to ensure that it enables

users to quickly and smoothly perform these scenarios. Third, analysts define the interface

standards in terms of interface metaphor(s), objects, actions, and icons. These elements are

drawn together by the design of a basic interface template for each major section of the sys-

tem. Fourth, the designs of the individual interfaces are prototyped, either through a sim-

ple storyboard, an HTML prototype, or a prototype using the development language of the

system itself (e.g., Visual Basic). Finally, interface evaluation is conducted using heuristic

evaluation, walkthrough evaluation, interactive evaluation, or formal usability testing. This

evaluation almost always identifies improvements, so the interfaces are redesigned and

evaluated further.

Navigation Design

The fundamental goal of the navigation design is to make the system as simple to use as

possible, by preventing the user from making mistakes, simplifying the recovery from mis-

takes, and using a consistent grammar order (usually object-action order). Command lan-

guages, natural languages, and direct manipulation are used in navigation, but the most

416 Chapter 12 Human Computer Interaction Layer Design

Based on the user interface prototype (see Figures 12-21
and 12-22) and the real use cases (see Your Turn 12-11) for

the Web portion of CD Selections Internet sales system,
revise the window navigation diagram (see Figure 12-19).

12-12 Revising CD Selections WNDYOUR

TURN

Based on the use case diagram (see Figure 6-17), the user
interface prototype (see Figures 12-21 and 12-22), the use
scenarios (see Figure 12-6), and the WND (see Figure
12-19) for the Web portion of CD Selections Internet sales

system, complete the real use cases. Be sure to add back
the Place In Store Hold, Place Special Order, and Fill Mail
Order use cases.

12-11 Completing the CD Selections Real Use CaseYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

common approach is menus (menu bar, drop down menu, pop-up menu, tab menu, but-

ton and tool bars, and image maps). Error messages, confirmation messages, acknowledg-

ment messages, delay messages, and help messages are common types of messages. Once

the navigation design is agreed upon, it is documented in the form of windows navigation

diagrams and real use cases.

Input Design

The goal of the input mechanism is to simply and easily capture accurate information for

the system, typically by using online or batch processing, capturing data at the source, and

minimizing keystrokes. Input design includes both the design of input screens and all

preprinted forms that are used to collect data before it is entered into the information sys-

tem. There are many types of inputs, such as text fields, number fields, check boxes, radio

buttons, on-screen list boxes, drop-down list boxes, and sliders. Most inputs are validated

by using some combination of completeness checks, format checks, range checks, check

digit checks, consistency checks, and database checks.

Output Design

The goal of the output mechanism is to present information to users so they can accurately

understand it with the least effort, usually by understanding how reports will be used and

designing them to minimize information overload and bias. Output design means design-

ing both screens and reports in other media, such as paper and the Web. There are many

types of reports such as detail reports, summary reports, exception reports, turnaround

documents, and graphs.

Key Terms 417

KEY TERMS

Acknowledgment message

Action-object order

Aesthetics

Bar code reader

Batch processing

Batch report

Bias

Button

Check box

Check digit check

Combo box

Command language

Completeness check

Confirmation message

Consistency

Consistency check

Content awareness

Data entry operator

Database check

Default value

Delay message

Density

Detail report

Direct manipulation

Drop-down list box

Drop-down menu

Ease of learning

Ease of use

Edit check

Error message

Essential use case

Exception report

Field

Field label

Form

Format Check

Grammar order

Graph

Graphical User Interface (GUI)

Help message

Heuristic evaluation

Hot key

HTML prototype

Image map

Information load

Input mechanism

Interactive evaluation

Interface action

Interface design prototype

Interface evaluation

Interface icon

Interface metaphor

Interface object

Interface standards

Interface template

Language prototype

Layout

Magnetic stripe readers

Menu

Menu bar

Natural language

Navigation mechanism

Number box

Object-action order

Online processing

On-screen list box

Optical character recognition

Output mechanism

Pop-up menu

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

418 Chapter 12 Human Computer Interaction Layer Design

Radio button

Range check

Real-time information

Real-time report

Real use case

Report

Screen

Selection box

Sequence diagrams

Slider

Smart card

Source data automation

State

Stereotype

Storyboard

Summary report

System interface

Tab menu

Text box

Three clicks rule

Tool bar

Transaction processing

Transition

Turnaround document

Usability testing

Use case

Use scenario

User experience

User interface

Validation

Walkthrough evaluation

White space

Window

Windows navigation diagram (WND)

QUESTIONS

1. Explain three important user interface design principles.

2. What are three fundamental parts of most user inter-

faces?

3. Why is content awareness important?

4. What is white space and why is it important?

5. Under what circumstances should densities be low?

High?

6. How can a system be designed to be used by experi-

enced and first-time users?

7. Why is consistency in design important? Why can too

much consistency cause problems?

8. How can different parts of the interface be consistent?

9. Describe the basic process of user interface design.

10. What are use scenarios, and why are they important?

11. What is a windows navigation diagram (WND), and

why is it used?

12. Why are interface standards important?

13. Explain the purpose and contents of interface

metaphors, interface objects, interface actions, inter-

face icons, and interface templates.

14. Why do we prototype the user interface design?

15. Compare and contrast the three types of interface

design prototypes.

16. Why is it important to perform an interface evalua-

tion before the system is built?

17. Compare and contrast the four types of interface eval-

uation.

18. Under what conditions is heuristic evaluation justified?

19. What type of interface evaluation did you perform in

the Your Turn Box 12-1?

20. Describe three basic principles of navigation design.

21. How can you prevent mistakes?

22. Explain the differences between object-action order

and action-object order.

23. Describe four types of navigation controls.

24. Why are menus the most commonly used navigation

control?

25. Compare and contrast four types of menus.

26. Under what circumstances would you use a drop-

down menu versus a tab menu?

27. Under what circumstances would you use an image

map versus a simple list menu?

28. Describe five types of messages.

29. What are the key factors in designing an error message?

30. What is context-sensitive help? Does your word

processor have context-sensitive help?

31. How do an essential use case and a real use case differ?

32. What is the relationship between essential use cases

and use scenarios?

33. What is the relationship between real use cases and

use scenarios?

34. Explain three principles in the design of inputs.

35. Compare and contrast batch processing and online

processing. Describe one application that would use

batch processing and one that would use online pro-

cessing.

36. Why is capturing data at the source important?

37. Describe four devices that can be used for source data

automation.

38. Describe five types of inputs.

39. Compare and contrast check boxes and radio buttons.

When would you use one versus the other?

40. Compare and contrast on-screen list boxes and

drop-down list boxes. When would you use one ver-

sus the other?

41. Why is input validation important?

42. Describe five types of input validation methods.

43. Explain three principles in the design of outputs.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Exercises 419

44. Describe five types of outputs.

45. When would you use electronic reports rather than

paper reports, and vice-versa?

46. What do you think are three common mistakes that

novice analysts make in navigation design?

47. What do you think are three common mistakes that

novice analysts make in input design?

48. What do you think are three common mistakes that

novice analysts make in output design?

49. How would you improve the form in Figure 12-4?

EXERCISES

A. Develop two use scenarios for Web site that sells some

retail products (e.g., books, music, clothes).

B. Draw a WND for a Web site that sells some retail

products (e.g., books, music, clothes).

C. Describe the primary components of the interface

standards for a Web site that sells some retail products

(metaphors, objects, actions, icons, and template).

D. Based on the use case diagram in Exercise O in Chapter 6:

1. Develop two use scenarios.

2. Develop the interface standards (omitting the inter-

face template).

3. Draw a WND.

4. Design a storyboard.

E. Based on your solution to Exercise D:

1. Design an interface template.

2. Develop an HTML prototype.

3. Develop a real use case.

F. Based on the use case diagram in Exercise Q in Chapter 6:

1. Develop two use scenarios.

2. Develop the interface standards (omitting the inter-

face template).

3. Draw a WND.

4. Design a storyboard.

G. Based on your solution to Exercise F:

1. Design an interface template.

2. Develop an HTML prototype.

3. Develop a real use case.

H. Based on the use case diagram in Exercise S in Chapter 6:

1. Develop two use scenarios.

2. Develop the interface standards (omitting the inter-

face template).

3. Draw a WND.

4. Design a storyboard.

I. Based on your solution to Exercise H:

1. Design an interface template.

2. Develop an HTML prototype.

3. Develop a real use case.

J. Based on the use case diagram in Exercise U in Chapter 6:

1. Develop two use scenarios.

2. Develop the interface standards (omitting the inter-

face template).

3. Draw a WND.

4. Design a storyboard.

K. Based on your solution to Exercise J:

1. Design an interface template.

2. Develop an HTML prototype.

3. Develop a real use case.

L. Ask Jeeves (http://www.ask.com) is an Internet search

engine that uses natural language. Experiment with it

and compare it to search engines that use key words.

M.Draw a windows navigation diagram (WND) for the

Your Turn Box 12-7 using the opposite grammar order

from your original design (if you didn’t do it, draw two

WNDs, one in each grammar order).Which is best? Why?

N. In the Your Turn Box 12-7, you probably used menus.

Design it again using a command language.

MINICASES

1. Tots to Teens is a catalog retailer specializing in chil-

dren’s clothing. A project has been under way to

develop a new order entry system for the company’s

catalog clerks. The old system had a character-based

user interface that corresponded to the system’s

COBOL underpinnings. The new system will feature

a graphical user interface more in keeping with up-to-

date PC products in use today. The company hopes

that this new user interface will help reduce the

turnover they have experienced with their order entry

clerks. Many newly hired order entry staff found the

old system very difficult to learn and were over-

whelmed by the numerous mysterious codes that had

to be used to communicate with the system.

A user interface walkthrough evaluation was sched-

uled for today to give the user a first look at the new

system’s interface. The project team was careful to

invite several key users from the order entry depart-

ment. In particular, Norma was included because of

her years of experience with the order entry system.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Norma was known to be an informal leader in the

department; her opinion influenced many of her asso-

ciates. Norma had let it be known that she was less than

thrilled with the ideas she had heard for the new sys-

tem. Due to her experience and good memory, Norma

worked very effectively with the character-based sys-

tem and was able to breeze through even the most con-

voluted transactions with ease. Norma had trouble

suppressing a sneer when she heard talk of such things

as “icons” and “buttons” in the new user interface.

Cindy was also invited to the walkthrough because of

her influence in the order entry department. Cindy has

been with the department for just one year, but she

quickly became known because of her successful organi-

zation of a sick child day-care service for the children of

the department workers. Sick children are the number-

one cause of absenteeism in the department, and many of

the workers could not afford to miss workdays. Never one

to keep quiet when a situation needed improvement,

Cindy has been a vocal supporter of the new system.

a. Drawing upon the design principles presented in

the text, describe the features of the user interface

that will be most important to experienced users

like Norma.

b. Drawing upon the design principles presented in the

text, describe the features of the user interface that

will be most important to novice users like Cindy.

2. The members of a systems development project team

have gone out for lunch together, and as often hap-

pens, the conversation turns to work. The team has

been working on the development of the user inter-

face design, and so far, work has been progressing

smoothly. The team should be completing work on

the interface prototypes early next week. A combina-

tion of storyboards and language prototypes has been

used in this project. The storyboards depict the over-

all structure and flow of the system, but the team

developed language prototypes of the actual screens

because they felt that seeing the actual screens would

be valuable for the users.

Chris (the youngest member of the project team): I

read an article last night about a really cool way to eval-

uate a user interface design. It’s called usability testing,

and it’s done by all the major software vendors. I think

we should use it to evaluate our interface design.

Heather (system analyst): I’ve heard of that, too,

but isn’t it really expensive?

Mark (project manager): I’m afraid it is expensive, and

I’m not sure we can justify the expense for this project.

Chris: But we really need to know that the interface

works. I thought this usability testing technique would

help us prove we have a good design.

Amy (systems analyst): It would, Chris, but there

are other ways too. I assumed we’d do a thorough

walkthrough with our users and present the interface

to them at a meeting. We can project each interface

screen so that the users can see it and give us their

reaction. This is probably the most efficient way to get

the users’ response to our work.

Heather: That’s true, but I’d sure like to see the

users sit down and work with the system. I’ve always

learned a lot by watching what they do, seeing

where they get confused, and hearing their com-

ments and feedback.

Ryan (systems analyst): It seems to me that we’ve put

so much work into this interface design that all we really

need to do is review it ourselves. Let’s just make a list of

the design principles we’re most concerned about and

check it ourselves to make sure we’ve followed them

consistently. If we have, we should be fine. We want to

get moving on the implementation, you know.

Mark: These are all good ideas. It seems like we’ve

all got a different view of how to evaluate the interface

design. Let’s try and sort out the technique that is best

for our project.

Develop a set of guidelines that can help a project

team like the one above select the most appropriate

interface evaluation technique for their project.

3. The menu structure for Holiday Travel Vehicle’s exist-

ing character-based system is shown below. Develop

and prototype a new interface design for the system’s

functions using a graphical user interface. Also, develop

a set of real use cases for your new interface. Assume the

new system will need to include the same functions as

those shown in the menus provided. Include any mes-

sages that will be produced as a user interacts with your

interface (error, confirmation, status, etc.). Also, pre-

pare a written summary that describes how your inter-

face implements the principles of good interface design

as presented in the textbook.

Holiday Travel Vehicles

Main Menu

1 Sales Invoice

2 Vehicle Inventory

3 Reports

4 Sales Staff

Type number of menu selection here:____

420 Chapter 12 Human Computer Interaction Layer Design

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

4. One aspect of the new system under development at

Holiday Travel Vehicles will be the direct entry of the

sales invoice into the computer system by the sales-

person as the purchase transaction is being com-

pleted. In the current system, the salesperson fills out

a paper form (shown on p. 422):

Design and prototype an input screen that will per-

mit the salesperson to enter all the necessary informa-

tion for the sales invoice. The following information

may be helpful in your design process. Assume that

Holiday Travel Vehicles sells recreational vehicles and

trailers from four different manufacturers. Each man-

ufacturer has a fixed number of names and models of

RVs and trailers. For the purposes of your prototype,

use this format:

Mfg-A Name-1 Model-X

Mfg-A Name-1 Model-Y

Mfg-A Name-1 Model-Z

Mfg-B Name-1 Model-X

Mfg-B Name-1 Model-Y

Mfg-B Name-2 Model-X

Mfg-B Name-2 Model-Y

Mfg-B Name-2 Model-Z

Mfg-C Name-1 Model-X

Mfg-C Name-1 Model-Y

Mfg-C Name-1 Model-Z

Mfg-C Name-2 Model-X

Mfg-C Name-3 Model-X

Mfg-D Name-1 Model-X

Mfg-D Name-2 Model-X

Mfg-D Name-2 Model-Y

Also, assume there are ten different dealer options

that could be installed on a vehicle at the customer’s

request. The company currently has ten salespeople

on staff.

Holiday Travel Vehicles

Sales Staff Maintenance Menu

1 Add Salesperson Record

2 Change Salesperson Record

3 Delete Salesperson Record

Type number of menu selection here:____

Holiday Travel Vehicles

Reports Menu

1 Commission Report

2 RV Sales by Make Report

3 Trailer Sales by Make Report

4 Dealer Options Report

Type number of menu selection here:____

Holiday Travel Vehicles

Vehicle Inventory Menu

1 Create Vehicle Inventory Record

2 Change Vehicle Inventory Record

3 Delete Vehicle Inventory Record

Type number of menu selection here:____

Holiday Travel Vehicles

Sales Invoice Menu

1 Create Sales Invoice

2 Change Sales Invoice

3 Cancel Sales Invoice

Type number of menu selection here:____

Minicases 421

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

422 Chapter 12 Human Computer Interaction Layer Design

Holiday Travel Vehicles

Sales Invoice Invoice #: ____________
Invoice Date: ________

Customer Name: ______________________________________
Address: ______________________________________

City: ______________________________________
State: ______________________________________

Zip: ______________________________________
Phone: ______________________________________

New RV/TRAILER
(circle one) Name: ______________________________________

Model: ______________________________________
Serial #:________________________ Year: _________

Manufacturer: ______________________________________

Trade-in RV/TRAILER
(circle one) Name: ______________________________________

Model: ______________________________________
Year: ______________________________________

Manufacturer: ______________________________________

Options: Code Description Price

Vehicle Base Cost: ________________
Trade-in Allowance: ________________ (Salesperson Name)

Total Options: ________________
Tax: ________________

License Fee: ________________
Final Cost: ________________ (Customer Signature)

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

An important component of the design of an information system is the design of the

physical architecture layer, which describes the system’s hardware, software and network

environment. The physical architecture layer design flows primarily from the nonfunctional

requirements, such as operational, performance, security, cultural, and political require-

ments. The deliverable from the physical architecture layer design includes the infrastruc-

ture design and the hardware and software specification.

OBJECTIVES

■ Understand the different physical architecture components.
■ Understand server-based, client-based, and client server physical architectures.
■ Be familiar with distributed objects computing.
■ Be able to create a network model using a deployment diagram.
■ Understand how operational, performance, security, cultural, and political require-

ments affect the design of the physical architecture layer.
■ Be familiar with how to create a hardware and software specification.

CHAPTER OUTLINE

INTRODUCTION

In today’s environment, most information systems are spread across two or more comput-

ers. A Web-based system, for example, will run in the browser on your desktop computer,

but will interact with the Web server (and possibly other computers) over the Internet. A

Introduction

Elements of the Physical Architecture

Layer

Architectural Components

Server-Based Architectures

Client-Based Architectures

Client–Server Architectures

Client–Server Tiers

Distributed Objects Computing

Selecting a Physical Architecture

Infrastructure Design

Deployment Diagram

The Network Model

Nonfunctional Requirements and

Physical Architecture Layer Design

Operational Requirements

Performance Requirements

Security Requirements

Cultural and Political Requirements

Synopsis

Hardware and Software Specification

Applying the Concepts at CD Selections

Summary

C H A P T E R 1 3

Physical Architecture Layer Design

423

C
op

yr
ig

ht
ed

 M
at

er
ia

l

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

system that operates completely inside a company’s network may have a Visual Basic pro-

gram installed on your computer but interact with a database server elsewhere on the net-

work. Therefore, an important step of design is the creation of the physical architecture

layer design, the plan for how the system will be distributed across the computers and what

hardware and software will be used for each computer (e.g., Windows, Linux).

Most systems are built to use the existing hardware and software in the organization,

so often the current architecture and hardware and software infrastructure restricts the

choice. Other factors, such as corporate standards, existing site licensing agreements, and

product–vendor relationships also can mandate what architecture, hardware, and software

the project team must design. However, many organizations now have a variety of infra-

structures available or are openly looking for pilot projects to test new architectures, hard-

ware, and software, which enables a project team to select an architecture on the basis of

other important factors.

Designing a physical architecture layer can be quite difficult; therefore, many orga-

nizations hire expert consultants or assign very experienced analysts to the task.1 In this

chapter, we will examine the key factors in physical architecture layer design, but it is

important to remember that it takes lots of experience to do it well. The nonfunctional

requirements developed in early during analysis (see Chapter 5) play a key role in phys-

ical architecture layer design. These requirements are reexamined and refined into more

detailed requirements that influence the system’s architecture. In this chapter, we first

explain the how designers think about application architectures, and we describe the

three primary architectures: server-based, client-based, and client–server. Next, we look

at using UML’s deployment diagram as a way to model the physical architecture layer.

Then we examine how the very general nonfunctional requirements from analysis are

refined into more specific requirements and the implications that they have for physical

architecture layer design. Finally, we consider how the requirements and architecture can

be used to develop the hardware and software specifications that define exactly what

hardware and other software (e.g., database systems) are needed to support the informa-

tion system being developed.

ELEMENTS OF THE PHYSICAL ARCHITECTURE LAYER

The objective of designing the physical architecture layer is to determine what parts of the

application software will be assigned to what hardware. In this section we first discuss the

major architectural elements to understand how the software can be divided into different

parts. Then we briefly discuss the major types of hardware onto which the software can be

placed. Although there are numerous ways in which the software components can be

placed on the hardware components, there are three principal application architectures in

use today: server-based architectures, client-based architectures and client–server architec-

tures. The most common architecture is the client–server architecture, so we focus on it.

Architectural Components

The major architectural components of any system are the software and the hardware. The

major software components of the system being developed have to be identified and then

allocated to the various hardware components on which the system will operate. Each of

these components can be combined in a variety of different ways.

424 Chapter 13 Physical Architecture Layer Design

1 For more information on physical architecture layer design, see Stephen D. Burd, Systems Architecture, 4th Ed.
(Boston: Course Technology, 2003), Irv Englander, The Architecture of Computer Hardware and Systems Software:
An Information Technology Approach, 3rd Ed. (New York: Wiley, 2003), and William Stallings, Computer Organi-
zation & Architecture: Designing for Performance (Upper Saddle River, NJ: Prentice Hall, 2003).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

All software systems can be divided into four basic functions. The first is data storage

(associated with the object persistence located on the data management layer—see Chapter

11). Most application programs require data to be stored and retrieved, whether the informa-

tion is a small file such as a memo produced by a word processor, or a large database that stores

an organization’s accounting records. These are the data documented in the structural model

(CRC cards and class diagrams). The second function is data access logic (associated with the

data access and manipulation classes located on the data management layer—see Chapter 11),

the processing required to access data, which often means database queries in Structured Query

Language (SQL). The third function is the application logic (located on the problem domain

layer—see Chapters 6 to 10), which can be simple or complex depending on the application.

This is the logic that is documented in the functional (activity diagrams and use cases) and

behavioral models (sequence, communication, and behavioral state machines). The fourth

function is the presentation logic (located on the human computer interaction layer—see

Chapter 12), the presentation of information to the user, and the acceptance of the user’s com-

mands (the user interface). These four functions (data storage, data access logic, application

logic, and presentation logic) are the basic building blocks of any application.

The three primary hardware components of a system are client computers, servers and

the network that connects them. Client computers are the input/output devices employed by

the user, and are usually desktop or laptop computers, but can also be handheld devices, cell

phones, special-purpose terminals, and so on. Servers are typically larger computers that are

used to store software and hardware that can be accessed by anyone who has permission.

Servers can come in several flavors: mainframes (very large, powerful computers usually

costing millions of dollars), minicomputers (large computers costing hundreds of thousands

of dollars), and microcomputers (small desktop computers like the one you use to ones cost-

ing $50,000 or more). The network that connects the computers can vary in speed from a

slow cell phone or modem connection that must be dialed, to medium speed always-on

frame relay networks, to fast always-on broadband connections such as cable modem, DSL,

or T1 circuits, to high speed always-on Ethernet, T3, or ATM circuits.2

Server-Based Architectures

The very first computing architectures were server-based architectures, with the server (usu-

ally a central mainframe computer) performing all four application functions. The clients

(usually terminals) enabled users to send and receive messages to and from the server com-

puter. The clients merely captured keystrokes and sent them to the server for processing,

and accepted instructions from the server on what to display (see Figure 13-1).

Elements of the Physical Architecture Layer 425

Server Host
(mainframe computer)

Client /(terminal)

Presentation logic
Application logic
Data access logic
Data storage

FIGURE 13-1
Server-Based

Architecture

2 For more information on networks, see Alan Dennis, Networking in the Internet Age (New York: Wiley, 2002).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

This very simple architecture often works very well. Application software is developed

and stored on one computer, and all data are on the same computer. There is one point of

control, because all messages flow through the one central server. The fundamental prob-

lem with server-based networks is that the server must process all messages. As the

demands for more and more applications grow, many server computers become over-

loaded and unable to quickly process all the users’ demands. Response time becomes

slower, and network managers are required to spend increasingly more money to upgrade

the server computer. Unfortunately, upgrades come in large increments and are expensive;

it is difficult to upgrade “a little.”

Client-Based Architectures

With client-based architectures, the clients are personal computers on a local area network,

and the server computer is a server on the same network. The application software on the

client computers is responsible for the presentation logic, the application logic, and the

data access logic; the server simply stores the data (see Figure 13-2).

This simple architecture also often works well. However, as the demands for more and

more network applications grow, the network circuits can become overloaded. The funda-

mental problem in client-based networks is that all data on the server must travel to the

client for processing. For example, suppose the user wishes to display a list of all employ-

ees with company life insurance. All the data in the database must travel from the server

where the database is stored over the network to the client, which then examines each

record to see if it matches the data requested by the user. This can overload both the net-

work and the power of the client computers.

Client–Server Architectures

Most organizations today are moving to client–server architectures, which attempt to bal-

ance the processing between the client and the server by having both do some of the

application functions. In these architectures, the client is responsible for the presentation

logic while the server is responsible for the data access logic and data storage. The appli-

cation logic may reside on either the client, the server, or be split between both (see Fig-

ure 13-3). The client shown in Figure 13-3 can be referred to as a thick or fat client if it

contains the bulk of application logic. A current practice is to create client–server archi-

tectures using thin clients because there is less overhead and maintenance in supporting

thin-client applications. For example, many Web-based systems are designed with the

Web browser performing presentation, with only minimal application logic using pro-

gramming languages like JavaScript, and the Web server having the application logic,

data access logic, and data storage.

426 Chapter 13 Physical Architecture Layer Design

Client
(microcomputer)

Presentation logic
Application logic
Data access logic

Server
(microcomputer)

Data storage
FIGURE 13-2
Client-based

Architectures

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Client–server architectures have four important benefits. First and foremost, they are

scalable. That means it is easy to increase or decrease the storage and processing capabili-

ties of the servers. If one server becomes overloaded, you simply add another server so that

many servers are used to perform the application logic, data access logic, or data storage.

The cost to upgrade is much more gradual, and you can upgrade in smaller steps rather

than spending hundreds of thousands to upgrade a mainframe server.

Second, client–server architectures can support many different types of clients and

servers. It is possible to connect computers that use different operating systems so that

users can choose which type of computer they prefer (e.g., combining both Windows com-

puters and Apple Macintoshes on the same network). You are not locked into one vendor,

as is often the case with server-based networks. Middleware is a type of system software

designed to translate between different vendors’ software. Middleware is installed on both

the client computer and the server computer. The client software communicates with the

middleware that can reformat the message into a standard language that can be understood

by the middleware that assists the server software.

Third, for thin client server architectures that use Internet standards, is it simple to

clearly separate the presentation logic, the application logic, and the data access logic

and design each to be somewhat independent. For example, the presentation logic can

be designed in HTML or XML to specify how the page will appear on the screen (e.g.,

the colors, fonts, order of items, specific words used, command buttons, the type of

selection lists and so on; see Chapter 12). Simple program statements are used to link

parts of the interface to specific application logic modules that perform various func-

tions. These HTML or XML files defining the interface can be changed without affect-

ing the application logic. Likewise, it is possible to change the application logic without

changing the presentation logic or the data, which are stored in databases and accessed

using SQL commands.

Finally, because no single server computer supports all the applications, the network is

generally more reliable. There is no central point of failure that will halt the entire network

if it fails, as there is in a server-based computing. If any one server fails in a client–server

environment, the network can continue to function using all the other servers (but, of

course, any applications that require the failed server will not work).

Client–server architectures also have some critical limitations, the most important of

which is its complexity. All applications in client–server computing have two parts, the soft-

ware on the client and the software on the server. Writing this software is more complicated

than writing the traditional all-in-one software used in server-based architectures. Updat-

ing the network with a new version of the software is more complicated, too. In server-

based architectures, there is one place in which application software is stored; to update the

Elements of the Physical Architecture Layer 427

Client
(microcomputer)

Presentation logic
Application logic

Server
(microcomputer,
minicomputer,
or mainframe)

Data access logic
Data storage

FIGURE 13-3
Client-Server

Architecture

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

software, you simply replace it there. With client–server architectures, you must update all

clients and all servers.

Much of the debate about server-based versus client–server architectures has centered

on cost. One of the great claims of server-based networks in the 1980s was that they pro-

vided economies of scale. Manufacturers of big mainframes claimed it was cheaper to pro-

vide computer services on one big mainframe than on a set of smaller computers. The

personal computer revolution changed this. Since the 1980s, the cost of personal comput-

ers has continued to drop, whereas, their performance has increased significantly. Today,

personal computer hardware is more than 1,000 times cheaper than mainframe hardware

for the same amount of computing power.

With cost differences like these, it is easy to see why there has been a sudden rush to

microcomputer-based client–server computing. The problem with these cost comparisons

is that they ignore the total cost of ownership, which includes factors other than obvious

hardware and software costs. For example, many cost comparisons overlook the increased

complexity associated with developing application software for client–server networks.

Most experts believe that it costs four to five times more to develop and maintain applica-

tion software for client–server computing than it does for server-based computing.

Client–Server Tiers

There are many ways in which the application logic can be partitioned between the client and

the server. The example in Figure 13-3 is one of the most common. In this case, the server is

responsible for the data, and the client is responsible for the application and presentation. This

is called a two-tiered architecture because it uses only two sets of computers, clients and servers.

A three-tiered architecture uses three sets of computers (see Figure 13-4). In this case,

the software on the client computer is responsible for presentation logic, an application

server(s) is responsible for the application logic, and a separate database server(s) is

responsible for the data access logic and data storage.

An n-tiered architecture uses more than three sets of computers. In this case, the client

is responsible for presentation, a database server(s) is responsible for the data access logic

and data storage, and the application logic is spread across two or more different sets of

servers. Figure 13-5 shows an example of an n-tiered architecture of a software product

called Consensus @nyWARE.3 Consensus @nyWARE has four major components. The

first is the Web browser on the client computer employed by a user to access the system and

enter commands (presentation logic). The second component is a Web server that

428 Chapter 13 Physical Architecture Layer Design

Client
(microcomputer)

Presentation logic

Application server
(microcomputer)

Application logic

Database server
(microcomputer,
minicomputer,
or mainframe)

Data access logic
Data storage

FIGURE 13-4
A Three-Tier Client-

Server Architecture

3 Consensus @nyWARE® was originally developed by Alan Dennis while at the University of Georgia. It is on the
Web at www.softbicycle.com.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

responds to the user’s requests, either by providing (HTML) pages and graphics (applica-

tion logic) or by sending the request to the third component (a set of twenty-eight pro-

grams written in the C programming language) on another application server that

performs various functions (application logic). The fourth component is a database server

that stores all the data (data access logic and data storage). Each of these four components

is separate, making it easy to spread the different components on different servers and to

partition the application logic on two different servers.

The primary advantage of an n-tiered client–server architecture compared with a two-

tiered architecture (or a three-tiered with a two-tiered) is that it separates out the process-

ing that occurs to better balance the load on the different servers; it is more scalable. In

Figure 13-5, we have three separate servers, a configuration that provides more power than

if we had used a two-tiered architecture with only one server. If we discover that the appli-

cation server is too heavily loaded, we can simply replace it with a more powerful server, or

just put in several more application servers. Conversely, if we discover the database server

is underused, we could store data from another application on it.

There are two primary disadvantages to an n-tiered architecture compared with a two-

tiered architecture (or a three-tiered with a two-tiered). First, the configuration puts a

greater load on the network. If you compare Figures 13-3, 13-4, and 13-5, you will see that

the n-tiered model requires more communication among the servers; it generates more

network traffic, so you need a higher-capacity network. Second, it is much more difficult

to program and test software in n-tier architectures than in two-tiered architectures

because more devices have to communicate to complete a user’s transaction.

Distributed Objects Computing

From an object-oriented perspective, distributed objects computing (DOC) is the next ver-

sion of client–server computing. DOC represents a software layer that goes between the

Elements of the Physical Architecture Layer 429

Client
(microcomputer)

Presentation logic

Application server
(microcomputer)

Application logic

Database server
(microcomputer,
minicomputer,
or mainframe)

Data access logic
Data storage

Application server
(microcomputer)

Application logic

FIGURE 13-5
A Four-Tier Client–

Server Architecture

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

clients and servers; hence, it is known as middleware. Middleware supports the interaction

between objects in a distributed computing environment. Furthermore, middleware treats

the actual physical network architecture in a transparent manner. This allows the developer

to focus on the development of the application and ignore the peculiarities of a specific dis-

tributed environment.

From a practical perspective, DOC allows the developer to simply concentrate on

the users, objects, and methods of an application instead of worrying about which

server contains which set of objects. The client object simply requests the “network” to

locate and execute the server object’s method. This basically allows the physical location

of the server object to become irrelevant from the client object’s perspective. Therefore,

since servers are no longer being addressed directly on the client, servers can be added

and subtracted from the network without having to update the client code. Only the

middleware must be made aware of the new addresses of the server objects. This can

greatly reduce the maintenance in a client–server environment. However, since middle-

ware adds an additional layer between the clients and servers, it can reduce the effi-

ciency of the application.

Currently, there are three competing approaches to support DOC: Object Manage-

ment Group’s, Sun’s, and Microsoft’s. The Object Management Group supports DOC via

its Common Object Request Broker Architecture (CORBA) standard. Sun supports DOC via

its Enterprise JavaBeans (EJB) and its Java 2 Enterprise Edition (J2EE). At this point in time,

the approaches supported by OMG and Sun seem to be evolving toward one another. Even

though Microsoft is involved in OMG, Microsoft has its own competing approach to sup-

port DOC: the Distributed Component Object Model (DCOM) and now, their .net initiative.

At this point in time, all three are competitors to support DOC; it is not clear which

approach will win in the marketplace.

430 Chapter 13 Physical Architecture Layer Design

Every spring, Monster.com, one of the largest job sites in
the United States with an average of more than 3 million
visitors per month, experiences a large increase in traffic.
Aaron Braham, vice president of operations, attributes the
spike to college students who increase their job search
activities as they approach graduation.

Monster.com uses a three-tier client–server architec-
ture that has 150 Web servers and 30 database servers in
its main site in Indianapolis. It plans to move that to 400
over the next year by gradually growing the main site and
adding a new site with servers in Maynard, Massachusetts,
just in time for the spring rush. The main Web site has a set
of load-balancing devices that forward Web requests to
the different servers depending on how busy they are.

Braham says the major challenge is that 90 percent
of the traffic is not simple requests for Web pages, but
rather, search requests (e.g., what network jobs are avail-
able in New Mexico), which require more processing and

access to the database servers. Monster.com has more
than 350,000 job postings and more than 3 million
resumes on file, spread across its database servers. Sev-
eral copies of each posting and resume are kept on sev-
eral database servers to improve access speed and
provide redundancy in case a server crashes, so just keep-
ing the database servers in sync so that they contain cor-
rect data is a challenge.

Questions:

1. What are the primary two or three nonfunctional
requirements that have influenced Monster.com’s
application architecture?

2. What alternatives do you think Monster.com con-
sidered?

Source: “Resume Influx Tests Mettle of Job Sites’ Scalability,” Internet

Week (May 29, 2000).

13-A A Monster Client–Server ArchitectureCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Selecting a Physical Architecture

Most systems are built to use the existing infrastructure in the organization, so often the

current infrastructure restricts the choice of architecture. For example, if the new system

will be built for a mainframe-centric organization, a server-based architecture may be the

best option. Other factors like corporate standards, existing licensing agreements, and

product/vendor relationships also can mandate what architecture the project team needs to

design. However, many organizations now have a variety of infrastructures available or are

openly looking for pilot projects to test new architectures and infrastructures, enabling a

project team to select an architecture based on other important factors.

Each of the computing architectures just discussed has its strengths and weaknesses,

and no architecture is inherently better than the others. Thus, it is important to understand

the strengths and weaknesses of each computing architecture and when to use each. Figure

13-6 presents a summary of the important characteristics of each architecture.

Cost of Infrastructure One of the strongest driving forces to client–server architectures

is cost of infrastructure (the hardware, software, and networks that will support the appli-

cation system). Simply put, personal computers are more than 1,000 times cheaper than

mainframes for the same amount of computing power. The personal computers on our

desks today have more processing power, memory, and hard disk space than the typical

mainframe of the past, and the cost of the personal computers is a fraction of the cost of

the mainframe.

Therefore, the cost of client–server architectures is low compared to server-based

architectures that rely on mainframes. Client–server architectures also tend to be cheaper

than client-based architectures because they place less of a load on networks and thus

require less network capacity.

Cost of Development The cost of developing systems is an important factor when con-

sidering the financial benefits of client–server architectures. Developing application soft-

ware for client–server computing is extremely complex, and most experts believe that it

costs four to five times more to develop and maintain application software for client–server

computing than it does for server-based computing. Developing application software for

client-based architectures is usually cheaper still, because there are many GUI development

tools for simple stand-alone computers that communicate with database servers (e.g.,

Visual Basic, Access).

The cost differential may change as more companies gain experience with

client–server applications; new client–server products are developed and refined; and

client–server standards mature. However, given the inherent complexity of client–server

software and the need to coordinate the interactions of software on different computers

there is likely to remain a cost difference.

Elements of the Physical Architecture Layer 431

Cost of infrastructure Very high Medium Low
Cost of development Medium Low High
Ease of development Low High Low–medium
Interface capabilities Low High High
Control and security High Low Medium
Scalability Low Medium High

Server-Based Client-Based Client–Server

FIGURE 13-6

Characteristics of

Computing

Architectures

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Ease of Development In most organizations today, there is a huge backlog of mainframe

applications, systems that have been approved but that lack the staff to implement them.

This backlog signals the difficulty in developing server-based systems. The tools for main-

frame-based systems often are not user-friendly and require highly specialized skills (e.g.,

COBOL)—skills that new graduates often don’t have and aren’t interested in acquiring. In

contrast, client-based and client–server architectures can rely on GUI development tools

that can be intuitive and easy to use. The development of applications for these architec-

tures can be fast and painless. Unfortunately, the applications for client–server can be very

complex because they must be built for several layers of hardware (e.g., database servers,

Web servers, client workstations) that need to communicate effectively with each other.

Project teams often underestimate the effort involved in creating secure, efficient

client–server applications.

Interface Capabilities Typically, server-based applications contain plain, character-

based interfaces. For example, think about airline reservation systems like SABRE that can

be quite difficult to use unless the operator is well trained on the commands and hundreds

of codes that are used to navigate through the system. Today, most users of systems expect

a graphical user interface (GUI) or a Web-based interface, which they can operate using a

mouse and graphical objects (e.g., pushbuttons, drop-down lists, icons, and so on). GUI

and Web development tools typically are created to support client-based or client–server

applications; rarely can server-based environments support these types of applications.

Control and Security The server-based architecture was originally developed to control and

secure data, and it is much easier to administer because all of the data are stored in a single loca-

tion. In contrast, client–server computing requires a high degree of coordination among many

components, and the chance for security holes or control problems is much more likely. Also,

the hardware and software that are used in client–server are still maturing in terms of security.

When an organization has a system that absolutely must be secure (e.g., an application used by

the Department of Defense), then the project team may be more comfortable with the server-

based alternative on highly secure and control-oriented mainframe computers.

Scalability Scalability refers to the ability to increase or decrease the capacity of the com-

puting infrastructure in response to changing capacity needs. The most scalable architecture is

client–server computing because servers can be added to (or removed from) the architecture

when processing needs change. Also, the types of hardware that are used in client–server (e.g.,

minicomputers) typically can be upgraded at a pace that most closely matches the growth of

the application. In contrast, server-based architectures rely primarily on mainframe hardware

that needs to be scaled up in large, expensive increments, and client-based architectures have

ceilings above which the application cannot grow because increases in use and data can result

in increased network traffic to the extent that performance is unacceptable.

432 Chapter 13 Physical Architecture Layer Design

Think about the course registration system in your uni-
versity. What physical architecture does it use? If you
had to create a new system today, would you use the

current architecture, or change to a different one?
Describe the criteria that you would consider when
making your decision.

13-1 Course Registration SystemYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

INFRASTRUCTURE DESIGN

In most cases, a system is built for an organization that has a hardware, software, and com-

munications infrastructure already in place. Thus, project teams are usually more concerned

with how an existing infrastructure needs to be changed or improved to support the require-

ments that were identified during analysis, as opposed to how to design and build an infra-

structure from scratch. Further, the coordination of infrastructure components is very

complex, and it requires highly skilled technical professionals. As a project team, it is best to

leave changes to the computing infrastructure to the infrastructure analysts. In this section

we summarize key elements of infrastructure design to give you a basic understanding of

what it includes. We describe UML’s deployment diagram and the network model.

Deployment Diagram

Deployment diagrams are used to represent the relationships between the hardware compo-

nents used in the physical infrastructure of an information system. For example, when

designing a distributed information system that will use a wide area network, a deployment

diagram can be used to show the communication relationships among the different nodes in

the network. They also can be used to represent the software components and how they are

deployed over the physical architecture or infrastructure of an information system. In this

case, a deployment diagram represents the environment for the execution of the software.

The elements of a deployment diagram include nodes, artifacts, and communication

paths (see Figure 13-7). There are also other elements that can be included in this diagram.

In our case, we only include the three primary elements and the element that portrays an

artifact being deployed onto a node.

A node represents any piece of hardware that needs to be included in the model of the

physical architecture layer design. For example, nodes typically include client computers,

servers, separate networks, or individual network devices. Typically, a node is labeled with its

name and possibly with a stereotype. A stereotype is modeled as a text item enclosed within

guillemets “<< >>” symbols. The stereotype represents the type of node being represented on

the diagram. For example, typical stereotypes include device, mobile device, database server,

web server, and application server. Finally, there are times that the notation of a node should

be extended to better communicate the design of the physical architecture layer. Figure 13-8

includes a set of typical network node symbols that can be used instead of the standard notation.

An artifact represents a piece of the information system that is to be deployed onto the

physical architecture (see Figure 13-7). Typically, an artifact represents a software component,

a subsystem, database table, an entire database, or a layer (data management, human computer

interaction, or problem domain). Artifacts, like nodes, can be labeled with both a name and a

stereotype. Stereotypes for artifacts include source file, database table, and executable file.

A communication path represents a communication link between the nodes of the

physical architecture (see Figure 13-7). Communication paths are stereotyped based on the

type of communication link they represent (e.g., LAN, Internet, serial, parallel, or USB) or

the protocol that is being supported by the link (e.g., TCP/IP).

Figure 13-9 portrays three different versions of a deployment diagram. Version A only uses

the basic standard notation. Version B introduces the idea of deploying an artifact onto a node

(see Figure 13-7). In this case, the artifacts represent the different layers of the appointment sys-

tem described in the earlier chapters. Finally, Version C uses the extended notation to represent

the same architecture. As you can see, all three versions have their strengths and weaknesses.

When comparing Version A and Version B, the user can glean more information from Version B

with little additional effort. However, when comparing Version A to Version C, the extended node

notation enables the user to quickly understand the hardware requirements of the architecture.

Infrastructure Design 433

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Finally, when comparing Version B to Version C, Version B supports the software distribution

explicitly, but forces the user to rely on the stereotypes to understand the required hardware,

while Version C omits the software distribution information entirely. We recommend that you

use the combination of symbols to best portray the physical architecture to the user community.

434 Chapter 13 Physical Architecture Layer Design

A Node:

■ Is a computational resource, e.g., a client computer, server, separate network, or
individual network device

■ Is labeled by its name

■ May contain a stereotype to specifically label the type of node being represented,
e.g., device, client workstation, application server, mobile device, etc.

An Artifact:

■ Is a specification of a piece of software or database, e.g., a database or a table or
view of a database, a software component or layer

■ Is labeled by its name

■ May contain a stereotype to specifically label the type of artifact, e.g., source file,
database table, executable file, etc.

A Communication Path:

■ Represents an association between two nodes

■ Allows nodes to exchange messages

■ May contain a stereotype to specifically label the type of communication path
being represented, e.g., lan, Internet, serial, parallel, etc.

A Node with a Deployed Artifact:

■ Portrays an artifact being placed on a physical node

■ Supports modeling the distribution of the software over a network

<<stereotype>>
Node Name

<<stereotype>>

<<stereotype>>
Artifact Name

<<stereotype>>
Node Name

<<stereotype>>
Artifact Name

FIGURE 13-7 Development Diagram Syntax

Workstation Server
Mainframe

Subnetwork Data-
base

Firewall

FIGURE 13-8 Extended Node Syntax for Development Diagram

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

The Network Model

The network model is a diagram that shows the major components of the information system

(e.g., servers, communication lines, networks) and their geographic locations throughout the

organization. There is no one way to depict a network model, and in our experience analysts

create their own standards and symbols, using presentation applications (e.g., Microsoft Pow-

erPoint) or diagramming tools (e.g., Visio). In this text, we use UML’s deployment diagram.

The purpose of the network model is twofold: to convey the complexity of the system and

to show how the system’s software components will fit together. The diagram also helps the pro-

ject team develop the hardware and software specification that is described later in this chapter.

The components of the network model are the various clients (e.g., personal comput-

ers, kiosks), servers (e.g., database, network, communications, printer), network equipment

(e.g., wires, dial-up connections, satellite links), and external systems or networks (e.g.,

Infrastructure Design 435

<<LAN>>

<<Client Workstation>>
Receptionist PC

<<Server>>
Office Server

<<Client Workstation>>
Receptionist PC

<<HCI Layer>>
Appt System

<<Server>>
Office Server

<<PD Layer>>
Appt System

<<DM Layer>>
Appt System

Receptionist PC Office Server

Appt
Data
Base

<<LAN>>

<<LAN>>

(A)

(B)

(C)

FIGURE 13-9 Three Versions of Appointment System Deployment Diagram

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Internet service providers) that support the application. Locations are the geographic sites

related to these components. For example, if a company created an application for users at

four of its plants in Canada and eight plants in the United States, and it used one external

system to provide Internet service, the network model to depict this would contain twelve

locations (4 + 8 = 12).

Creating the network model is a top-down exercise whereby you first graphically

depict all of the locations where the application will reside. This is accomplished by plac-

ing symbols that represent the locations for the components on a diagram, and then con-

necting them with lines that are labeled with the approximate amount of data or types of

network circuits between the separated components.

Companies seldom build networks to connect distant locations by buying land and

laying cable (or sending up their own satellites). Instead, they usually lease services pro-

vided by large telecommunications firms such as AT&T, Sprint, and Verizon. Figure 13-10

shows a typical network. The “clouds” in the diagram represent the networks at different

locations (e.g., Toronto, Atlanta). The lines represent network connections between specific

points (e.g., Toronto to Brampton). In other cases, a company may lease connections from

many points to many others, and rather than trying to show all the connections, a separate

“cloud” may be drawn to represent this many-to-many type of connection (e.g., the cloud

in the center of this Figure 13-10 represents a network of many-to-many connections pro-

vided by a telecom firm like Verizon).

This high-level diagram has several purposes. First, it shows the locations of the com-

ponents that are needed to support the application; therefore, the project team can get a

good understanding of the geographic scope of the new system and how complex and

costly the communications infrastructure will be to support. (For example, an application

that supports one site likely will have less communications costs as compared to a more

complex application that will be shared all over the world.) The diagram also indicates the

external components of the system (e.g., customer systems, supplier systems), which may

impact security or global needs (discussed later in this chapter).

The second step to the network model is to create low-level network diagrams for

each of the locations shown on the top-level diagram. First, hardware is drawn on the

model in a way that depicts how the hardware for the new system will be placed through-

out the location. It usually helps to use symbols that resemble the hardware that will be

used. The amount of detail to include on the network model depends on the needs of the

436 Chapter 13 Physical Architecture Layer Design

Nortel, the giant Canadian manufacturer of network
switches, recently implemented a network using its own
equipment. Prior to implementing it, Nortel had used a set
of more than 100 circuits that was proving to be more and
more expensive and unwieldy to manage. Nortel started
by identifying the 20 percent of its sites that accounted for
80 percent of the network traffic. These were the first to
move to the new network. By the time the switchover is
complete, more than 100 sites will be connected.

There are two primary parts to the new network (see
Figure 13-10). The largest part uses a public network

provided by WorldCom/MCI. Nortel also operates a pri-
vate network in Ontario. Both parts of the network use
44 Mbps circuits. Nortel is planning to move to 155
Mbps circuits when costs drop.

Question:

1. What are the advantages and disadvantages of Nor-
tel’s phased implementation of the new network?

Source: “A Case for ATM,” Network World (June 2, 1997).

13-B Nortel’s NetworkCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

project. Some low-level network models contain text descriptions below each of the

hardware components that describe in detail the proposed hardware configurations and

processing needs; others only include the number of users that are associated with the dif-

ferent parts of the diagram.

Next, lines are drawn connecting the components that will be physically attached to

each other. In terms of software, some network models list the required software for

each network model component right on the diagram; whereas, other times, the soft-

ware is described in a memo that is attached to the network model and stored in the

project binder. Figure 13-11 shows a deployment diagram that portrays two levels of

Infrastructure Design 437

<<privatenetwork>>

<<private

network>>

<<pr
iv
at
e

ne
tw

or
k>

>

<<private network>>

<<priv
ate netw

ork>>

<
<
pr

iv
at

e
ne

tw
or

k>
>

<<private network>><
<
private netw

ork>
>

<
<

p
ri

va
te

 n
et

w
o
rk

>
>

<
<
pr

iv
at

e
ne

tw
or

k>
><<priv

ate netw
ork>>

<<private network>>

<<private network>>

Verizon Network

Ottawa,
ONT

Tyson’s Corner,
VA

Research
Triangle Park,

NC

Ossining,
NY

Sunrise,
FL

Atlanta,
GA

Nashville,
TN

Richardson,
TX

Santa Clara,
CA

Toronto,
ONT

Brampton,
ONT

Mariline,
ONT

FIGURE 13-10 Deployment Diagram Representation of a Top-Level Network Model

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

438 Chapter 13 Physical Architecture Layer Design

<<location>>
Main Financial Aid Building

<<private>>

<<private>>

DOE
Washington, DC

Offices

DOE Regional Offices

(A)

(B)

Main Financial Aid Building

<<ATM>>

<<ATM>>

ServerServer

Ethernet
LAN

Ethernet
LAN

<<
A

TM
>>

<<ATM>>

<<ATM>>

<<ATM>>

ServerServer

Ethernet
LAN

Ethernet
LAN

<<switch>>

Ethernet
LAN

<<
A
TM

>>

<<A
TM

>>

<<ATM>>

<<switch>>

Ethernet
LAN

<<A
TM

>>

<
<

A
T
M

>
>

<<router>>
MFA Building

<
<

A
T
M

>
>

<<priv
ate>>

<<private>>
DOE

Washington, DC
Offices

DOE Regional Offices

FIGURE 13-11 Deployment Diagram Representation of a Low-Level Network Model

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

detail of a low-level network model. Notice, we use both the standard and extended

node notation in this figure. Furthermore, in this case, we have included a package (see

Chapter 9) to represent a set of connections to the router in the MFA building. By

including a package, we only show the detail necessary. The extended notation in many

cases aids the user in understanding the topology of the physical architecture layer

much better than the standard notation. As such, we recommend you use the symbols

that get the message across best.

Our experiences have shown that most project teams create a memo for the pro-

ject files that provides additional detail about the network model. This information is

helpful to the people who are responsible for creating the hardware and software spec-

ification (described later in this chapter) and who will work more extensively with the

infrastructure development. This memo can include special issues that impact com-

munications, requirements for hardware and software that may not be obvious from

the network model, or specific hardware or software vendors or products that should

be acquired.

Again, the primary purpose of the network model diagram is to present the proposed

infrastructure for the new system. The project team can use the diagrams to understand the

scope of the system, the complexity of its structure, any important communication issues

that may affect development and implementation, and the actual components that will

need to be acquired or integrated into the environment.

Infrastructure Design 439

Each year, the U.S. Department of Education (DOE)
processes more than 10 million student loans, such as
Pell Grants, Guaranteed Student Loans, and college work-
study programs. The DOE has more than 5,000 employ-
ees that need access to more than 400 gigabytes of
student data.

The financial aid network, located in one Washing-
ton, D.C., building, has two major parts (i.e., backbones)
that each use high-speed 155 Mbps circuits to connect
four local area networks and three high-performance
database servers (see Figure 13-11). These two back-
bones are connected into another network backbone

that connects the financial aid building using 100 Mbps
circuits to five other DOE buildings in Washington with
similar networks. The two backbones are also connected
to the ten regional DOE offices across the U.S. and to
other U.S. government agencies via a set of lower speed
1.5 Mbps connections.

Source: Network Computing (May 15, 1996).

Question:

1. Why does each part of the network have different
data rates?

13-C The Department of Education’s Financial Aid Network CONCEPTS

IN ACTION

Pretend that you have just moved into a fraternity/sorority
house with twenty other people. The house has a laser printer
and a low-cost scanner that its inhabitants are free to use. You
have decided to network the house so that everyone can

share the printer and scanner and have dial-up access to the
university network. Create a high-level network model that
describes the locations that will be involved in your work.
Next, create a low-level diagram for the house itself.

13-2 Create a Network ModelYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

NONFUNCTIONAL REQUIREMENTS AND
PHYSICAL ARCHITECTURE LAYER DESIGN

The design of the physical architecture layer specifies the overall architecture and the place-

ment of software and hardware that will be used. Each of the architectures discussed above

has its strengths and weaknesses. Most organizations are trying to move to client–server

architectures for cost reasons, so in the event that there is no compelling reason to choose

one architecture over another, cost usually suggests client–server.

Creating a physical architecture layer design begins with the nonfunctional require-

ments. The first step is to refine the nonfunctional requirements into more detailed

requirements that are then used to help select the architecture to be used (server-based,

client-based, or client–server) and what software components will be placed on each

device. In a client–server architecture, one also has to decide whether to use a two-tier,

three-tier, or n-tier architecture. Then the nonfunctional requirements and the architecture

design are used to develop the hardware and software specification.

There are four primary types of nonfunctional requirements that can be important in

designing the architecture: operational requirements, performance requirements, security

requirements, and cultural/political requirements. We describe each in turn and then

explain how they may affect the physical architecture layer design.

Operational Requirements

Operational requirements specify the operating environment(s) in which the system must per-

form and how those may change over time. This usually refers to operating systems, system

software, and information systems with which the system must interact, but it will on occasion

also include the physical environment if the environment is important to the application (e.g.,

it’s located on a noisy factory floor, so no audible alerts can be heard). Figure 13-12 summa-

rizes four key operational requirement areas and provides some examples of each.

Technical Environment Requirements Technical environment requirements specify the

type of hardware and software system on which the system will work. These requirements

usually focus on the operating system software (e.g., Windows, Linux), database system

software (e.g., Oracle), and other system software (e.g., Internet Explorer). Occasionally,

440 Chapter 13 Physical Architecture Layer Design

At the end of 1997, Oxford Health Plans, Inc. posted a
$120 million loss to its books. The company’s unex-
pected growth was its undoing. The system, which was
originally planned to support the company’s 217,000
members, had to meet the needs of a membership that
exceeded 1.5 million. System users found that processing
a new member sign-up took 15 minutes instead of the
proposed 6 seconds. Also, the computer problems left
Oxford unable to send out bills to many of its customer
accounts and rendered it unable to track payments to
hundreds of doctors and hospitals. In less than a year,

uncollected payments from customers tripled to more
than $400 million, while the payments owed to care-
givers amounted to more than $650 million. Mistakes in
infrastructure planning can cost far more than the cost of
hardware, software, and network equipment alone.

Source: The Wall Street Journal (December 11, 1997).

Question:

1. If you were in charge of the Oxford project, how
would you have avoided these problems?

13-D The Importance of Infrastructure Planning CONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

specific hardware requirements will impose important limitations on the system, such as

the need to operate on a PDA or cell phone with a very small display.

System Integration Requirements System integration requirements are those that require

the system to operate with other information systems, either inside or outside the company.

These typically specify interfaces through which data will be exchanged with other systems.

Portability Requirements Information systems never remain constant. Business needs

change and operating technologies change, so the information systems that support them

and run on them must change, too. Portability requirements define how the technical oper-

ating environments may change over time and how the system must respond (e.g., the sys-

tem may run currently on Windows XP, while in the future it may be required to deploy the

system on Linux). Portability requirements also refer to potential changes in business

requirements that will drive technical environment changes. For example, in the future,

users may want to access a Web site from their cell phones.

Maintainability Requirements Maintainability requirements specify the business

requirement changes that can be anticipated. Not all changes are predictable, but some are.

For example, suppose a small company has only one manufacturing plant but is anticipat-

ing the construction of a second plant in the next five years. All information systems must

be written to make it easy to track each plant separately, whether for personnel, budgeting,

or inventory system. The maintainability requirements attempt to anticipate future

requirements so that the systems designed today will be easy to maintain if and when those

future requirements appear. Maintainability requirements may also define the update cycle

for the system, such as the frequency with which new versions will be released.

Nonfunctional Requirements and Physical Architecture Layer Design 441

Technical Environment Special hardware, software, and network • The system will work over the Web
Requirements requirements imposed by business requirements environment with Internet Explorer.

• All office locations will have an always-on net-
work connection to enable real-time database
updates.

• A version of the system will be provided for cus-
tomers connecting over the Internet via a small
screen PDA.

System Integration The extent to which the system will • The system must be able to import and export
Requirements operate with other systems Excel spreadsheets.

• The system will read and write to the main inven-
tory database in the inventory system.

Portability Requirements The extent to which the system will need • The system must be able to work with different
to operate in other environments operating systems (e.g., Linux and Windows XP).

• The system may need to operate with handheld
devices such as a Palm.

Maintainability Expected business changes to which the • The system will be able to support more than
Requirements system should be able to adapt one manufacturing plant with six months

advance notice.

• New versions of the system will be released every
six months.

Type of Requirement Definition Examples

FIGURE 13-12 Operational Requirements

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Performance Requirements

Performance requirements focus on performance issues, such as response time, capacity, and

reliability. Figure 13-13 summarizes three key performance requirement areas and provides

some examples.

Speed Requirements Speed requirements are exactly what they say: how fast should the

system operate. First and foremost, this is the response time of the system: how long does it

take the system to respond to a user request. Although everyone would prefer low response

times with the system responding immediately to each user request, this is not practical. We

could design such a system, but it would be expensive. Most users understand that certain

parts of a system will respond quickly, while others are slower. Those actions that are per-

formed locally on the user’s computer must be almost immediate (e.g., typing, dragging

and dropping), while others that require communicating across a network can have higher

response times (e.g., a Web request). In general, response times less than seven seconds are

considered acceptable when they require communication over a network.

The second aspect of speed requirements is how long it takes transactions in one part

of the system to be reflected in other parts. For example, how soon after an order is placed

will the items it contained be shown as no longer available for sale to someone else? If the

inventory is not updated immediately, then someone else could place an order for the same

item, only to find out later it is out of stock. Or, how soon after an order is placed is it sent

to the warehouse to be picked from inventory and shipped? In this case, some time delay

might have little impact.

Capacity Requirements Capacity requirements attempt to predict how many users the sys-

tem will have to support, both in total and simultaneously. Capacity requirements are impor-

tant in understanding the size of the databases, the processing power needed and so on. The

most important requirement is usually the peak number of simultaneous users because this

has a direct impact on the processing power of the computer(s) needed to support the system.

442 Chapter 13 Physical Architecture Layer Design

Speed Requirements The time within which the system must • Response time must be less than 7 seconds for any
perform its functions transaction over the network.

• The inventory database must be updated in real time.

• Orders will be transmitted to the factory floor every
30 minutes.

Capacity Requirements The total and peak number of users • There will be a maximum of 100–200 simultaneous
and the volume of data expected users at peak use times.

• A typical transaction will require the transmission of
10K of data.

• The system will store data on approximately 5,000
customers for a total of about 2 meg of data.

Availability and Reliability The extent to which the system will be • The system should be available 24 /7, with the
Requirements available to the users and the exception of scheduled maintenance.

permissible failure rate due to errors • Scheduled maintenance shall not exceed one 6-hour
period each month.

• The system shall have 99% uptime performance.

Type of Requirement Definition Examples

FIGURE 13-13 Performance Requirements

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

It is often easier to predict the number of users for internal systems designed to

support an organization’s own employees than it is to predict the number of users for

customer-facing systems, especially those on the Web. How does weather.com estimate

the peak number of users who will simultaneously seek weather information? This is as

much an art as a science, so often the team provides a range of estimates, with wider

ranges used to signal a less accurate estimate.

Availability and Reliability Requirements Availability and reliability requirements

focus on the extent to which users can assume that the system will be available for them to

use. Although some systems are intended to be used only during the forty-hour workweek,

some systems are designed to be used by people around the world. For such systems, pro-

ject team members need to consider how the application can be operated, supported, and

maintained, 24/7 (i.e., 24 hours a day, 7 days a week). This 24/7 requirement means that

users may need help or have questions at any time, and a support desk that is available eight

hours a day will not be sufficient support. It is also important to consider what reliability

is needed in the system. A system that requires high reliability (e.g., a medical device or tele-

phone switch) needs far greater planning and testing than one that does not have such high

reliability needs (e.g., personnel system, Web catalog).

It is more difficult to predict the peaks and valleys in usage of the system when the sys-

tem has a global audience. Typically, applications are backed up on weekends or late

evenings when users are no longer accessing the system. Such maintenance activities need

to be rethought with global initiatives. The development of Web interfaces in particular has

escalated the need for 24/7 support; by default the Web can be accessed by anyone at any

time. For example, the developers of a Web application for U.S. outdoor gear and clothing

retailer Orvis were surprised when the first order after going live came from Japan.

Security Requirements4

Security is ability to protect the information system from disruption and data loss, whether

caused by an intentional act (e.g., a hacker or a terrorist attack) or a random event (e.g.,

disk failure, tornado). Security is primarily the responsibility of the operations group—the

staff responsible for installing and operating security controls, such as firewalls, intrusion

detection systems, and routine backup and recovery operations. Nonetheless, developers of

new systems must ensure that the system’s security requirements produce reasonable pre-

cautions to prevent problems; system developers are responsible for ensuing security

within the information systems themselves.

Nonfunctional Requirements and Physical Architecture Layer Design 443

Reread the Concepts in Action 13-D that describes what happened to Oxford Health Plans in 1997.

Question:

1. If you had been in charge of the Oxford project, what things would you have considered when planning the
system capacity?

13-E The Importance of Capacity PlanningCONCEPTS

IN ACTION

4 For more information, see Brett C. Tjaden, Fundamentals of Secure Computer Systems (Wilsonville, OR:
Franklin, Beedle, and Associates, 2004).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Security is an ever-increasing problem in today’s Internet-enabled world. Historically, the

greatest security threat has come from inside the organization itself. Ever since the early 1980s

when the FBI first began keeping computer crime statistics and security firms began conduct-

ing surveys of computer crime, organizational employees have perpetrated the vast majority

of computer crimes. For years, 80 percent of unauthorized break-ins, thefts, and sabotage have

been committed by insiders, leaving only 20 percent to hackers external to the organizations.

In 2001, that changed. Depending on what survey you read, the percent of incidents

attributed to external hackers in 2001 increased to 50 to 70 percent of all incidents, meaning

that the greatest risk facing organizations is now from the outside. Although some of this shift

may be due to better internal security and better communications with employees to prevent

security problems, much of it is simply due to an increase in activity by external hackers.

Developing security requirements usually starts with some assessment of the value of

the system and its data. This helps pinpoint extremely important systems so that the oper-

ations staff are aware of the risks. Security within systems usually focuses on specifying

who can access what data, identifying the need for encryption and authentication, and

ensuring the application prevents the spread of viruses (see Figure 13-14).

System Value The most important computer asset in any organization is not the equip-

ment; it is the organization’s data. For example, suppose someone destroyed a mainframe

computer worth $10 million. The mainframe could be replaced, simply by buying a new

one. It would be expensive, but the problem would be solved in a few weeks. Now suppose

someone destroyed all the student records at your university so that no one knew what

courses anyone had taken or their grades. The cost would far exceed the cost of replacing a

$10 million computer. The lawsuits alone would easily exceed $10 million, and the cost of

staff to find and re-enter paper records would be enormous and certainly would take more

than a few weeks.

In some cases, the information system itself has value that far exceeds the cost of the

equipment as well. For example, for an Internet bank that has no brick and mortar branches,

the Web site is a mission critical system. If the Web site crashes, the bank cannot conduct

business with its customers. A mission critical application is an information system that is

444 Chapter 13 Physical Architecture Layer Design

System Value Estimates Estimated business value of the system and • The system is not mission critical but a system outage
its data is estimated to cost $50,000 per hour in lost revenue.

• A complete loss of all system data is estimated to cost
$20 million.

Access Control Limitations on who can access what data • Only department managers will be able to change
Requirements inventory items within their own department.

• Telephone operators will be able to read and create
items in the customer file, but cannot change or
delete items.

Encryption and Defines what data will be encrypted • Data will be encrypted from the user’s computer to the
Authentication where and whether authentication will Web site to provide secure ordering.
Requirements be needed for user access • Users logging in from outside the office will be

required to authenticate.

Virus Control Requirements to control the spread • All uploaded files will be checked for viruses before
Requirements of viruses being saved in the system.

Type of Requirement Definition Examples

FIGURE 13-14 Security Requirements

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

literally critical to the survival of the organization. It is an application that cannot be per-

mitted to fail, and if it does fail the network staff drops everything else to fix it. Mission crit-

ical applications are usually clearly identified so their importance is not overlooked.

Even temporary disruptions in service can have significant costs. The cost of disruptions to

a company’s primary Web site or the LANs and backbones that support telephone sales opera-

tions are often measured in the millions. Amazon.com, for example, has revenues of more than

$10 million per hour, so if their Web site were unavailable for an hour or even part of an hour,

it would cost them millions of dollars in lost revenue. Companies that do less e-business or tele-

phone sales have lower costs, but recent surveys suggest losses of $100,000 to $200,000 per hour

are not uncommon for major customer-facing information systems.

Access Control Requirements Some of the data stored in the system need to be kept confi-

dential; some data need special controls on who is allowed to change or delete it. Personnel

records, for example, should only be able to be read by the personnel department and the

employee’s supervisor; changes should only be permitted to be made by the personnel depart-

ment. Access control requirements state who can access what data and what type of access is per-

mitted: whether the individual can create, read, update and/or delete the data. The requirements

reduce the chance that an authorized user of the system can perform unauthorized actions.

Encryption and Authentication Requirements One of the best ways to prevent unau-

thorized access to data is encryption, which is a means of disguising information by the use

of mathematical algorithms (or formulas). Encryption can be used to protect data stored

in databases or data that are in transit over a network from a database to a computer. There

are two fundamentally different types of encryption: symmetric and asymmetric. A sym-

metric encryption algorithm (such as Data Encryption Standard [DES] or Advanced

Encryption Standard [AES]) is one in which the key used to encrypt a message is the same

as the one used to decrypt it, which means that it is essential to protect the key and that a

separate key must be used for each person or organization with whom the system shares

information (or else everyone can read all the data).

An asymmetric encryption algorithm (such as public key encryption) is one in which the

key used to encrypt data (called the public key) is different from the one used to decrypt it

(called the private key). Even if everyone knows the public key, once the data are encrypted,

they cannot be decrypted without the private key. Public key encryption greatly reduces the

Nonfunctional Requirements and Physical Architecture Layer Design 445

Lithonia Lighting, located just outside of Atlanta, is the
world’s largest manufacturer of light fixtures with more
than $1 billion in annual sales. One afternoon, the power
transformer at its corporate headquarters exploded, leav-
ing the entire office complex, including the corporate
data center, without power. The data center’s backup
power system immediately took over and kept critical
parts of the data center operational. However, it was
insufficient to power all systems, so the system supporting
sales for all of Lithonia Lighting’s North American agents,
dealers, and distributors had to be turned off.

The transformer was quickly replaced and power
was restored. However, the three-hour shutdown of the
sales system cost $1 million in potential sales lost. Unfor-
tunately, it is not uncommon for the cost of a disruption
to be hundreds or thousands of times the cost of the
failed components.

Question:

1. What would you recommend to avoid similar losses
in the future?

13-F Power Outage Costs a Million DollarsCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

key management problem. Each user has its public key that is used to encrypt messages

sent to it. These public keys are widely publicized (e.g., listed in a telephone book-style

directory)—that’s why they’re called “public” keys. The private key, in contrast, is kept

secret (and why it’s called “private”).

Public key encryption also permits authentication (or digital signatures). When one

user sends a message to another, it is difficult to legally prove who actually sent the message.

Legal proof is important in many communications, such as bank transfers and buy/sell

orders in currency and stock trading, which normally require legal signatures. Public key

encryption algorithms are invertible, meaning that text encrypted with either key can be

decrypted by the other. Normally, we encrypt with the public key and decrypt with the pri-

vate key. However, it is possible to do the inverse: encrypt with the private key and decrypt

with the public key. Since the private key is secret, only the real user could use it to encrypt

a message. Thus, a digital signature or authentication sequence is used as a legal signature

on many financial transactions. This signature is usually the name of the signing party plus

other unique information from the message (e.g., date, time, or dollar amount). This signa-

ture and the other information are encrypted by the sender using the private key. The

receiver uses the sender’s public key to decrypt the signature block and compares the result

to the name and other key contents in the rest of the message to ensure a match.

The only problem with this approach lies in ensuring that the person or organization

that sent the document with the correct private key is the actual person or organization.

Anyone can post a public key on the Internet, so there is no way of knowing for sure who

they actually are. For example, it would be possible for someone other than “Organization

A” in this example to claim to be Organization A when in fact they are an imposter.

This is where the Internet’s public key infrastructure (PKI) becomes important.5 The

PKI is a set of hardware, software, organizations, and polices designed to make public key

encryption work on the Internet. PKI begins with a certificate authority (CA), which is a

trusted organization that can vouch for the authenticity of the person or organization using

authentication (e.g., VeriSign). A person wanting to use a CA registers with the CA and must

provide some proof of identify. There are several levels of certification, ranging from a sim-

ple confirmation from a valid e-mail address to a complete police-style background check

with an in-person interview. The CA issues a digital certificate that is the requestor’s public

key encrypted using the CA’s private key as proof of identify. This certificate is then attached

to the user’s e-mail or Web transactions in addition to the authentication information. The

receiver then verifies the certificate by decrypting it with the CA’s public key—and must also

contact the CA to ensure that the user’s certificate has not been revoked by the CA.

The encryption and authentication requirements state what encryption and authentica-

tion requirements are needed for what data. For example, will sensitive data such as cus-

tomer credit card numbers be stored in the database in encrypted form, or will encryption

be used to take orders over the Internet from the company’s Web site? Will users be

required to use a digital certificate in addition to a standard password?

Virus Control Requirements Virus control requirements address the single most common

security problem: viruses. Recent studies have shown that almost 90 percent of organizations

suffer a virus infection each year. Viruses cause unwanted events—some harmless (such as

nuisance messages), some serious (such as the destruction of data). Any time a system per-

mits data to be imported or uploaded from a user’s computer, there is the potential for a virus

infection. Many systems require that all information system systems that permit the import

or upload of user files to check those files for viruses before they are stored in the system.

446 Chapter 13 Physical Architecture Layer Design

5 For more on the PKI, see www.ietf.org/internet-drafts/draft-ietf-pkix-roadmap-06.txt.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Cultural and Political Requirements

Cultural and political requirements are those that are specific to the countries in which the

system will be used. In today’s global business environment, organizations are expanding

their systems to reach users around the world. Although this can make great business sense,

its impact on application development should not be underestimated. Yet another impor-

tant part of the design of the system’s physical architecture is understanding the global cul-

tural and political requirements for the system (see Figure 13-15).

Multilingual Requirements The first and most obvious difference between applications

used in one region and those designed for global use is language. Global applications often

have multilingual requirements, which means that they have to support users who speak dif-

ferent languages and write using non-English letters (e.g., those with accents, Cyrillic,

Japanese). One of the most challenging aspects in designing global systems is getting a good

translation of the original language messages into a new language. Words often have simi-

lar meanings but can convey subtly different meanings when they are translated, so it is

important to use translators skilled in translating technical words.

The other challenge is often screen space. In general, English-language messages usu-

ally take 20 percent to 30 percent fewer letters than their French or Spanish counterparts.

Designing global systems requires allocating more screen space to messages than might be

used in the English-language version.

Some systems are designed to handle multiple languages on the fly so that users in

different countries can use different languages concurrently; that is, the same system

supports several different languages simultaneously (a concurrent multilingual system).

Other systems contain separate parts that are written in each language and must be

reinstalled before a specific language can be used; that is, each language is provided by

a different version of the system so that any one installation will use only one language

Nonfunctional Requirements and Physical Architecture Layer Design 447

Multilingual Requirements The language in which the system will need • The system will operate in English, French, and
to operate Spanish.

Customization Specification of what aspects of the system • Country managers will be able to define new
Requirements can be changed by local users fields in the product database to capture country-

specific information.

• Country managers will be able to change the for-
mat of the telephone number field in the cus-
tomer database.

Making Unstated Norms Explicitly stating assumptions that differ from • All date fields will be explicitly identified as using
Explicit country to country the month-day-year format.

• All weight fields will be explicitly identified as
being stated in kilograms.

Legal Requirements The laws and regulations that impose • Personal information about customers cannot be
requirements on the system transferred out of European Union countries into

the United States.

• It is against U.S. federal law to divulge informa-
tion on who rented what videotape, so access to
a customer’s rental history is permitted only to
regional managers.

Type of Requirement Definition Examples

FIGURE 13-15 Cultural and Political Requirements

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

(i.e., a discrete multilingual system). Either approach can be effective, but this func-

tionality must be designed into the system well in advance of implementation.

Customization Requirements For global applications, the project team will need to give

some thought to customization requirements: how much of the application will be con-

trolled by a central group and how much of the application will be managed locally. For

example, some companies allow subsidiaries in some countries to customize the applica-

tion by omitting or adding certain features. This decision has tradeoffs between flexibility

and control because customization often makes it more difficult for the project team to cre-

ate and maintain the application. It also means that training can differ between different

parts of the organization, and customization can create problems when staff move from

one location to another.

Unstated Norms Many countries have unstated norms that are not shared internation-

ally. It is important for the application designer to make these assumptions explicit because

they can lead to confusion otherwise. In the United States, the unstated norm for entering

a date is the date format MM/DD/YYYY; however, in Canada and most European coun-

tries, the unstated norm is DD/MM/YYYY. Another example is the order of a person’s

name; does the family name come first or last? The answer depends on the locality. When

you are designing global systems, it is critical to recognize these unstated norms and make

them explicit so that users in different countries do not become confused. Currency is the

other item sometimes overlooked in system design; global application systems must spec-

ify the currency in which information is being entered and reported.

Legal Requirements Legal requirements are those requirements imposed by laws and

government regulations. System developers sometimes forget to think about legal regula-

tions, but unfortunately, doing so comes at some risk because ignorance of the law is no

448 Chapter 13 Physical Architecture Layer Design

I’ve had the opportunity to develop two multilingual sys-
tems. The first was a special-purpose decision support sys-
tem to help schedule orders in paper mills called
BCW-Trim. The system was installed by several dozen
paper mills in Canada and the United States, and it was
designed to work in either English or French. All messages
were stored in separate files (one set English, one set
French), with the program written to use variables initial-
ized either to the English or French text. The appropriate
language files were included when the system was com-
piled to produce either the French or English version.

The second program was a groupware system called
GroupSystems, for which I designed several modules. The
system has been translated into dozens of different lan-
guages, including French, Spanish, Portuguese, German,
Finnish, and Croatian. This system enables the user to
switch between languages at will by storing messages in

simple text files. This design is far more flexible because
each individual installation can revise the messages at
will. Without this approach, it is unlikely that there would
have been sufficient demand to warrant the development
of versions to support less commonly used languages
(e.g., Croatian).

—Alan Dennis

Question:

1. How would you decide how much to support users
who speak languages other than English?

2. Would you create multilingual capabilities for
any application that would be available to
non–English speaking people? Think about Web
sites that exist today.

13-G Developing Multilingual SystemsCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

defense. For example, in 1997, a French court convicted the Georgia Institute of Technol-

ogy of violating French language law. Georgia Tech operated a small campus in France that

offered summer programs for American students. The information on the campus Web

server was primarily in English because classes are conducted in English, which violated the

law requiring French to be the predominant language on all Internet servers in France. By

formally considering legal regulations, they are less likely to be overlooked.

Synopsis

In many cases, the technical environment requirements as driven by the business require-

ments may simply define the physical architecture layer. In this case, the choice is simple:

business requirements dominate other considerations. For example, the business require-

ments may specify that the system needs to work over the Web using the customer’s Web

browser. In this case, the architecture probably should be a thin client–server. Such busi-

ness requirements are most likely in systems designed to support external customers. Inter-

nal systems may also impose business requirements, but usually they are not as restrictive.

In the event that the technical environment requirements do not require the choice of

a specific architecture, then the other nonfunctional requirements become important. Even

in cases when the business requirements drive the architecture, it is still important to work

through and refine the remaining nonfunctional requirements because they are important

in later stages of the design and implementation phases. Figure 13-16 summarizes the rela-

tionship between requirements and recommended architectures.

Operational Requirements System integration requirements may lead to one architec-

ture over another, depending on the architecture and design of the system(s) with which

the system needs to integrate. For example, if the system must integrate with a desktop sys-

tem (e.g., Excel) then this may suggest a thin or thick client–server architecture, while if it

must integrate with a server-based system then a server-based architecture may be indi-

cated. Systems that have extensive portability requirements tend to be best suited for a thin

client–server architecture because it is simpler to write for Web-based standards (e.g.,

HTML, XML) that extend the reach of the system to other platforms, rather than trying to

write and rewrite extensive presentation logic for different platforms in the server-based,

client-based, or thick client–server architectures. Systems with extensive maintainability

requirements may not be well suited to client-based or thick client–server architectures

because of the need to reinstall software on the desktops.

Performance Requirements Generally speaking, information systems that have high

performance requirements are best suited to client–server architectures. Client–server

architectures are more scalable, which mean they respond better to changing capacity

needs and thus enable the organization to better tune the hardware to the speed require-

ments of the system. Client–server architectures that have multiple servers in each tier

should be more reliable and have greater availability, because if any one server crashes,

requests are simply passed to other servers, and users might not even notice (although

response time could be worse). In practice, however, reliability and availability depend

greatly on the hardware and operating system, and Windows-based computers tend to have

lower reliability and availability than Linux or mainframe computers.

Security Requirements Generally speaking, server-based architectures tend to be more

secure because all software is in one location and because mainframe operating systems are

more secure than microcomputer operating systems. For this reason, high-value systems

are more likely to be found on mainframe computers, even if the mainframe is used as a

Nonfunctional Requirements and Physical Architecture Layer Design 449

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

server in client–server architectures. In today’s Internet-dominated world, authentication

and encryption tools for Internet-based client–server architectures are more advanced than

those for mainframe-based server-based architectures. Viruses are potential problems in all

architectures because they easily spread on desktop computers. If server-based system can

reduce the functions needed on desktop systems then they may be more secure.

Cultural and Political Requirements As the cultural and political requirements become

more important, the ability to separate the presentation logic from the application logic

and the data becomes important. Such separation makes it easier to develop the presenta-

tion logic in different languages while keeping the application logic and data the same. It

also makes it easier to customize the presentation logic for different users and to change it

to better meet cultural norms. To the extent that the presentation logic provides access to

the application and data, it also makes it easier to implement different versions that enable

or disable different features required by laws and regulations in different countries. This

separation is the easiest in thin client–server architectures, so systems with many cultural

and political requirements often use thin client–server architectures. As with system inte-

gration requirements, the impact of legal requirements depends on the specific nature of

the requirements, but in general, client-based systems tend to be less flexible.

450 Chapter 13 Physical Architecture Layer Design

Requirements

Operational Requirements

System Integration Requirements

Portability Requirements

Maintainability Requirements

Speed Requirements

Capacity Requirements

Availability/Reliability Requirements

High System Value

Access Control Requirements

Encryption/Authentication Requirements

Virus Control Requirements

Multilingual Requirements

Customization Requirements

Making Unstated Norms Explicit

Legal Requirements

Performance Requirements

Security Requirements

Cultural/Political Requirements

Server-
Based

Client-
Based

Thin
Client–
Server

Thick
Client–
Server

FIGURE 13-16
Nonfunctional

Requirements and

Their Implications for

Architecture Design

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

HARDWARE AND SOFTWARE SPECIFICATION

The time to begin acquiring the hardware and software that will be needed for the future

system is during the design of the system. In many cases, the new system will simply run

on the existing equipment in the organization. Other times, however, new hardware and

software (usually for servers) must be purchased. The hardware and software specification is

a document that describes what hardware and software are needed to support the applica-

tion. The actual acquisition of hardware and software should be left to the purchasing

department or the area in the organization that handles capital procurement. However, the

project team can use the hardware and software specification to communicate the project

needs to the appropriate people. There are several steps involved in creating the document.

Figure 13-17 shows a sample hardware and software specification.

First, you will need to define the software that will run on each component. This usu-

ally starts with the operating system (e.g., Windows, Linux) and includes any special pur-

pose software on the client and servers (e.g., Oracle database). This should consider any

additional costs, such as technical training, maintenance, extended warranties, and licens-

ing agreements (e.g., a site license for a software package). Again, the needs that you list are

influenced by decisions that are made in the other design-phase activities.

Second, you must create a list of the hardware that is needed to support the future sys-

tem. The low-level network model provides a good starting point for recording the pro-

ject’s hardware needs because each of the components on the diagram corresponds to an

item on this list. In general, the list can include things like database servers, network servers,

peripheral devices (e.g., printers, scanners), backup devices, storage components, and any

other hardware component that is needed to support an application. At this time, you also

should note the quantity of each item that will be needed.

Third, you must describe, in as much detail as possible, the minimum requirements

for each piece of hardware. Typically, the project team must convey requirements like the

amount of processing capacity, the amount of storage space, and any special features that

should be included. Many organizations have standard lists of approved hardware and soft-

ware that must be used, so in many cases, this step simply involves selecting items from the

lists. Other times, however, the team is operating in new territory and not constrained by

Hardware and Software Specification 451

Think about the course registration system in your university.
First, develop a set of nonfunctional requirements if the sys-
tem were to be developed today. Consider the operational

requirements, performance requirements, security require-
ments, and cultural and political requirements. Then create
an architecture design to satisfy these requirements.

13-3 University Course Registration SystemYOUR

TURN

Many multinational organizations provide global
Web-based e-learning courses to their employees.
First, develop a set of nonfunctional requirements for
such a system. Consider the operational requirements,

performance requirements, security requirements, and
cultural and political requirements. Then create an
architecture design to satisfy these requirements.

13-4 Global e-Learning SystemYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

the need to select from an approved list. In these cases, the project team must convey such

requirements as the amount of processing capacity, the amount of storage space, and any

special features that should be included.

This step becomes easier with experience; however, there are some hints that can help

you describe hardware needs (see Figure 13-18). For example, consider the hardware stan-

dards within the organization or those recommended by vendors. Talk with experienced

system developers or other companies with similar systems. Finally, think about the factors

that affect hardware performance, such as the response time expectations of the users, data

volumes, software memory requirements, the number of users accessing the system, the

number of external connections, and growth projections.

APPLYING THE CONCEPTS AT CD SELECTIONS

Alec Adams, senior systems analyst and project manager for CD Selections’ Internet sales

system, realized that the hardware, software, and networks that would support the new

application would need to be integrated into the current infrastructure at CD Selections.

452 Chapter 13 Physical Architecture Layer Design

Standard Standard Standard Standard
Client Web Server Application Server Database Server

Operating System • Windows • Linux • Linux • Linux
• Netscape

Special Software • Adobe Acrobat Reader • Apache • Java • Oracle
• Read Audio

Hardware • 40 gig disk drive • 80 gig disk drive • 80 gig disk drive • 200 gig disk drive
• Pentium • Pentium • Pentium • RAID
• 17 inch Monitor • Quad Pentium

Network • Always-on • Dual 100 Mbps • Dual 100 Mbps • Dual 100 Mbps
Broadband preferred Ethernet Ethernet Ethernet

• Dial-up at 56Kbps
possible with some
performance loss

FIGURE 13-17 Sample Hardware and Software Specification

1. Functions and Features What specific functions and features are needed (e.g., size of monitor,
software features)

2. Performance How fast the hardware and software operates (e.g., processor, number of database
writes per second)

3. Legacy Databases and Systems How well the hardware and software interacts with legacy sys-
tems (e.g., can it write to this database)

4. Hardware and OS Strategy What are the future migration plans (e.g., the goal is to have all of
one vendor’s equipment)

5. Cost of Ownership What are the costs beyond purchase (e.g., incremental license costs, annual
maintenance, training costs, salary costs)

6. Political Preferences People are creatures of habit and are resistant to change, so changes
should be minimized

7. Vendor Performance Some vendors have reputations or future prospects that are different from
those of a specific hardware or software system they currently sell

FIGURE 13-18

Factors in Hardware

and Software Selection

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

He began by reviewing the high-level nonfunctional requirements developed in the analy-

sis phase (see Figure 5-13 in Chapter 5) and by conducting a JAD session and a series of

interviews with managers in the marketing department and three store managers to refine

the nonfunctional requirements into more detail. Figure 13-19 shows some of the results.

The clear business need for a Web-based architecture required a thin client–server archi-

tecture for the Internet sales portion of the system.

CD Selections had a formal architecture group responsible for managing CD Selections

architecture and its hardware and software infrastructure. Therefore, Alec set up a meeting

with the project team and the architecture group. During the meeting, he confirmed that

CD Selections was still moving toward a target client–server architecture, although the cen-

tral mainframe still existed as the primary server for many server-based applications.

They discussed the Internet sales system and decided that it should be built using a three-

tier thin client–server architecture. Everyone believed that it was hard to know at this point

exactly how much traffic this Web site would get and how much power the system would require,

but a client–server architecture would allow CD Selections to easily scale up the system as needed.

By the end of the meeting, it was agreed that a three-tiered client–server architecture

was the best configuration for the Internet portion of the Internet sales system (i.e., the

Place Order process in Figures 6-15 and 6-17). Customers would use their personal com-

puters running a Web browser as the client. A database server would store the Internet sys-

tem’s databases; whereas, an application server would have Web server software and the

application software to run the system.

A separate two-tier client server system will maintain the CD and Marketing Mater-

ial information (i.e., the Maintain CD Information and Maintain Marketing Information

processes in Figure 6-17). This system will have an application for the personal comput-

ers of the staff working in the Internet sales group that communicates directly with the

Applying the Concepts at CD Selections 453

Develop a hardware and software specification for the university course registration system described in Your Turn 13-3.

13-5 University Course Registration SystemYOUR

TURN

You have decided to purchase a computer, printer, and
low-cost scanner to support your academic work. Create

a hardware and software specification for these compo-
nents that describes your hardware and software needs.

13-7 Create a Hardware and Software SpecificationYOUR

TURN

Develop a hardware and software specification for the global e-learning system described in Your Turn 13-4.

13-6 Global e-Learning SystemYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

database server and enables staff to update the information. The database server will have

a separate program to enable it to exchange data with CD Selections’ distribution system

on the company mainframe. Furthermore, the in-store system was currently built using a

two-tier client–server architecture, so the portion of the system responsible for the in-

store holds would conform to that architecture.

454 Chapter 13 Physical Architecture Layer Design

1. Operational Requirements

Technical Environment 1.1 The system will work over the Web environment with Netscape and real audio.

1.2 Customers will only need Netscape and RA on their desktops.

System Integration 1.3 The Internet sales system will read information from the main CD information database, which con-
tains basic information about the CD (e.g., title, artist, id number, price, quantity in inventory). The
Internet order system will not write information to the main CD information database.

1.4 The Internet sales system will transmit orders for new CDs in the special order system, and will rely
on the special order system to complete the special orders generated.

1.5 The Internet sales system will read and write to the main inventory database.

1.6 A new module for the In-store system will be written to manage the “holds” generated by the Inter-
net system. The requirements for this new module will be documented as part of the Internet sales
system because they are necessary for the Internet sales system to function.

1.7 A new module will be written to handle the mail order sales. The requirements for this new module
will be documented as part of the Internet sales system because they are necessary for the Internet
sales system to function.

Portability 1.8 The system will need to remain current with evolving Web standards, especially those pertaining to
music formats.

Maintainability 1.9 No special maintainability requirements are anticipated.

2. Performance Requirements

Speed 2.1 Response times must be less than 7 seconds.

2.2 The inventory database must be updated in real time.

2.3 In-store holds must be sent to the store within 5 minutes.

Capacity 2.4 There will be a maximum of 20–50 simultaneous users at peak use times.

2.5 The system will support streaming audio to up to forty simultaneous users.

2.6 The system will send up to 5K of data to each store daily.

2.7 The in-store hold database will require 10–20K of disk space per store.

Availability and Reliability 2.8 The system should be available 24/7.

2.9 The system shall have 99 percent uptime performance.

3. Security Requirements

System Value 3.1 No special system value requirements are anticipated.

Access Control 3.2 Only store managers will be able to override In-Store Holds.

Encryption/Authentication 3.3 No special encryption/authentication requirements are anticipated.

Virus Control 3.4 No special virus control requirements are anticipated.

4. Cultural and Political Requirements

Multilingual 4.1 No special multilingual requirements are anticipated.

Customization 4.2 No special customization requirements are anticipated.

Unstated Norms 4.3 No special unstated norms requirements are anticipated.

Legal 4.4 No special legal requirements are anticipated.

FIGURE 13-19 Selected Nonfunctional Requirements for the CD Selections Internet Sales System

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Next, Alec created a network model to show the major components of the Internet

sales system (see Figure 13-20). The Internet sales system is on a separate network segment

separated from the CD Selections’ main network by a firewall that separates the network

from the Internet while granting access to the Web and database servers. The Internet sales

system has two parts. A firewall is used to connect the Web/Application server to the Inter-

net, while another firewall further protects the Internet sales group’s client computers and

database server from the Internet. In order to improve response time, a direct connection

is made from the Web/Application server to the database server because these will exchange

a lot of data. Based on these decisions, Alec also created a deployment diagram that shows

how the problem domain, human computer interaction, and data management layers

would be deployed over the physical architecture layer (see Figure 13-21).

Given that the Web interface could reach a geographically dispersed group, the project

team realized that it needed to plan for 24/7 system support. He scheduled a meeting to talk

with the CD Selections systems operations group and discussed how they might be able to

support the Internet sales system outside of standard working hours.

After examining the network model, the architecture group and the Internet project team

decided that the only components that needed to be acquired for the project are a database

server, a Web server, and five new client computers for the marketing group, who will maintain

the marketing materials. They developed a hardware and software specification for these com-

ponents and handed them off to the purchasing department to start the acquisition process.

SUMMARY

An important component of design is the design of the physical architecture layer, which

includes the hardware, software, and communications infrastructure for the new system

and the way in which the information system will be distributed over the architecture. The

physical architecture layer design is described in a deliverable, which contains the network

model and the hardware and software specification.

Elements of the Physical Architecture Layer

All software systems can be divided into four basic functions: data storage, data access logic,

application logic, and the presentation logic. There are three fundamental computing architec-

tures that place these functions on different computers. In server-based architectures, the server

performs all the functions. In client-based architectures, the client computers are responsible for

presentation logic, application logic, and data access logic, with data stored on a file server. In

client–server architectures, the client is responsible for the presentation logic and the server is

responsible for the data access logic and data storage. In thin client–server architectures, the

server performs the application logic, while in thick client–server architectures, the application

logic is shared between the servers and clients. In a two-tiered client–server architecture there are

two groups of computers: one client and a set of servers. In a three-tiered client–server architec-

ture, there are three groups of computers: a client, a set of application servers, and a set of data-

base servers. From an object-oriented point of view, the future trend in client–server computing

is distributed object computing (DOC). Currently, there are three competing approaches to sup-

port DOC: OMG’s CORBA, Sun’s EJB and J2EE, and Microsoft’s DCOM and .net.

Each of the computing architectures has its strengths and weaknesses, and no architecture

is inherently better than the others. The choice that the project team makes should be based on

several criteria, including cost of development, ease of development, need for GUI applications,

network capacity, central control and security, and scalability. The project team should also take

into consideration the existing architecture and special software requirements of the project.

Summary 455

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

456 Chapter 13 Physical Architecture Layer Design

Database
Server

Internet
Customer

Workstation

Workstation

Workstation

Workstation

Firewall

WEB Application
Server

Firewall

Firewall

Data-
base

Mainframe

Internet

Internet
Customer

Workstation

Internet Sales
Group Workstations

CD Selections’
Main Network

FIGURE 13-20 Deployment Diagram of Network Model for the CD Selections Internet Sales System

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Infrastructure Design

Deployment diagrams are used to portray the design of the physical architecture layer. The

diagrams are composed of nodes, artifacts, and communication links. Also, the diagram

can be extended with graphical icons that represent different types of nodes.

The network model is a diagram that shows the technical components of the infor-

mation system (e.g., servers, personal computers, networks) and their geographic locations

throughout the organization. The components of the network model are the various clients

(e.g., personal computers, kiosks), servers (e.g., database, network, communications,

printer), network equipment (e.g., wire, dial-in connections, satellite links), and external

systems or networks (e.g., Internet service provider) that support the application. Creating

a network model is a top-down process whereby a high-level diagram is first created to

show the geographic sites, or locations, that house the various components of the future

system. Next, a low-level diagram is created to describe each location in detail, and it shows

the system’s hardware components and how they are attached to one another.

Nonfunctional Requirements and Physical Architecture Layer Design

Creating an architecture design begins with the nonfunctional requirements. Operational

requirements specify the operating environment(s) in which the system must perform and

how those may change over time (i.e., technical environment, system integration, portabil-

ity, and maintainability). Performance requirements focus on performance issues such as

system speed, capacity, and availability and reliability. Security requirements attempt to

protect the information system from disruption and data loss (e.g., system value, access

Summary 457

<<client workstation>>
Internet Customer

<<HCI Layer>>
Internet Sales System

<<Web server>>
Internet Sales System

Web Server

<<PD Layer>>
Internet Sales System

<<db server>>
Internet Sales System

Database Server

<<DM Layer>>
Internet Sales System

<<client workstation>>
Internet Sales System

Group Member

<<HCI Layer>>
Internet Sales System

<<PD Layer>>
Internet Sales System

<<TCP/IP>>

<<TCP/IP>>

<
<

T
C

P
/IP

>
>

FIGURE 13-21
Deployment Diagram

of Layers for the CD

Selections Internet

Sales System

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

control, encryption and authentication, and virus control). Cultural and political require-

ments are those that are specific to the specific countries in which the system will be used

(e.g., multilingual, customization, unstated norms, and legal).

Hardware and Software Specification

The hardware and software specification is a document that describes what hardware and

software are needed to support the application. To create a specification document, the

hardware that is needed to support the future system is listed and then described in as

much detail as possible. Next, the software to run on each hardware component is written

down, along with any additional associated costs, such as technical training, maintenance,

extended warrantees, and licensing agreements. Although the project team may suggest

specific products or vendors, ultimately the hardware and software specification is turned

over to the people who are in charge of procurement.

458 Chapter 13 Physical Architecture Layer Design

KEY TERMS

.net

24/7

Access control requirements

Application logic

Architectural component

Artifact

Asymmetric encryption algorithm

Authentication

Availability and reliability

requirements

Capacity requirements

Certificate authority (CA)

Client computer

Client-based architecture

Client–server architecture

Common Object Request Broker

Architecture (CORBA)

Communication path

Cultural and political requirements

Customization requirements

Data access logic

Data storage

Deployment diagrams

Distributed Computing Object

Model (DCOM)

Distributed objects computing

(DOC)

Encryption

Encryption and authentication

requirements

Enterprise JavaBeans (EJB)

Fat client

Graphical user interface (GUI)

Hardware and software specification

Invertible

Java 2 Enterprise Edition (J2EE)

Legal requirements

Locations

Mainframe

Maintainability requirements

Microcomputer

Middleware

Minicomputer

Mission critical system

Multilingual requirements

Network

Network model

N-tiered architecture

Node

Operational requirements

Performance requirements

Physical architecture layer design

Portability requirements

Presentation logic

Private key

Public key

Public key encryption

Response time

Scalable

Security requirements

Server

Server-based architecture

Speed requirements

Structured query language (SQL)

Symmetric encryption algorithm

System integration requirements

Technical environment requirements

Thick client

Thin client

Three-tiered architecture

Total cost of ownership

Two-tiered architecture

Unstated norms

Virus

Virus control requirements

QUESTIONS

1. What are the four basic functions of any information

system?

2. What are the three primary hardware components of

any physical architecture?

3. Name two examples of a server.

4. Compare and contrast sever-based architectures,

client-based architectures, and client–sever-based

architectures.

5. What is the biggest problem with server-based

computing?

6. What is the biggest problem with client-based

computing?

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Exercises 459

7. Describe the major benefits and limitations of thin

client–server architectures.

8. Describe the major benefits and limitations of thick

client–server architectures.

9. Describe the differences among two-tiered, three-

tiered, and n-tiered architectures.

10. What is distributed object computing?

11. What are the three competing approaches to support

distributed object computing?

12. Define scalable. Why is this term important to system

developers?

13. What six criteria are helpful to use when comparing

the appropriateness of computing alternatives?

14. Why should the project team consider the existing

physical architecture in the organization when design-

ing the physical architecture layer of the new system?

15. Describe the major nonfunctional requirements and

how they influence physical architecture layer design.

16. Why is it useful to define the nonfunctional requirements

in more detail even if the technical environment

requirements dictate a specific architecture?

17. What does the network model communicate to the

project team?

18. What are the differences between the top-level net-

work model and the low-level network model?

19. What additional hardware- and software-associated

costs may need to be included on the hardware and

software specification?

20. Who ultimately is in charge of acquiring hardware

and software for the project?

21. What do you think are three common mistakes that

novice analysts make in physical architecture design

and hardware and software specification?

22. Are some nonfunctional requirements more impor-

tant than others in influencing the physical architec-

ture design and hardware and software specification?

23. What do you think are the most important security

issues for a system?

EXERCISES

A. Using the Web (or past issues of computer industry

magazines such as Computerworld), locate a system

that runs in a server-based environment. Based on

your reading, why do you think the company chose

that computing environment?

B. Using the Web (or past issues of computer industry

magazines such as Computerworld), locate a system

that runs in a client–server environment. Based on

your reading, why do you think the company chose

that computing environment?

C. Using the Web, locate examples of a mainframe com-

ponent, a minicomputer component, and a micro-

computer component. Compare the components in

terms of price, speed, available memory, and disk stor-

age. Did you find large differences in prices when the

performances of the components are considered?

D. You have been selected to find the best client–server-

computing architecture for a Web-based order entry

system that is being developed for L.L.Bean. Write a

short memo that describes to the project manager

your reason for selecting an n-tiered architecture over

a two-tiered architecture. In the memo, give some idea

as to what the different components of the architec-

ture you would include.

E. You have been selected to determine whether your

firm should invest in CORBA-, EJB/J2EE, or

DCOM/.net-based technologies to support distrib-

uted objects computing. Write a short memo that

describes to the steering committee the advantages

and disadvantages of both approaches. (Note: you

probably should check out the Web sites associated

with each.)

F. Think about the system that your university currently

uses for career services, and pretend that you are in

charge of replacing the system with a new one.

Describe how you would decide on the computing

architecture for the new system using the criteria pre-

sented in this chapter. What information will you need

to find out before you can make an educated compar-

ison of the alternatives?

G. Locate a consumer products company on the Web and

read its company description (so that you get a good

understanding of the geographic locations of the

company). Pretend that the company is about to cre-

ate a new application to support retail sales over the

Web. Create a high-level network model that depicts

the locations that would include components that

support this application.

H. An energy company with headquarters in Dallas,

Texas, is thinking about developing a system to track

the efficiency of its oil refineries in North America.

Each week, the ten refineries as far as Valdez, Alaska,

and as close as San Antonio, Texas, will upload perfor-

mance data via satellite to the corporate mainframe in

Dallas. Production managers at each site will use a

personal computer to dial into an Internet service

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

460 Chapter 13 Physical Architecture Layer Design

provider and access reports via the Web. Create a

high-level network model that depicts the locations

that have components supporting this system.

I. Create a low-level network diagram for the building

that houses the computer labs at your university.

Choose an application (e.g., course registration, stu-

dent admissions) and only include the components

that are relevant to that application.

J. Pretend that your mother is a real estate agent, and

she has decided to automate her daily tasks using a

laptop computer. Consider her potential hardware

and software needs, and create a hardware and soft-

ware specification that describes them. The specifica-

tion should be developed to help your mother buy

her hardware and software on her own.

K. Pretend that the admissions office in your university

has a Web-based application so that students can apply

for admission online. Recently, there has been a push to

admit more international students into the university.

What do you recommend that the application includes

to ensure that it supports this global requirement?

MINICASES

1. The system development project team at Birdie Mas-

ters golf schools has been working on defining the

physical architecture design for the system. The major

focus of the project is a networked school location

operations system, allowing each school location to

easily record and retrieve all school location transac-

tion data. Another system element is the use of the

Internet to enable current and prospective students to

view class offerings at any of the Birdie Masters’ loca-

tions, schedule lessons and enroll in classes at any

Birdie Masters location, and maintain a student

progress profile—a confidential analysis of the stu-

dent’s golf skill development.

The project team has been considering the global-

ization issues that should be factored into the archi-

tecture design. The school’s plan for expansion into

the golf-crazed Japanese market is moving ahead. The

first Japanese school location is tentatively planning to

open about six months after the target completion

date for the system project. Therefore, it is important

that issues related to the international location be

addressed now during design.

Assume that you have been given the responsibility

of preparing a summary memo on the globalization

issues that should be factored into the design. Prepare

this memo discussing the globalization issues that are

relevant to Birdie Masters’ new system.

2. Jerry is a relatively new member of a project team that

is developing a retail store management system for a

chain of sporting goods stores. Company headquar-

ters is in Las Vegas, and the chain has twenty-seven

locations throughout Nevada, Utah, and Arizona.

Several cities have multiple stores.

The new system will be a networked, client–server

architecture. Stores will be linked to one of three

regional servers, and the regional servers will be linked

to corporate headquarters in Las Vegas. The regional

servers also link to each other. Each retail store will be

outfitted with similar configurations of two PC-based

point-of-sale terminals networked to a local file server.

Jerry has been given the task of developing a network

model that will document the geographic structure of

this system. He has not faced a system of this scope

before and is a little unsure how to begin.

a. Prepare a set of instructions for Jerry to follow in

developing this network model.

b. Using a deployment diagram, draw a network

model for this organization.

c. Prepare a set of instructions for Jerry to follow in

developing a hardware and software specification.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Project
A

ssessm
ent

Support
Plan

C
hange

M
anagem

ent Plan
C

onversion
Plan

D
ocum

entation
Test
Plan

Program
s

During the implementation phase, the actual system

is built. Building a successful information system re-

quires a set of activities: programming, testing, and

documenting the system. Installing an information

system requires switching from the current system to

the new system. This conversion process can be quite

involved. Not only does it involve shutting the old

system down and turning the new one on, it also can

involve a significant training effort. Finally, operating

the system may uncover additional requirements that

can be fed back into the next build.

CHAPTER 14

Construction

CHAPTER 15

Installation

and Operations

PART FOUR

Implementation

Phase

C
op

yr
ig

ht
ed

 M
at

er
ia

l

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

This chapter discusses the activities needed to successfully build the information system:

programming, testing, and documenting the system. Programming is time-consuming and

costly, but except in unusual circumstances, it is the simplest for the systems analyst

because it is well understood. For this reason, the system analyst focuses on testing (prov-

ing that the system works as designed) and developing documentation during this part of

the SDLC.

OBJECTIVES

■ Be familiar with the system construction process.
■ Understand different types of tests and when to use them.
■ Understand how to develop documentation.

CHAPTER OUTLINE

INTRODUCTION

When people first learn about developing information systems, usually they immediately

think about writing programs. Programming can be the largest single component of any

systems development project in terms of both time and cost. However, it also can be the

best understood component and therefore—except in rare circumstances—offers the least

problems of all aspects of the SDLC. When projects fail, it is usually not because the pro-

grammers were unable to write the programs but because the analysis, design, installation,

and/or project management were done poorly. In this chapter, we focus on the construc-

tion and testing of the software and the documentation.

Introduction

Managing Programming

Assigning Programmers

Coordinating Activities

Managing the Schedule

Designing Tests

Testing and Object-Orientation

Test Planning

Unit Tests

Integration Tests

System Tests

Acceptance Tests

Developing Documentation

Types of Documentation

Designing Documentation Structure

Writing Documentation Topics

Identifying Navigation Terms

Applying the Concepts at CD Selections

Managing Programming

Testing

Developing User Documentation

Summary

C H A P T E R 1 4

Construction

463

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Construction is the development of all parts of the system, including the software itself,

documentation, and new operating procedures. Programming is often seen as the focal

point of system development. After all, system development is writing programs. It is the

reason why we do all the analysis and design. And it’s fun. Many beginning programmers

see testing and documentation as bothersome afterthoughts. Testing and documentation

aren’t fun, so they often receive less attention than the creative activity of writing programs.

Programming and testing, however, are very similar to writing and editing. No profes-

sional writer (or student writing an important term paper) would stop after writing the

first draft. Rereading, editing, and revising the initial draft into a good paper is the hallmark

of good writing. Likewise, thorough testing is the hallmark of professional software devel-

opers. Most professional organizations devote more time and money to testing (and the

subsequent revision and retesting) than to writing the programs in the first place.

The reasons are simple economics: downtime and failures caused by software bugs1 are

extremely expensive. Many large organizations estimate the costs of downtime of critical appli-

cations at $50,000 to $200,000 per hour.2 One serious bug that causes an hour of downtime

can cost more than one year’s salary of a programmer—and how often are bugs found and

fixed in one hour? Testing is therefore a form of insurance. Organizations are willing to spend

a lot of time and money to prevent the possibility of major failures after the system is installed.

Therefore, programs are not usually considered finished until the test for that program

is passed. For this reason, programming and testing are tightly coupled, and since pro-

gramming is the primary job of the programmer (not the analyst), testing (not program-

ming) often becomes the focus of the construction stage for the systems analysis team.

In this chapter, we discuss three parts of the construction step: programming, testing,

and writing the documentation. Because programming is primarily the job of program-

mers, not systems analysts, and because this is not a programming book, we devote less

time to programming than to testing and documentation.

MANAGING PROGRAMMING

In general, systems analysts do not write programs; programmers write programs. There-

fore, the primary task of the systems analysts during programming is … waiting. However,

the project manager is usually very busy managing the programming effort by assigning the

programmers, coordinating the activities, and managing the programming schedule.3

Assigning Programmers

The first step in programming is assigning modules to the programmers. As discussed in

Chapter 10, each module (class, object, or method) should be as separate and distinct as

possible from the other modules. The project manager first groups together classes that are

related so that each programmer is working on related classes. These groups of classes are

then assigned to programmers. A good place to start is to look at the package diagrams.

464 Chapter 14 Construction

1 When I was an undergraduate, I had the opportunity to hear Admiral Grace Hopper tell how the term bug was
introduced. She was working on one of the early Navy computers when suddenly it failed. The computer would
not restart properly so she began to search for failed vacuum tubes. She found a moth inside one tube and
recorded in the log book that a bug had caused the computer to crash. From then on, every computer crash was
jokingly blamed on a bug (as opposed to programmer error), and eventually the term bug entered the general
language of computing.
2 See Billie Shea,“Quality Patrol: Eye on the Enterprise,” Application Development Trends (November 5, 1998): 31–38.
3 One of the best books on managing programming (even though it was first written 25 years ago) is that by Fred-
erick P. Brooks, Jr., The Mythical Man-Month, 20th Anniversary edition (Reading, MA: Addision-Wesley, 1995).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

One rule of system development is that the more programmers who are involved in

a project, the longer the system will take to build. This is because as the size of the pro-

gramming team increases, the need for coordination increases exponentially, and the

more coordination that is required, the less time programmers can spend actually writing

systems. The best size is the smallest possible programming team. When projects are so

complex that they require a large team, the best strategy is to try to break the project into

a series of smaller parts that can function as independently as possible.

Coordinating Activities

Coordination can be done through both high-tech and low-tech means. The simplest

approach is to have a weekly project meeting to discuss any changes to the system that have

arisen during the past week—or just any issues that have come up. Regular meetings, even

if they are brief, encourage the widespread communication and discussion of issues before

they become problems.

Another important way to improve coordination is to create and follow standards

that can range from formal rules for naming files to forms that must be completed when

goals are reached to programming guidelines (see Chapter 4). When a team forms stan-

dards and then follows them, the project can be completed faster because task coordina-

tion is less complex.

The analysts also must put mechanisms in place to keep the programming effort

well-organized. Many project teams set up three “areas” in which programmers can

work: a development area, a testing area, and a production area. These areas can be dif-

ferent directories on a server hard disk, different servers, or different physical locations,

but the point is that files, data, and programs are separated based on their status of com-

pletion. At first, programmers access and build files within the development area and

then copy them to the testing area when the programmers are “finished.” If a program

does not pass a test, it is sent back to development. Once all programs and the like are

Managing Programming 465

My first programming job in 1977 was to convert a set of
application systems from one version of COBOL to
another version of COBOL for the government of Prince
Edward Island. The testing approach was to first run a set
of test data through the old system and then run it through
the new system to ensure that the results from the two
matched. If they matched, then the last three months of
production data were run through both to ensure that
they too matched.

Things went well until I began to convert the Gas Tax
system that kept records on everyone authorized to pur-
chase gasoline without paying tax. The test data ran fine,
but the results using the production data were peculiar. The
old and new systems matched, but rather than listing sev-
eral thousand records, the report listed only fifty. I checked
the production data file and found it listed only fifty
records, not the thousands that were supposed to be there.

The system worked by copying the existing gas tax
records file into a new file and making changes in the
new file. The old file was then copied to tape backup.
There was a bug in the program such that if there were no
changes to the file, a new file was created, but no records
were copied into it.

I checked the tape backups and found one with the
full set of data that was scheduled to be overwritten three
days after I discovered the problem. The government was
only three days away from losing all gas tax records.

—Alan Dennis

Question

1. What would have been the cost of this bug if it hadn’t
been caught?

14-A The Cost of a BugCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

tested and ready to support the new system, they are copied into the production area—

the location where the final system will reside.

One of the more important things to coordinate is the traceability of the implementa-

tion of the system back to the original requirements. Each class and method must be asso-

ciated with an individual requirement or a set of requirements. In most object-oriented

system development approaches today capture and document the requirements in use

cases. As such, it is critical to guarantee that all classes and methods can be traced back to

an individual use case or a set of use cases. This is why in our approach (MOOSAD), we

have included a section for “Associated Use Cases” on the CRC cards (see Figures 7-1 and

10-11) and the contracts (see Figure 10-13).

Keeping files and programs in different places based on completion status helps

manage change control, the action of coordinating a system as it changes through con-

struction. Another change control technique is keeping track of which programmer

changes which classes and packages by using a program log. The log is merely a form

on which programmers “sign-out” classes and packages to write and “sign-in” when

they are completed. Both the programming areas and program log help the analysts

understand exactly who has worked on what and to determine the system’s current sta-

tus. Without these techniques, files can be put into production without the proper test-

ing; two programmers, for example, could start working on the same class or package

at the same time.

If a CASE tool is used during the construction step, it can be very helpful for change

control because many CASE tools are set up to track the status of programs and help man-

age programmers as they work. In most cases, maintaining coordination is not conceptu-

ally complex. It just requires a lot of attention and discipline to track small details.

Managing the Schedule

The time estimates that were produced during the initial planning phase and refined dur-

ing the analysis and design phases will almost always need to be refined as the project pro-

gresses during construction because it is virtually impossible to develop an exact

assessment of the project’s schedule. As we discussed in Chapter 4, a well-done set of time

estimates will usually have a 10 percent margin of error by the time you reach the con-

struction step. It is critical that the time estimates be revised as the construction step pro-

ceeds. If a program module takes longer to develop than expected, then the prudent

response is to move the expected completion date later by the same amount.

One of the most common causes of schedule problems is scope creep. Scope creep

occurs when new requirements are added to the project after the system design was

finalized. Scope creep can be very expensive because changes made late in the SDLC can

require much of the completed system design (and even programs already written) to

be redone. Any proposed change during the construction phase must require the

approval of the project manager and should only be done after a quick cost–benefit

analysis has been done.

Another common cause is the unnoticed day-by-day slippage in the schedule. One

package is a day later here, another one a day late there. Pretty soon these minor delays

add up, and the project is noticeably behind schedule. Once again, the key to managing

the programming effort is to watch these minor slippages carefully and update the

schedule accordingly.

Typically, a project manager will create a risk assessment that tracks potential risks

along with an evaluation of their likelihood and potential impact. As the construction step

moves to a close, the list of risks will change as some items are removed and others surface.

The best project managers, however, work hard to keep risks from having an impact on the

schedule and costs associated with the project.

466 Chapter 14 Construction

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

DESIGNING TESTS5

In object-oriented systems, the temptation is to minimize testing. After all, through the use of

patterns, frameworks, class libraries, and components, much of the system has been tested pre-

viously. Therefore, we should not have to test as much. Right? Wrong!! Testing is more critical

to object-oriented systems than to systems developed in the past. Based on encapsulation (and

information hiding), polymorphism (and dynamic binding), inheritance, and reuse, thorough

testing is much more difficult and critical. Testing must be done systematically and the results

documented so that the project team knows what has and has not been tested.

The purpose of testing is not to demonstrate that the system is free of errors. Indeed, it

is not possible to prove that a system is error free, especially object-oriented systems. This is

similar to theory testing. You cannot prove a theory. If a test fails to find problems with a the-

ory, your confidence in the theory is increased. However, if a test succeeds in finding a prob-

lem, then the theory has been falsified. Software testing is similar in that it can only show the

existence of errors. As such, the purpose of testing is to uncover as many errors as feasible.6

Designing Tests 467

In previous chapters, we discussed classic mistakes and
how to avoid them. Here, we summarize four classic mis-
takes in the implementation phase.4

1. Research-oriented Development: Using state-of-the-
art technology requires research-oriented develop-
ment that explores the new technology because
“bleeding edge” tools and techniques are not well
understood, are not well documented, and do not
function exactly as promised.
Solution: If you use state-of-the-art technology, you
need to significantly increase the project’s time and cost
estimates even if (some experts would say especially if)
such technologies claim to reduce time and effort.

2. Using Low-Cost Personnel: You get what you pay for.
The lowest cost consultant or the staff member is sig-
nificantly less productive than the best staff. Several
studies have shown that the best programmers pro-
duce software six to eight times faster than the least
productive (yet cost only 50 to 100 percent more).

Solution: If cost is a critical issue, assign the best, most
expensive personnel; never assign entry-level person-
nel in an attempt to save costs.

3. Lack of Code Control: On large projects, programmers
need to coordinate changes to the program source code
(so that two programmers don’t try to change the same
program at the same time and overwrite the other’s
changes). Although manual procedures appear to work
(e.g., sending e-mail notes to others when you work on
a program to tell them not to), mistakes are inevitable.
Solution: Use a source code library that requires pro-
grammers to “check out” programs and prohibits oth-
ers from working on them at the same time.

4. Inadequate Testing: The number one reason for project
failure during implementation is ad hoc testing—
where programmers and analysts test the system with-
out formal test plans.
Solution: Always allocate sufficient time in the project
plan for formal testing.

14-1 Avoiding Classic Implementation MistakesPRACTICAL

TIP

4 Adapted from Steve McConnell, Rapid Development (Redmond, WA: Microsoft Press, 1996).
5 This section is based on material contained in Imran Bashir and Amrit L. Goel, Testing Object-Oriented Software:
Life Cycle Solutions (New York: Springer Verlag, 1999); Bernd Bruegge and Allen H. Dutoit, Object-Oriented Soft-
ware Engineering: Conquering Complex and Changing Systems, (Englewood Cliffs, NJ: Prentice Hall, 2000); Philippe
Kruchten, The Rational Unified Process: An Introduction, 2nd ed., (Reading, MA: Addison-Wesley, 2000); and John
D. McGregor and David A. Sykes, A Practical Guide to Testing Object-Oriented Software (Reading, MA: Addison-
Wesley, 2001). For more information on testing object-oriented software, see Robert V. Binder, Testing Object-Ori-
ented Systems: Models, Patterns, and Tools (Reading, MA: Addison-Wesley, 1999); and Shel Sieget, Object-Oriented
Software Testing: A Hierarchical Approach (New York: Wiley, 1996).
6 It is not cost-effective to get each and every error out of the software. Except in simple examples, it is in fact
impossible. There are simply too many combinations to check.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

There are four general stages of tests: unit tests, integration tests, system tests, and

acceptance tests. Although each application system is different, most errors are found dur-

ing integration and system testing (see Figure 14-1).

In each of the following sections, we describe the four stages. However, before doing this,

we describe the effect that the object-oriented characteristics have on testing and the necessary

planning and management activities that must take place to have a successful testing program.

Testing and Object-Orientation

Most testing techniques have been developed to support nonobject-oriented develop-

ment. Object-oriented development is still relatively new. As such, most of the testing

approaches have had to be adapted to object-oriented systems. The characteristics of

object-oriented systems that affect testing the most are encapsulation (and information

hiding), polymorphism (and dynamic binding), inheritance, and the use of patterns, class

libraries, frameworks, and components. Also, the sheer volume of products that come out

of a typical object-oriented development process has increased the importance of testing

in object-oriented development.

Encapsulation and Information Hiding Encapsulation and information hiding allow

processes and data to be combined to create holistic entities (i.e., objects). Furthermore,

they support hiding everything behind a visible interface. Although this allows the system

to be modified and maintained in an effective and efficient manner, it makes testing the

system problematic. What do you need to test to build confidence in the system’s ability to

meet the user’s need? Answer, you need to test the business process that is represented in

the use cases. However, the business process is distributed over a set of collaborating classes

and contained in the methods of those classes. The only way to know the effect that a busi-

ness process has on a system is to look at the state changes that take place in the system. But

in object-oriented systems, the instances of the classes hide the data behind a class bound-

ary. How is it possible then to see the impact of a business process?

A second issue raised by encapsulation and information hiding is the definition of a

“unit” for unit testing. What is the unit to be tested? Is it the package, class, or method? In

468 Chapter 14 Construction

Acceptance
test (beta)

Acceptance
test (alpha)

System
test

Integration
test

Unit
test

N
u
m

b
er

 o
f

er
ro

rs
 d

et
ec

te
d

Testing stage

FIGURE 14-1

Error discovery rates for

different stages of tests

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

traditional approaches, the answer would be the process that is contained in a function.

However, the process in object-oriented systems is distributed over a set of classes. There-

fore, testing individual methods makes no sense. The answer is the class. This dramatically

changes the manner in which unit testing is done.

A third issue raised is the impact on integration testing. In this case, objects can be aggre-

gated to form aggregate objects; for example, a car has many parts, or they can be grouped

together to form collaborations. Furthermore, they can be used in class libraries, frameworks,

and components. Based on all of these different ways in which classes can be grouped together,

how does one effectively do integration testing?

Polymorphism and Dynamic Binding Polymorphism and dynamic binding dramati-

cally impact both unit and integration testing. Since an individual business process is imple-

mented through a set of methods distributed over a set of objects, as shown above, the unit

test makes no sense to be at the method level. However, with polymorphism and dynamic

binding, the same method (a small part of the overall business process) can be implemented

in many different objects. Therefore, testing individual implementations of methods makes

no sense. Again, the unit that makes sense to test is the class. Furthermore, except for trivial

cases, dynamic binding makes it impossible to know which implementation is going to be

executed until the system does it. Therefore, integration testing becomes very challenging.

Inheritance When considering the issues raised about inheritance (see Chapter 10), it should

be no surprise that inheritance impacts the testing of object-oriented systems. Through the use

of inheritance, bugs can be propagated from a superclass to all of its direct and indirect sub-

classes instantaneously. However, the tests that are applicable to a superclass are also applicable

to all of its subclasses. As usual, inheritance is a double-edged sword. Finally, even though we

have stated this many times before, inheritance should only support a generalization and spe-

cialization type of semantics. Remember, when using inheritance the principle of substitutabil-

ity is critical (see Chapter 7). All of these issues impact unit and integration testing.

Reuse On the surface, reuse should decrease the amount of testing required. However,

each time a class is used in a different context, the class must be tested again. Therefore,

anytime a class library, framework, or component is used, unit testing and integration test-

ing are important. In the case of a component, the unit to test is the component itself.

Remember that a component has a well-defined Application Program Interface (API) that

hides the details of its implementation.

Object-Oriented Development Process and Products In virtually all textbooks,

including this one, testing is always covered near the end of the SDLC. This seems to imply

that testing takes place only after the programming has ended. However, each and every

product7 that comes out of the object-oriented development process must be tested. For

example, it is a lot easier to ensure that the requirements are captured and modeled cor-

rectly through testing the use cases. Furthermore, it is a lot cheaper to catch this type of

error back in the analysis phase than it is in the implementation phase. Obviously, this is

true for testing collaborations as well. By the time we have implemented a collaboration as

a set of layers and partitions, we could have expended a great deal of time, and time is

money, on implementing the wrong thing. So, testing collaborations by role-playing the

CRC cards back in the analysis phase will actually save the team lots of time and money.

Designing Tests 469

7 For example, use-case descriptions, use-case diagrams, CRC cards, class diagrams, object diagrams, sequence
diagrams, communication diagrams, behavioral state machines, package diagrams, use scenarios, window navi-
gation diagrams, real use cases, contracts, method specifications, and source code.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Testing must take place throughout the SDLC, not simply at the end. However, the

type of testing that can take place on nonexecutable representations, such as use cases and

CRC cards, is different from those that take place on code written in an object-oriented

programming language. The primary approach to testing nonexecutable representations is

some form of an inspection or walkthrough of the representation.8 Role-playing the CRC

cards based on use cases is an example of one type of walkthrough.

Test Planning

Testing starts with the development of a test plan that defines a series of tests that will be con-

ducted. Since testing takes place through the development of an object-oriented system, a

test plan should be developed at the very beginning of the SDLC and continuously updated

as the system evolves. The test plan should address all products that are created during the

development of the system. For example, tests should be created that can be used to test the

completeness of a CRC card. Figure 14-2 shows a typical unit test plan form for a class. For

example, Figure 14-3 shows a partial list of the invariant test specifications for a class. Each

individual test has a specific objective and describes a set of very specific test cases to exam-

ine. In the case of invariant-based tests, a description of the invariant, the original values of

the attribute, the event that will cause the attribute value to change, the actual results

observed, the expected results, and whether it passed or failed are shown. Test specifications

470 Chapter 14 Construction

Class Test Plan Page _____ of _____

Class Name: ______________________ Version Number: ______ CRC Card ID: __________

Tester: ___________________ Date Designed: ______ Date Conducted: ________

Class Objective:

Associated Contract IDs: __

Associated Use Case IDs: ___

Associated Superclass(es): ___

Testing Objectives:

Walkthrough Test Requirements:

Invariant-Based Test Requirements:

State-Based Test Requirements:

Contract-Based Test Requirements:

FIGURE 14-2

Class Test Plan

8 See Michael Fagan, “Design and Code Inspections to Reduce Errors in Program Development,” IBM Systems
Journal, 15, no. 3 (1976): 105–211.

TEMPLATE

can be found at
www.wiley.com
/college/dennis

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

are created for each type of constraint that must be met by the class. Also, similar types of

specifications are done for integration, system, and acceptance tests.

Not all classes are likely to be finished at the same time, so the programmer usually

writes stubs for the unfinished classes to enable the classes around them to be tested. A stub

is a placeholder for a class that usually displays a simple test message on the screen or

returns some hardcoded value9 when it is selected. For example, consider an application sys-

tem that provides the five standard processes discussed in Chapter 6 for some object such

as CDs, patients, or employees: creating, changing, deleting, finding, and printing (whether

on the screen or on a printer). Depending on the final design, these different processes

could end up in different objects on different layers. Therefore, to test the functionality

associated with the classes on the problem domain layer, a stub would be written for each

of the classes on the other layers that interact with the problem domain classes. These stubs

would contain the minimal interface necessary to be able to test the problem domain

classes. For example, they would have methods that could receive the messages being sent

by the problem domain layer objects and methods that could send messages to the prob-

lem domain layer objects. Typically, the methods would display a message on the screen

notifying the tester that the method had been successfully reached (e.g., “Delete item from

Designing Tests 471

9 The word “hardcoded” means written into the program. For example, suppose you were writing a unit to cal-
culate the net present value of a loan. The stub might be written so that it would always display (or return to the
calling module) a value of 100 regardless of the input values.

Class Invariant Test Specification

Page ____ of ____

Class Name: ______________________ Version Number: ______ CRC Card ID: __________

Tester: ___________________ Date Designed: ______ Date Conducted: ________

Testing Objectives:

Test Cases

Original New
Invariant Attribute Attribute Expected Result
Description Value Event Value Result P/F

Attribute Name:

1) ___________ ___________ ___________ ___________ ___________ ___________

2) ___________ ___________ ___________ ___________ ___________ ___________

3) ___________ ___________ ___________ ___________ ___________ ___________

Attribute Name:

1) ___________ ___________ ___________ ___________ ___________ ___________

2) ___________ ___________ ___________ ___________ ___________ ___________

3) ___________ ___________ ___________ ___________ ___________ ___________

Attribute Name:

1) ___________ ___________ ___________ ___________ ___________ ___________

2) ___________ ___________ ___________ ___________ ___________ ___________

3) ___________ ___________ ___________ ___________ ___________ ___________

FIGURE 14-3

Class Invariant Test

Specification

TEMPLATE

can be found at
www.wiley.com
/college/dennis

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Database method reached”). In this way, the problem domain classes could pass class test-

ing before the classes on the other layers were completed.

Unit Tests

Unit tests focus on a single unit—the class. There are two approaches to unit testing: black-

box and white-box (see Figure 14-4). Black-box testing is the most commonly used since

each class represents an encapsulated object. Black-box testing is driven by the CRC cards,

behavioral state machines, and contracts associated with a class, not by the programmers’

interpretation. In this case, the test plan is developed directly from the specification of the

class: each item in the specification becomes a test, and several test cases are developed for

it. White-box testing is based on the method specifications associated with each class. How-

ever, white-box testing has had limited impact in object-oriented development. This is due

to the rather small size of the individual methods in a class. As such, most approaches to

testing classes use black-box testing to assure their correctness.

Class tests should be based on the invariants on the CRC cards, the behavioral state

machines associated with each class, and the pre- and post-conditions contained on each

method’s contract. Assuming all of the constraints have been captured on the CRC cards and

contracts, individual test cases can be developed fairly easily. For example, suppose the CRC

card for an order class gave an invariant that the order quantity must be between 10 and 100

cases. The tester develops a series of test cases to ensure that the quantity is validated before the

system accepts it. It is impossible to test every possible combination of input and situation;

there are simply too many possible combinations. In this example, the test requires a mini-

mum of three test cases: one with a valid value (e.g., 15), one with an invalid value too low (e.g.,

7), and one with invalid value too high (e.g., 110). Most tests would also include a test case with

a nonnumeric value to ensure the data types were checked (e.g., ABCD). A really good test

would include a test case with nonsensical but potentially valid data (e.g., 21.4).

Using a behavioral state machine is a useful way to identify tests for a class. Any class that

has a behavioral state machine associated with it will have a potentially complex life cycle. As

such, it is possible to create a series of tests to guarantee that each state can be reached.

Tests also can be developed for each contract associated with the class. In the case of a

contract, a set of tests for each pre- and post-condition is required. Furthermore, if the class

is a subclass of another class, then all of the tests associated with the superclass must be exe-

cuted again. Also, the interactions among the constraints, invariants, and pre- and post-

conditions in the subclass and the superclass(es) must be addressed.

Finally, owing to good object-oriented design, in order to fully test a class, special test-

ing methods may have to be added to the class being tested. For example, how can invari-

ants be tested? The only way to really test them is through methods that are visible to the

outside of the class that can be used to manipulate the values of the class’s attributes. How-

ever, adding these types of methods to a class does two things. First, they add to the testing

requirements since they themselves will have to be tested. Second, if they are not removed

from the deployed version of the system, the system will be less efficient and the advantage

of information hiding effectively will be lost. As is readily apparent, testing classes is com-

plex. Therefore, great care must be taken when designing tests for classes.

Integration Tests

Integration tests assess whether a set of classes that must work together do so without error.

They ensure that the interfaces and linkages between different parts of the system work

properly. At this point, the classes have passed their individual unit tests, so the focus now

is on the flow of control among the classes and on the data exchanged among them. Inte-

gration testing follows the same general procedures as unit testing: the tester develops a

472 Chapter 14 Construction

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Designing Tests 473

Unit Testing Black-Box Testing CRC Cards For normal unit testing • Tester focuses on whether the class
Treats class as Class Diagrams meets the requirements stated in the

“black-box” Contracts specifications.
White-Box Testing Method Specifications When complexity is • By looking inside the class to review the

Looks inside the high code itself the tester may discover errors
class to test its or assumptions not immediately obvious
major elements to someone treating the class as a black

box.
Integration User Interface Testing Interface Design For normal integration • Testing is done by moving through each

Testing The tester tests each testing and every menu item in the interface
interface function either in a top-down or bottom-up manner.

Use-Case Testing Use Cases When the user • Testing is done by moving through each
The tester tests each interface is important use case to ensure they work correctly.

use case • Usually combined with user interface
testing because it does not test all
interfaces.

Interaction Testing Class Diagrams When the system • The entire system begins as a set of
Tests each process in Sequence Diagrams performs data stubs. Each class is added in turn and

a step-by-step Communication processing the results of the class compared to the
fashion Diagrams correct result from the test data; when a

class passes, the next class is added
and the test rerun. This is done for each
package. Once each package has passed
all tests, then the process repeats
integrating the packages.

System Interface Testing Use-Case Diagram When the system • Because data transfers between systems
Tests the exchange of exchanges data are often automated and not monitored

data with other directly by the users it is critical to
systems design tests to ensure they are being

done correctly.
System Requirements Testing System Design, Unit For normal system • Ensures that changes made as a result

Testing Tests to whether Tests, and Integration testing of integration testing did not create new
original business Tests errors.
requirements • Testers often pretend to be uninformed
are met users and perform improper actions to

ensure the system is immune to invalid
actions (e.g., adding blank records).

Usability Testing Interface Design and When user interface • Often done by analyst with experience
Tests how convenient Use Cases is important in how users think and in good interface

the system is to use design.
• Sometimes uses formal usability testing

procedures discussed in Chapter 12.
Security Testing Infrastructure Design When the system is • Security testing is a complex task, usually

Tests disaster recovery important done by an infrastructure analyst assigned
& unauthorized to the project.
access • In extreme cases, a professional firm

may be hired.
Performance Testing System Proposal When the system is • High volumes of transactions are

Examines the ability to important generated and given to the system.
perform under high Infrastructure Design • Often done by using special purpose
loads testing software.

Documentation Testing Help System, For normal system • Analysts spot check or check every item
Tests the accuracy of Procedures, Tutorials testing on every page in all documentation to

the documentation ensure the documentation items and
examples work properly.

Acceptance Alpha Testing System Tests For normal • Often repeats previous tests but are con-
Testing Conducted by users to acceptance testing ducted by users themselves to ensure

ensure they accept they accept the system.
the system

Beta Testing No plan When the system is • Users closely monitor system for errors or
Uses real data, not important useful improvements.

test data

Stage Types of Tests Test Plan Source When to Use Notes

FIGURE 14-4 Types of Tests

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

test plan that has a series of tests that in turn have tests. Integration testing is often done

by a set of programmers and/or systems analysts.

From an object-oriented systems perspective, integration testing can be difficult. A sin-

gle class can be in many different aggregations, because of the way in which objects can be

combined to form new objects, class libraries, frameworks, components, and packages.

Where is the best place to start the integration? Typically, the answer is to begin with the

set of classes, or collaboration, used to support the highest priority use case (see Chapter

6). Also, dynamic binding makes it crucial to design the integration tests carefully to ensure

that the combinations of methods are tested.

There are four approaches to integration testing: user interface testing, use-case test-

ing, interaction testing, and system interface testing (see Figure 14-4). Most projects use all

four approaches.

System Tests

System tests are usually conducted by the systems analysts to ensure that all classes work

together without error. System testing is similar to integration testing but is much broader

in scope. Whereas integration testing focuses on whether the classes work together with-

out error, system tests examine how well the system meets business requirements (require-

ments testing), how convenient the system is to use (usability testing), how secure the

system is (security testing), how well the system performs under a heavy load (performance

testing), and how accurate the documentation of the system is (documentation testing).

Figure 14-4 provides additional details on the different types of system tests.

474 Chapter 14 Construction

Pretend you are a project manager for a bank developing
software for ATMs. Develop a unit test plan for the user

interface component of the ATM.

14-1 Test Planning for an ATMYOUR

TURN

If you’ve seen the movie Sneakers, you know that there
are professional security firms that organizations can
hire to break in to their own networks to test security.
BABank (a pseudonym) was about to launch a new
online banking application, so it hired such a firm to test
its security before the launch. The bank’s system failed
the security test—badly.

The security team began by mapping the bank’s net-
work. It used network security analysis software and dial-
ing software to test for dial-in ports. The mapping process
found a bunch of accounts with default passwords (i.e.,
passwords set by the manufacturer that are supposed to
be changed when the systems are first set up). The team

then tricked several high-profile users into revealing their
passwords to gain access to several high-privilege
accounts. Once into these computers, the team used
password cracking software to find passwords on these
computers and ultimately gain the administrator pass-
words on several servers. At this point, the team trans-
ferred $1,000 into their test account. They could have
transferred more, but the security point was made.

Source: Network World, February 2, 1998.

Question

1. What was the value of the security tests in this case?

14-B Anatomy of a Friendly HackCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Acceptance Tests

Acceptance testing is done primarily by the users with support from the project team. The goal

is to confirm that the system is complete, meets the business needs that prompted the system

to be developed, and is acceptable to the users. Acceptance testing is done in two stages: alpha

testing, in which users test the system using made-up data, and beta testing, in which users

begin to use the system with real data but are carefully monitored for errors (see Figure 14-4).

DEVELOPING DOCUMENTATION

Like testing, developing documentation of the system must be done throughout the SDLC.

There are two fundamentally different types of documentation: system documentation and

user documentation. System documentation is intended to help programmers and systems

analysts understand the application software and enable them to build it or maintain it after

the system is installed. System documentation is largely a byproduct of the systems analysis

and design process and is created as the project unfolds. Each step and phase produces doc-

uments that are essential in understanding how the system is constructed or is to be built.

In many object-oriented development environments, it is possible to somewhat automate

the creation of detailed documentation for classes and methods. For example, in Java, if the

programmers use javadoc-style comments, it is possible to create HTML pages that docu-

ment a class and its methods automatically by using the javadoc utility.10 Since most pro-

grammers look on documentation with much distaste, anything that can make

documentation easier to create is useful.

User documentation (such as user’s manuals, training manuals, and online help sys-

tems) is designed to help the user operate the system. Although most project teams expect

users to have received training and to have read the user’s manuals before operating the

system, unfortunately this is not always the case. It is more common today—especially in

the case of commercial software packages for microcomputers—for users to begin using

the software without training or reading the user’s manuals. In this section, we focus on

user documentation.11

User documentation is often left until the end of the project, which is a dangerous strat-

egy. Developing good documentation takes longer than many people expect because it

requires much more than simply writing a few pages. Producing documentation requires

designing the documents (whether on paper or online), writing the text, editing them, and

testing them. For good-quality documentation, this process usually takes about three hours

per page (single-spaced) for paper-based documentation or two hours per screen for online

documentation. Thus, a “simple” set of documentation such as a ten-page user’s manual and

a set of twenty help screens takes seventy hours. Of course, lower quality documentation can

be produced faster.

The time required to develop and test user documentation should be built into the

project plan. Most organizations plan for documentation development to start once the

interface design and program specifications are complete. The initial draft of documenta-

tion is usually scheduled for completion immediately after the unit tests are complete. This

reduces the chance that the documentation will need to be changed due to software

changes (but doesn’t eliminate it) and still leaves enough time for the documentation to be

tested and revised before the acceptance tests are started.

Developing Documentation 475

10 For those who have used Java, javadoc is how the JDK documentation from Sun was created.
11 For more information on developing documentation, see Thomas T. Barker, Writing Software Documentation
(Boston, MA: Allyn and Bacon, 1998).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Although paper-based manuals are still important, online documentation is becoming

more important. Paper-based documentation is simpler to use because it is more familiar to

users, especially novices who have less computer experience; online documentation requires

the users to learn one more set of commands. Paper-based documentation is also easier to

flip through and gain a general understanding of its organization and topics and can be used

far away from the computer itself.

There are four key strengths of online documentation that all but guarantee it will be

the dominant form for the next century. First, searching for information is often simpler

(provided the help search index is well designed) because the user can type in a variety of

keywords to view information almost instantaneously rather than having to search through

the index or table of contents in a paper document. Second, the same information can be

presented several times in many different formats, so that the user can find and read the

information in the most informative way (such redundancy is possible in paper documen-

tation, but the cost and intimidating size of the resulting manual make it impractical).

Third, online documentation enables many new ways for the user to interact with the doc-

umentation that are not possible in static paper documentation. For example, it is possible

to use links or “tool tips” (i.e., pop-up text; see Chapter 12) to explain unfamiliar terms,

and one can write “show-me” routines that demonstrate on the screen exactly what buttons

to click and text to type. Finally, online documentation is significantly less expensive to dis-

tribute than paper documentation.

Types of Documentation

There are three fundamentally different types of user documentation: reference documents,

procedures manuals, and tutorials. Reference documents (also called the help system) are

designed to be used when the user needs to learn how to perform a specific function (e.g.,

updating a field, adding a new record). Often people read reference information when they

have tried and failed to perform the function; writing reference documents requires special

care because often the user is impatient or frustrated when he or she begins to read them.

Procedures manuals describe how to perform business tasks (e.g., printing a monthly

report, taking a customer order). Each item in the procedures manual typically guides the

user through a task that requires several functions or steps in the system. Therefore, each

entry is typically much longer than an entry in a reference document.

Tutorials—obviously—teach people how to use major components of the system (e.g.,

an introduction to the basic operations of the system). Each entry in the tutorial is typi-

cally longer still than the entries in procedures manuals and is usually designed to be read

in sequence (whereas entries in reference documents and procedures manuals are designed

to be read individually).

Regardless of the type of user documentation, the overall process for developing it is

similar to the process of developing interfaces (see Chapter 12). The developer first designs

the general structure for the documentation and then develops the individual components

within it.

Designing Documentation Structure

In this section, we focus on the development of online documentation because we believe
it will become the most common form of user documentation. The general structure used
in most online documentation, whether reference documents, procedures manuals, or
tutorials is to develop a set of documentation navigation controls that lead the user to docu-
mentation topics. The documentation topics are the material the user wants to read, while
the navigation controls are the way in which the user locates and accesses a specific topic.

476 Chapter 14 Construction

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Designing the structure of the documentation begins by identifying the different types
of topics and navigation controls that need to be included. Figure 14-5 shows a commonly
used structure for online reference documents (i.e., the help system). The documentation
topics generally come from three sources. The first and most obvious source of topics is the
set of commands and menus in the user interface. This set of topics is very useful if the user
wants to understand how a particular command or menu is used.

Developing Documentation 477

Topics

Tasks

Commands

Definitions

Links

Navigation Controls

Contents
Introduction
Basic Features
 Finding Albums

Index
Finding
 Finding Albums
 Finding Artists
 Finding Songs

Text Search
albums
announcements
articles
artists

Agent Search
Enter a question

Full
Search

Music
Category

Credit
Card

Move…

Copy…

Delete…

How to…

How to…

How to…

FIGURE 14-5
Organizing Online

Reference Documents

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

The users often don’t know what commands to look for or where they are in the
system’s menu structure. Instead, users have tasks they want to perform, and rather than
thinking in terms of commands, they think in terms of their business tasks. Therefore,
the second and often more useful set of topics focuses on how to perform certain
tasks—usually those in the use scenarios, window navigation diagram, and the real use
cases from the user interface design (see Chapter 12). These topics walk the user
through the set of steps (often involving several keystrokes or mouse clicks) needed to
perform some task.

The third set of topics is definitions of important terms. These terms are usually the use
cases and classes in the system, but sometimes they also include commands.

There are five general types of navigation controls for topics, but not all systems use all five
types (see Figure 14-5). The first is the table of contents that organizes the information in a log-
ical form, as though the users were to read the reference documentation from start to finish.

The index provides access to the topics based on important keywords, in the same way
that the index at the back of a book helps you find topics. Text search provides the ability
to search through the topics either for any text the user types or for words that match a
developer-specified set of words that is much larger than the words in the index. Unlike the
index, text search typically provides no organization to the words (other than alphabetical).
Some systems provide the ability to use an intelligent agent to help in the search (e.g., the
Microsoft Office Assistant—also known as the paper clip guy). The fifth and final naviga-
tion control to topics are the Web-like links between topics that enable the user to click and
move among topics.

Procedures manuals and tutorials are similar but often simpler in structure. Topics for
procedures manuals usually come from the use scenarios, window navigation diagram, and
the real use cases developed during interface design and from other basic tasks the users must
perform. Topics for tutorials are usually organized around major sections of the system and
the level of experience of the user. Most tutorials start with the basic, most commonly used
commands and then move into more complex and less frequently used commands.

Writing Documentation Topics

The general format for topics is fairly similar across application systems and operating sys-

tems (see Figure 14-6). Topics typically start with very clear titles, followed by some intro-

ductory text that defines the topic, and then provide detailed, step-by-step instructions on

how to perform what is being described (where appropriate). Many topics include screen

images to help the user find items on the screen; some also have “show-me” examples in

which the series of keystrokes and/or mouse movements and clicks needed to perform the

function are demonstrated to the user. Most also include navigation controls to enable

movement among topics, usually at the top of the window, plus links to other topics. Some

also include links to “related topics” that include options or other commands and tasks the

user may want to perform in concert with the topic being read.

Writing the topic content can be challenging. It requires a good understanding of the

user (or more accurately the range of users) and a knowledge of what skills the user(s) cur-

rently have and can be expected to import from other systems and tools they are using or

have used (including the system the new system is replacing). Topics should always be writ-

ten from the viewpoint of the user and describe what the user wants to accomplish, not

what the system can do. Figure 14-7 provides some general guidelines to improve the qual-

ity of documentation text.12

478 Chapter 14 Construction

12 One of the best books to explain the art of writing is William Strunk and E.B. White, Elements of Style, 4th ed.
(Boston: Allyn and Bacon, 2000).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Identifying Navigation Terms

As you write the documentation topics you also begin to identify the terms that will be used

to help users find topics. The table of contents is usually the most straightforward because

it is developed from the logical structure of the documentation topics, whether reference

topics, procedure topics, or tutorial topics. The items for the index and search engine

require more care because they are developed from the major parts of the system and the

users’ business functions. Every time you write a topic, you must also list the terms that will

be used to find the topic. Terms for the index and search engine can come from four dis-

tinct sources.

The first source is the set of the commands in the user interface, such as open file, mod-

ify customer, and print open orders. All commands contain two parts (action and object). It

is important to develop the index for both parts because users could search for information

using either part. A user looking for more information about saving files, for example, might

search by using the term “save” or the term “files.”

The second source is the set of major concepts in the system, which are often use cases

and classes. In the case of CD Selections, for example, this might include music category,

album, and shipping costs.

A third source is the set of business tasks the user performs, such as ordering replace-

ment unit or making an appointment. Often these will be contained in the command set,

but sometimes they require several commands and use terms that always appear in the sys-

tem. Good sources for these terms are the use scenarios and real use cases developed dur-

ing interface design (see Chapter 12).

Developing Documentation 479

Links to
other pages

Navigation
Buttons

Show me
button

Title

FIGURE 14-6

A Help Topic in

Microsoft Word

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

A fourth, often controversial, source is the set of synonyms for the three sets of items

above. Users sometimes don’t think in terms of the nicely defined terms used by the system.

They may try to find information on how to “stop” or “quit” rather than “exit,” or “erase”

rather than “delete.” Including synonyms in the index increases the complexity and size of

the documentation system but can greatly improve the usefulness of the system to the users.

480 Chapter 14 Construction

Guideline Before the Guideline After the Guideline

Use the active voice: The active voice cre-
ates more active and readable text by
putting the subject at the start of the sen-
tence, the verb in the middle, and the
object at the end.

Finding albums is done using the album
title, the artist’s name, or a song title.

You can find an album by using the album
title, the artist’s name, or a song title.

Use e-prime style: E-prime style creates
more active writing by omitting all forms
of the verb to be.

The text you want to copy must be
selected before you click on the copy
button.

Select the text you want to copy before
you click on the copy button.

Use consistent terms: Always use the same
term to refer to the same items, rather
than switching among synonyms (e.g.,
change, modify, update).

Select the text you want to copy. Pressing
the copy button will copy the marked
text to the new location.

Select the text you want to copy. Pressing
the copy button will copy the selected
text to the new location.

Use simple language: Always use the sim-
plest language possible to accurately
convey the meaning. This does not mean
you should “dumb down” the text but
that you should avoid artificially inflating
its complexity. Avoid separating subjects
and verbs and try to use the fewest words
possible. (When you encounter a com-
plex piece of text, try eliminating words;
you may be surprised at how few words
are really needed to convey meaning.)

The Georgia Statewide Academic and
Medical System (GSAMS) is a coopera-
tive and collaborative distance learning
network in the state of Georgia. The
organization in Atlanta that administers
and manages the technical and overall
operations of the currently more than
300 interactive audio and video telecon-
ferencing classrooms throughout Georgia
system is the Department of Administra-
tive Service (DOAS). (56 words)

The Department of Administrative Service
(DOAS) in Atlanta manages the Georgia
Statewide Academic and Medical System
(GSAMS), a distance learning network
with more than 300 teleconferencing
classrooms throughout Georgia. (29
words)

Use friendly language: Too often, docu-
mentation is cold and sterile because it
is written in a very formal manner.
Remember, you are writing for a person,
not a computer.

Blank disks have been provided to you by
Operations. It is suggested that you
ensure your data is not lost by making
backup copies of all essential data.

You should make a backup copy of all
data that is important to you. If you need
more diskettes, contact Operations.

Use parallel grammatical structures: Paral-
lel grammatical structures indicate the
similarity among items in list and help
the reader understand content.

Opening files
Saving a document
How to delete files

Opening a file
Saving a file
Deleting a file

Use steps correctly: Novices often inter-
sperse action and the results of action
when describing a step-by-step process.
Steps are always actions.

1. Press the customer button.
2. The customer dialogue box will appear.
3. Type the customer ID and press the

submit button and the customer record
will appear.

1. Press the customer button.
2. Type the customer ID in the customer

dialogue box when it appears.
3. Press the submit button to view the cus-

tomer record for this customer.

Use short paragraphs: Readers of docu-
mentation usually quickly scan text to
find the information they need, so the
text in the middle of long paragraphs is
often overlooked. Use separate para-
graphs to help readers find information
more quickly.

Source: Adapted from T. T. Barker, Writing Software Documentation (Boston: Allyn & Bacon, 1998).

FIGURE 14-7 Guidelines for Crafting Documentation Topics

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

APPLYING THE CONCEPTS AT CD SELECTIONS

Managing Programming

Three programmers were assigned by CD Selections to develop the three major parts of the

Internet sales system. The first was the Web interface, both the client side (browser) and the

server side. The second was the client–server-based management system (managing the CD

information and marketing materials databases). The third was the interfaces between the

Internet sales system and CD Selections’ existing distribution system and the credit card

center. Programming went smoothly and despite a few minor problems proceeded accord-

ing to plan.

Testing

While the programmers were working, Alec began developing the test plans and user docu-

mentation. The test plans for the three components were similar but slightly more intensive for

the Web interface component (see Figure 14-8). Unit testing would use black-box testing based

on the CRC cards, class diagrams, and contracts for all components. Figure 14-9 shows part of

the class-invariant test specification for the Order class in the Web interface component.

Integration testing for the Web interface and system management component would

be subjected to all user interface and use-case tests to ensure that the interface would work

properly. The system interface component would undergo system interface tests to ensure

that the system performed calculations properly and was capable of exchanging data with

the CD Selections’ other systems and the credit card center.
Systems tests are by definition tests of the entire system—all components together. How-

ever, not all parts of the system would receive the same level of testing. Requirements tests would
be conducted on all parts of the system to ensure that all requirements were met. Because secu-
rity was a critical issue, the security of all aspects of the system would be tested. Security tests
would be developed by CD Selections’ infrastructure team, and once the system passed those
tests, an external security consulting firm would be hired to attempt to break in to the system.

Performance was an important issue for the parts of the system used by the cus-
tomer (the Web interface and the system interfaces to the credit card and inventory sys-
tems) but not as important for the management component that would be used by staff,

Applying the Concepts at CD Selections 481

Pretend you are a project manager for a bank developing
software for ATMs. Develop the part of an online help sys-
tem that deals with withdrawing and depositing cash. Be

sure to include the different types of accounts, such as
checking and savings.

14-2 Documentation for an ATMYOUR

TURN

FIGURE 14-8

CD Selections’

Test Plan

Unit tests Black-box tests Black-box tests Black-box tests
Integration tests User interface tests; User interface tests; System interface tests

use-case tests use-case tests
System tests Requirements tests; Requirements tests; Requirements tests;

security tests; security tests security tests;
performance tests; performance tests
usability tests

Acceptance tests Alpha test; beta test Alpha test; beta test Alpha test; beta test

Test Stage Web Interface System Management System Interfaces

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

not customers. The customer-facing components would undergo rigorous performance
testing to see how many transactions (whether searching or purchasing) they could han-
dle before they were unable to provide a response time of two seconds or less. Alec also
developed an upgrade plan so that as demand on the system increased, there was a clear
plan for when and how to increase the processing capability of the system.

Finally, formal usability tests would be conducted on the Web interface portion of the
system with six potential users (both novice and expert Internet users).

Acceptance tests would be conducted in two stages, alpha and beta. Alpha tests would
be done during the training of CD Selections’ staff. The Internet Sales Group manager
would work together with Alec to develop a series of tests and training exercises to train the
Internet Sales Group staff in how to use the system. They would then load the real CD data
into the system and begin adding marketing materials. These same staff and other CD
Selections staff members would also pretend to be customers and test the Web interface.

Beta testing would be done by “going live” with the Web site but its existence would
only be announced to CD Selections’ employees. As an incentive to try the Web site (rather
than buying from the store in which they worked), employees would be offered triple their
normal employee discount for all products ordered from the Web site. The site would also
have a prominent button on every screen that would enable employees to e-mail comments
to the project team, and the announcement would encourage employees to report prob-
lems, suggestions, and compliments to the project team. After one month, assuming all
went well, the beta test would be completed, and the Internet sales site would be linked to
the main Web site and advertised to the general public.

482 Chapter 14 Construction

Class Invariant Test Specification

Page ____ of ____

Class Name: ___________________ Version Number: ______ CRC Card ID: __________

Tester: ___________________ Date Designed: ______ Date Conducted: ________

Testing Objectives:

Test Cases

Original New
Invariant Attribute Attribute Expected Result
Description Value Event Value Result P/F

Attribute Name: CD Number

1) _____________ ___________ ___________ ___________ ___________ _________

2) _____________ ___________ ___________ ___________ ___________ _________

3) _____________ ___________ ___________ ___________ ___________ _________

Attribute Name: CD Name

1) _____________ ___________ ___________ ___________ ___________ _________

2) _____________ ___________ ___________ ___________ ___________ _________

3) _____________ ___________ ___________ ___________ ___________ _________

Attribute Name: Artist Name

1) _____________ ___________ ___________ ___________ ___________ _________

2) _____________ ___________ ___________ ___________ ___________ _________

3) _____________ ___________ ___________ ___________ ___________ _________

FIGURE 14-9

Partial Class Invariant

Test Specification for

the Order Class

5 15

Order 3 15

Susan Doe 9/9

Ensure that the information entered by the customer on the place order form is valid.

(1..1) Null CreateOrder Null F

(unsigned long) Null CreateOrder ABC F

(unsigned long) Null CreateOrder 123 P

(1..1) Null CreateOrder Null F

(String) Null CreateOrder ABC P

(String) Null CreateOrder 123 P

(1..1) Null CreateOrder Null F

(String) Null CreateOrder ABC P

(String) Null CreateOrder 123 P

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Developing User Documentation

Three types of documentation (reference documents, procedures manuals, and tutori-
als) could be produced for the Web interface and the management component. Since
the number of CD Selections’ staff using the system management component would be
small, Alec decided to produce only the reference documentation (an online help sys-
tem). He felt that an intensive training program and a one-month beta test period
would be sufficient without tutorials and formal procedures manuals. Similarly, he felt
that the process of ordering CDs and the Web interface itself was simple enough to not
require a tutorial on the Web—a help system would be sufficient (and a procedures
manual didn’t make sense).

Alec decided that the reference documents for both the Web interface and system
management components would contain help topics for user tasks, commands, and defin-
itions. He also decided that the documentation component would contain four types of
navigation controls: a table of contents, an index, a find, and links to definitions. He did
not feel that the system was complex enough to benefit from a search agent.

After these decisions were made, Alec delegated the development of the reference doc-

uments to a technical writer assigned to the project team. Figure 14-10 shows examples of

a few of topics that the writer developed. The tasks and commands were taken directly from

the interface design. The list of definitions was developed once the tasks and commands

were developed based on the writer’s experience in understanding what terms might be

confusing to the user.

Once the topic list was developed, the technical writer then began writing the topics

themselves as well as the navigation controls to access. Figure 14-11 shows an example of

one topic taken from the task list: how to place an order. This topic presents a brief descrip-

tion of what it is and then leads the user through the step-by-step process needed to com-

plete the task. The topic also lists the navigation controls that will be used to find the topic

in terms of the table of contents entries, the index entries, and search entries. It also lists

what words in the topic itself will have links to other topics (e.g., shopping cart).

SUMMARY

Managing Programming

Programming is done by programmers, so systems analysts have few responsibilities dur-

ing this stage. The project manager, however, is usually very busy. The first task is to assign

the programmers, ideally the fewest possible to complete the project because coordination

problems increase as the size of the programming team increases. Coordination can be

improved by having regular meetings, ensuring that standards are followed, implementing

change control, and using CASE tools effectively. One of the key functions of the project

manager is to manage the schedule and adjust it for delays. Two common causes of delays

are scope creep and minor slippages that go unnoticed.

Summary 483

Find an album Find Album
Add an album to my shopping cart Browse Artist
Placing an order Quick search Music type
How to buy Full search Special deals
What’s in my shopping cart? Cart

Shopping cart

Tasks Commands Terms

FIGURE 14-10

Sample Help Topics for

CD Selections

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Test Planning

Tests must be carefully planned because the cost of fixing one major bug after the system is

installed can easily exceed the annual salary of a programmer. A test plan contains several

tests that examine different aspects of the system. A test, in turn, specifies several test cases

that will be examined by the testers. A unit test examines a class within the system; test cases

come from the class specifications or the class code itself. An integration test examines how

well several classes work together; test cases come from the interface design, use cases, the use

case diagram, sequence diagrams, and communication diagrams. A system test examines the

system as a whole and is broader than the unit and integration tests; test cases come from the

system design, the infrastructure design, and the unit and integration tests. Acceptance test-

ing is done by the users to determine whether the system is acceptable to them; it draws on

the system test plans (alpha testing) and on the real work the users perform (beta testing).

Documentation

Documentation, both user documentation and system documentation, is moving away

from paper-based documents to online documentation. There are three types of user doc-

umentation: reference documents are designed to be used when the user needs to learn

how to perform a specific function (e.g., an online help system), procedures manuals

describe how to perform business tasks, while tutorials teach people how to use the system.

Documentation navigation controls (e.g., a table of contents, index, find, intelligent agents,

or links between pages) enable users to find documentation topics (e.g., how to perform a

function, how to use an interface command, an explanation of a term).

484 Chapter 14 Construction

Help Topic Navigation Controls

How to Place an Order

When you are ready to pay for the merchandise you
have selected (the items in your shopping cart) you
can place your order. There are four steps.

1. Move to the Place order Page

Click on the button to move to the
place order page.

2. Make sure you are ordering what you want

The place order screen displays all the items in your
shopping cart. Read through the list to make sure
these are what you want because once you submit
your credit card information you cannot change the
order.

you can delete an item by

Table of Contents list:
 How to Place an Order

Index list:
 Credit Card
 Order
 Pay
 Place order

Search find by:
 Credit Card
 Delete Items
 Order
 Pay
 Place order
 Shopping Cart
 Verify Order

Links:
 Shopping Cart

Place order

FIGURE 14-11
Example Documenta-

tion Topic for CD

Selections

Acceptance test

Alpha test

Beta test

Black-box testing

Change control

Construction

Documentation navigation control

Documentation testing

Documentation topic

Hardcoded value

Integration test

Interaction testing

KEY TERMS

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Minicases 485

1. Pete is a project manager on a new systems develop-

ment project. This project is Pete’s first experience as

a project manager, and he has led his team successfully

to the programming phase of the project. The project

has not always gone smoothly, and Pete has made a

few mistakes, but he is generally pleased with the

progress of his team and the quality of the system

being developed. Now that programming has begun,

MINICASES

A. Create an invariant test specification for the class

you chose for the Health Club in Exercise A in

Chapter 10.

B. Create an invariant test specification for the class

you chose for the Picnics R Us in Exercise C in

Chapter 10.

C. Create an invariant test specification for the class you

chose for the Of-The-Month Club (OTMC) in Exer-

cise E in Chapter 10.

D. Create an invariant test specification for the class you

chose for the Library in Exercise G in Chapter 10.

E. If the registration system at your university does not

have a good online help system, develop an online

help system for one screen of the user interface.

F. Examine and prepare a report on the online help

system for the calculator program in Windows (or

a similar on the Mac or Unix). (You will likely be

surprised at the amount of help for such a simple

program.)

G. Compare and contrast the online help at two different

Web sites that enable you to perform some function

(e.g., make travel reservations, order books).

EXERCISES

Performance testing

Procedures manual

Program log

Reference document

Requirements testing

Risk assessment

Scope creep

Security testing

Slippage

Stub

System documentation

System interface testing

System test

Test

Test case

Test plan

Test specification

Tutorial

Unit test

Usability testing

Use-case testing

User documentation

User interface testing

White-box testing

1. Why is testing important?

2. What is the primary role of systems analysts during

the programming stage?

3. In The Mythical Man-Month, Frederick Brooks argues

that adding more programmers to a late project makes

it later. Why?

4. What is the purpose of testing?

5. Describe how object-orientation impacts testing.

6. Compare and contrast the terms test, test plan, and

test case.

7. What is a stub, and why is it used in testing?

8. What is the primary goal of unit testing?

9. Compare and contrast black-box testing and white-

box testing.

10. How are the test cases developed for unit tests?

11. What are the different types of unit tests?

12. What is the primary goal of integration testing?

13. How are the test cases developed for integration tests?

14. What is the primary goal of system testing?

15. How are the test cases developed for system tests?

16. What is the primary goal of acceptance testing?

17. How are the test cases developed for acceptance tests?

18. Compare and contrast alpha testing and beta testing.

19. Compare and contrast user documentation and sys-

tem documentation.

20. Why is online documentation becoming more

important?

21. What are the primary disadvantages of online docu-

mentation?

22. Compare and contrast reference documents, proce-

dures manuals, and tutorials.

23. What are five types of documentation navigation con-

trols?

24. What are the commonly used sources of documenta-

tion topics? Which is the most important? Why?

25. What are the commonly used sources of documenta-

tion navigation controls? Which is the most impor-

tant? Why?

QUESTIONS

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

486 Chapter 14 Construction

Pete has been hoping for a little break in the hectic

pace of his workday.

Prior to beginning programming, Pete recognized

that the time estimates made earlier in the project

were too optimistic. However, he was firmly commit-

ted to meeting the project deadline because of his

desire for his first project as project manager to be a

success. In anticipation of this time pressure prob-

lem, Pete arranged with the Human Resources

department to bring in two new college graduates

and two college interns to beef up the programming

staff. Pete would have liked to find some staff with

more experience, but the budget was too tight, and

he was committed to keeping the project budget

under control.

Pete made his programming assignments, and

work on the programs began about two weeks ago.

Now, Pete has started to hear some rumbles from

the programming team leaders that may signal

trouble. It seems that the programmers have

reported several instances where they wrote pro-

grams, only to be unable to find them when they

went to test them. Also, several programmers have

opened programs that they had written, only to

find that someone had changed portions of their

programs without their knowledge.

a. Is the programming phase of a project a time for

the project manager to relax? Why or why not?

b. What problems can you identify in this situation?

What advice do you have for the project manager?

How likely does it seem that Pete will achieve his

desired goals of being on time and within budget if

nothing is done?

2. The systems analysts are developing the test plan for

the user interface for the Holiday Travel Vehicles sys-

tem. As the salespeople are entering a sales invoice

into the system, they will be able to either enter an

option code into a text box, or select an option code

from a drop-down list. A combo box was used to

implement this, since it was felt that the salespeople

would quickly become familiar with the most com-

mon option codes and would prefer entering them

directly to speed up the entry process.

It is now time to develop the test for validating the

option code field during data entry. If the customer

did not request any dealer-installed options for the

vehicle, the salesperson should enter “none”; the field

should not be blank. The valid option codes are four-

character alphabetic codes and should be matched

against a list of valid codes.

Prepare a test plan for the test of the option code

field during data entry.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Project
A

ssessm
ent

Support
Plan

C
hange

M
anagem

ent Plan
C

onversion
Plan

D
ocum

entation
Test
Plan

Program
s

During the implementation phase, the actual system

is built. Building a successful information system re-

quires a set of activities: programming, testing, and

documenting the system. Installing an information

system requires switching from the current system to

the new system. This conversion process can be quite

involved. Not only does it involve shutting the old

system down and turning the new one on, it also can

involve a significant training effort. Finally, operating

the system may uncover additional requirements that

can be fed back into the next build.

CHAPTER 14

Construction

CHAPTER 15

Installation

and Operations

PART FOUR

Implementation

Phase

C
op

yr
ig

ht
ed

 M
at

er
ia

l

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

This chapter discusses the activities needed to successfully build the information system:

programming, testing, and documenting the system. Programming is time-consuming and

costly, but except in unusual circumstances, it is the simplest for the systems analyst

because it is well understood. For this reason, the system analyst focuses on testing (prov-

ing that the system works as designed) and developing documentation during this part of

the SDLC.

OBJECTIVES

■ Be familiar with the system construction process.
■ Understand different types of tests and when to use them.
■ Understand how to develop documentation.

CHAPTER OUTLINE

INTRODUCTION

When people first learn about developing information systems, usually they immediately

think about writing programs. Programming can be the largest single component of any

systems development project in terms of both time and cost. However, it also can be the

best understood component and therefore—except in rare circumstances—offers the least

problems of all aspects of the SDLC. When projects fail, it is usually not because the pro-

grammers were unable to write the programs but because the analysis, design, installation,

and/or project management were done poorly. In this chapter, we focus on the construc-

tion and testing of the software and the documentation.

Introduction

Managing Programming

Assigning Programmers

Coordinating Activities

Managing the Schedule

Designing Tests

Testing and Object-Orientation

Test Planning

Unit Tests

Integration Tests

System Tests

Acceptance Tests

Developing Documentation

Types of Documentation

Designing Documentation Structure

Writing Documentation Topics

Identifying Navigation Terms

Applying the Concepts at CD Selections

Managing Programming

Testing

Developing User Documentation

Summary

C H A P T E R 1 4

Construction

463

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Construction is the development of all parts of the system, including the software itself,

documentation, and new operating procedures. Programming is often seen as the focal

point of system development. After all, system development is writing programs. It is the

reason why we do all the analysis and design. And it’s fun. Many beginning programmers

see testing and documentation as bothersome afterthoughts. Testing and documentation

aren’t fun, so they often receive less attention than the creative activity of writing programs.

Programming and testing, however, are very similar to writing and editing. No profes-

sional writer (or student writing an important term paper) would stop after writing the

first draft. Rereading, editing, and revising the initial draft into a good paper is the hallmark

of good writing. Likewise, thorough testing is the hallmark of professional software devel-

opers. Most professional organizations devote more time and money to testing (and the

subsequent revision and retesting) than to writing the programs in the first place.

The reasons are simple economics: downtime and failures caused by software bugs1 are

extremely expensive. Many large organizations estimate the costs of downtime of critical appli-

cations at $50,000 to $200,000 per hour.2 One serious bug that causes an hour of downtime

can cost more than one year’s salary of a programmer—and how often are bugs found and

fixed in one hour? Testing is therefore a form of insurance. Organizations are willing to spend

a lot of time and money to prevent the possibility of major failures after the system is installed.

Therefore, programs are not usually considered finished until the test for that program

is passed. For this reason, programming and testing are tightly coupled, and since pro-

gramming is the primary job of the programmer (not the analyst), testing (not program-

ming) often becomes the focus of the construction stage for the systems analysis team.

In this chapter, we discuss three parts of the construction step: programming, testing,

and writing the documentation. Because programming is primarily the job of program-

mers, not systems analysts, and because this is not a programming book, we devote less

time to programming than to testing and documentation.

MANAGING PROGRAMMING

In general, systems analysts do not write programs; programmers write programs. There-

fore, the primary task of the systems analysts during programming is … waiting. However,

the project manager is usually very busy managing the programming effort by assigning the

programmers, coordinating the activities, and managing the programming schedule.3

Assigning Programmers

The first step in programming is assigning modules to the programmers. As discussed in

Chapter 10, each module (class, object, or method) should be as separate and distinct as

possible from the other modules. The project manager first groups together classes that are

related so that each programmer is working on related classes. These groups of classes are

then assigned to programmers. A good place to start is to look at the package diagrams.

464 Chapter 14 Construction

1 When I was an undergraduate, I had the opportunity to hear Admiral Grace Hopper tell how the term bug was
introduced. She was working on one of the early Navy computers when suddenly it failed. The computer would
not restart properly so she began to search for failed vacuum tubes. She found a moth inside one tube and
recorded in the log book that a bug had caused the computer to crash. From then on, every computer crash was
jokingly blamed on a bug (as opposed to programmer error), and eventually the term bug entered the general
language of computing.
2 See Billie Shea,“Quality Patrol: Eye on the Enterprise,” Application Development Trends (November 5, 1998): 31–38.
3 One of the best books on managing programming (even though it was first written 25 years ago) is that by Fred-
erick P. Brooks, Jr., The Mythical Man-Month, 20th Anniversary edition (Reading, MA: Addision-Wesley, 1995).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

One rule of system development is that the more programmers who are involved in

a project, the longer the system will take to build. This is because as the size of the pro-

gramming team increases, the need for coordination increases exponentially, and the

more coordination that is required, the less time programmers can spend actually writing

systems. The best size is the smallest possible programming team. When projects are so

complex that they require a large team, the best strategy is to try to break the project into

a series of smaller parts that can function as independently as possible.

Coordinating Activities

Coordination can be done through both high-tech and low-tech means. The simplest

approach is to have a weekly project meeting to discuss any changes to the system that have

arisen during the past week—or just any issues that have come up. Regular meetings, even

if they are brief, encourage the widespread communication and discussion of issues before

they become problems.

Another important way to improve coordination is to create and follow standards

that can range from formal rules for naming files to forms that must be completed when

goals are reached to programming guidelines (see Chapter 4). When a team forms stan-

dards and then follows them, the project can be completed faster because task coordina-

tion is less complex.

The analysts also must put mechanisms in place to keep the programming effort

well-organized. Many project teams set up three “areas” in which programmers can

work: a development area, a testing area, and a production area. These areas can be dif-

ferent directories on a server hard disk, different servers, or different physical locations,

but the point is that files, data, and programs are separated based on their status of com-

pletion. At first, programmers access and build files within the development area and

then copy them to the testing area when the programmers are “finished.” If a program

does not pass a test, it is sent back to development. Once all programs and the like are

Managing Programming 465

My first programming job in 1977 was to convert a set of
application systems from one version of COBOL to
another version of COBOL for the government of Prince
Edward Island. The testing approach was to first run a set
of test data through the old system and then run it through
the new system to ensure that the results from the two
matched. If they matched, then the last three months of
production data were run through both to ensure that
they too matched.

Things went well until I began to convert the Gas Tax
system that kept records on everyone authorized to pur-
chase gasoline without paying tax. The test data ran fine,
but the results using the production data were peculiar. The
old and new systems matched, but rather than listing sev-
eral thousand records, the report listed only fifty. I checked
the production data file and found it listed only fifty
records, not the thousands that were supposed to be there.

The system worked by copying the existing gas tax
records file into a new file and making changes in the
new file. The old file was then copied to tape backup.
There was a bug in the program such that if there were no
changes to the file, a new file was created, but no records
were copied into it.

I checked the tape backups and found one with the
full set of data that was scheduled to be overwritten three
days after I discovered the problem. The government was
only three days away from losing all gas tax records.

—Alan Dennis

Question

1. What would have been the cost of this bug if it hadn’t
been caught?

14-A The Cost of a BugCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

tested and ready to support the new system, they are copied into the production area—

the location where the final system will reside.

One of the more important things to coordinate is the traceability of the implementa-

tion of the system back to the original requirements. Each class and method must be asso-

ciated with an individual requirement or a set of requirements. In most object-oriented

system development approaches today capture and document the requirements in use

cases. As such, it is critical to guarantee that all classes and methods can be traced back to

an individual use case or a set of use cases. This is why in our approach (MOOSAD), we

have included a section for “Associated Use Cases” on the CRC cards (see Figures 7-1 and

10-11) and the contracts (see Figure 10-13).

Keeping files and programs in different places based on completion status helps

manage change control, the action of coordinating a system as it changes through con-

struction. Another change control technique is keeping track of which programmer

changes which classes and packages by using a program log. The log is merely a form

on which programmers “sign-out” classes and packages to write and “sign-in” when

they are completed. Both the programming areas and program log help the analysts

understand exactly who has worked on what and to determine the system’s current sta-

tus. Without these techniques, files can be put into production without the proper test-

ing; two programmers, for example, could start working on the same class or package

at the same time.

If a CASE tool is used during the construction step, it can be very helpful for change

control because many CASE tools are set up to track the status of programs and help man-

age programmers as they work. In most cases, maintaining coordination is not conceptu-

ally complex. It just requires a lot of attention and discipline to track small details.

Managing the Schedule

The time estimates that were produced during the initial planning phase and refined dur-

ing the analysis and design phases will almost always need to be refined as the project pro-

gresses during construction because it is virtually impossible to develop an exact

assessment of the project’s schedule. As we discussed in Chapter 4, a well-done set of time

estimates will usually have a 10 percent margin of error by the time you reach the con-

struction step. It is critical that the time estimates be revised as the construction step pro-

ceeds. If a program module takes longer to develop than expected, then the prudent

response is to move the expected completion date later by the same amount.

One of the most common causes of schedule problems is scope creep. Scope creep

occurs when new requirements are added to the project after the system design was

finalized. Scope creep can be very expensive because changes made late in the SDLC can

require much of the completed system design (and even programs already written) to

be redone. Any proposed change during the construction phase must require the

approval of the project manager and should only be done after a quick cost–benefit

analysis has been done.

Another common cause is the unnoticed day-by-day slippage in the schedule. One

package is a day later here, another one a day late there. Pretty soon these minor delays

add up, and the project is noticeably behind schedule. Once again, the key to managing

the programming effort is to watch these minor slippages carefully and update the

schedule accordingly.

Typically, a project manager will create a risk assessment that tracks potential risks

along with an evaluation of their likelihood and potential impact. As the construction step

moves to a close, the list of risks will change as some items are removed and others surface.

The best project managers, however, work hard to keep risks from having an impact on the

schedule and costs associated with the project.

466 Chapter 14 Construction

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

DESIGNING TESTS5

In object-oriented systems, the temptation is to minimize testing. After all, through the use of

patterns, frameworks, class libraries, and components, much of the system has been tested pre-

viously. Therefore, we should not have to test as much. Right? Wrong!! Testing is more critical

to object-oriented systems than to systems developed in the past. Based on encapsulation (and

information hiding), polymorphism (and dynamic binding), inheritance, and reuse, thorough

testing is much more difficult and critical. Testing must be done systematically and the results

documented so that the project team knows what has and has not been tested.

The purpose of testing is not to demonstrate that the system is free of errors. Indeed, it

is not possible to prove that a system is error free, especially object-oriented systems. This is

similar to theory testing. You cannot prove a theory. If a test fails to find problems with a the-

ory, your confidence in the theory is increased. However, if a test succeeds in finding a prob-

lem, then the theory has been falsified. Software testing is similar in that it can only show the

existence of errors. As such, the purpose of testing is to uncover as many errors as feasible.6

Designing Tests 467

In previous chapters, we discussed classic mistakes and
how to avoid them. Here, we summarize four classic mis-
takes in the implementation phase.4

1. Research-oriented Development: Using state-of-the-
art technology requires research-oriented develop-
ment that explores the new technology because
“bleeding edge” tools and techniques are not well
understood, are not well documented, and do not
function exactly as promised.
Solution: If you use state-of-the-art technology, you
need to significantly increase the project’s time and cost
estimates even if (some experts would say especially if)
such technologies claim to reduce time and effort.

2. Using Low-Cost Personnel: You get what you pay for.
The lowest cost consultant or the staff member is sig-
nificantly less productive than the best staff. Several
studies have shown that the best programmers pro-
duce software six to eight times faster than the least
productive (yet cost only 50 to 100 percent more).

Solution: If cost is a critical issue, assign the best, most
expensive personnel; never assign entry-level person-
nel in an attempt to save costs.

3. Lack of Code Control: On large projects, programmers
need to coordinate changes to the program source code
(so that two programmers don’t try to change the same
program at the same time and overwrite the other’s
changes). Although manual procedures appear to work
(e.g., sending e-mail notes to others when you work on
a program to tell them not to), mistakes are inevitable.
Solution: Use a source code library that requires pro-
grammers to “check out” programs and prohibits oth-
ers from working on them at the same time.

4. Inadequate Testing: The number one reason for project
failure during implementation is ad hoc testing—
where programmers and analysts test the system with-
out formal test plans.
Solution: Always allocate sufficient time in the project
plan for formal testing.

14-1 Avoiding Classic Implementation MistakesPRACTICAL

TIP

4 Adapted from Steve McConnell, Rapid Development (Redmond, WA: Microsoft Press, 1996).
5 This section is based on material contained in Imran Bashir and Amrit L. Goel, Testing Object-Oriented Software:
Life Cycle Solutions (New York: Springer Verlag, 1999); Bernd Bruegge and Allen H. Dutoit, Object-Oriented Soft-
ware Engineering: Conquering Complex and Changing Systems, (Englewood Cliffs, NJ: Prentice Hall, 2000); Philippe
Kruchten, The Rational Unified Process: An Introduction, 2nd ed., (Reading, MA: Addison-Wesley, 2000); and John
D. McGregor and David A. Sykes, A Practical Guide to Testing Object-Oriented Software (Reading, MA: Addison-
Wesley, 2001). For more information on testing object-oriented software, see Robert V. Binder, Testing Object-Ori-
ented Systems: Models, Patterns, and Tools (Reading, MA: Addison-Wesley, 1999); and Shel Sieget, Object-Oriented
Software Testing: A Hierarchical Approach (New York: Wiley, 1996).
6 It is not cost-effective to get each and every error out of the software. Except in simple examples, it is in fact
impossible. There are simply too many combinations to check.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

There are four general stages of tests: unit tests, integration tests, system tests, and

acceptance tests. Although each application system is different, most errors are found dur-

ing integration and system testing (see Figure 14-1).

In each of the following sections, we describe the four stages. However, before doing this,

we describe the effect that the object-oriented characteristics have on testing and the necessary

planning and management activities that must take place to have a successful testing program.

Testing and Object-Orientation

Most testing techniques have been developed to support nonobject-oriented develop-

ment. Object-oriented development is still relatively new. As such, most of the testing

approaches have had to be adapted to object-oriented systems. The characteristics of

object-oriented systems that affect testing the most are encapsulation (and information

hiding), polymorphism (and dynamic binding), inheritance, and the use of patterns, class

libraries, frameworks, and components. Also, the sheer volume of products that come out

of a typical object-oriented development process has increased the importance of testing

in object-oriented development.

Encapsulation and Information Hiding Encapsulation and information hiding allow

processes and data to be combined to create holistic entities (i.e., objects). Furthermore,

they support hiding everything behind a visible interface. Although this allows the system

to be modified and maintained in an effective and efficient manner, it makes testing the

system problematic. What do you need to test to build confidence in the system’s ability to

meet the user’s need? Answer, you need to test the business process that is represented in

the use cases. However, the business process is distributed over a set of collaborating classes

and contained in the methods of those classes. The only way to know the effect that a busi-

ness process has on a system is to look at the state changes that take place in the system. But

in object-oriented systems, the instances of the classes hide the data behind a class bound-

ary. How is it possible then to see the impact of a business process?

A second issue raised by encapsulation and information hiding is the definition of a

“unit” for unit testing. What is the unit to be tested? Is it the package, class, or method? In

468 Chapter 14 Construction

Acceptance
test (beta)

Acceptance
test (alpha)

System
test

Integration
test

Unit
test

N
u
m

b
er

 o
f

er
ro

rs
 d

et
ec

te
d

Testing stage

FIGURE 14-1

Error discovery rates for

different stages of tests

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

traditional approaches, the answer would be the process that is contained in a function.

However, the process in object-oriented systems is distributed over a set of classes. There-

fore, testing individual methods makes no sense. The answer is the class. This dramatically

changes the manner in which unit testing is done.

A third issue raised is the impact on integration testing. In this case, objects can be aggre-

gated to form aggregate objects; for example, a car has many parts, or they can be grouped

together to form collaborations. Furthermore, they can be used in class libraries, frameworks,

and components. Based on all of these different ways in which classes can be grouped together,

how does one effectively do integration testing?

Polymorphism and Dynamic Binding Polymorphism and dynamic binding dramati-

cally impact both unit and integration testing. Since an individual business process is imple-

mented through a set of methods distributed over a set of objects, as shown above, the unit

test makes no sense to be at the method level. However, with polymorphism and dynamic

binding, the same method (a small part of the overall business process) can be implemented

in many different objects. Therefore, testing individual implementations of methods makes

no sense. Again, the unit that makes sense to test is the class. Furthermore, except for trivial

cases, dynamic binding makes it impossible to know which implementation is going to be

executed until the system does it. Therefore, integration testing becomes very challenging.

Inheritance When considering the issues raised about inheritance (see Chapter 10), it should

be no surprise that inheritance impacts the testing of object-oriented systems. Through the use

of inheritance, bugs can be propagated from a superclass to all of its direct and indirect sub-

classes instantaneously. However, the tests that are applicable to a superclass are also applicable

to all of its subclasses. As usual, inheritance is a double-edged sword. Finally, even though we

have stated this many times before, inheritance should only support a generalization and spe-

cialization type of semantics. Remember, when using inheritance the principle of substitutabil-

ity is critical (see Chapter 7). All of these issues impact unit and integration testing.

Reuse On the surface, reuse should decrease the amount of testing required. However,

each time a class is used in a different context, the class must be tested again. Therefore,

anytime a class library, framework, or component is used, unit testing and integration test-

ing are important. In the case of a component, the unit to test is the component itself.

Remember that a component has a well-defined Application Program Interface (API) that

hides the details of its implementation.

Object-Oriented Development Process and Products In virtually all textbooks,

including this one, testing is always covered near the end of the SDLC. This seems to imply

that testing takes place only after the programming has ended. However, each and every

product7 that comes out of the object-oriented development process must be tested. For

example, it is a lot easier to ensure that the requirements are captured and modeled cor-

rectly through testing the use cases. Furthermore, it is a lot cheaper to catch this type of

error back in the analysis phase than it is in the implementation phase. Obviously, this is

true for testing collaborations as well. By the time we have implemented a collaboration as

a set of layers and partitions, we could have expended a great deal of time, and time is

money, on implementing the wrong thing. So, testing collaborations by role-playing the

CRC cards back in the analysis phase will actually save the team lots of time and money.

Designing Tests 469

7 For example, use-case descriptions, use-case diagrams, CRC cards, class diagrams, object diagrams, sequence
diagrams, communication diagrams, behavioral state machines, package diagrams, use scenarios, window navi-
gation diagrams, real use cases, contracts, method specifications, and source code.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Testing must take place throughout the SDLC, not simply at the end. However, the

type of testing that can take place on nonexecutable representations, such as use cases and

CRC cards, is different from those that take place on code written in an object-oriented

programming language. The primary approach to testing nonexecutable representations is

some form of an inspection or walkthrough of the representation.8 Role-playing the CRC

cards based on use cases is an example of one type of walkthrough.

Test Planning

Testing starts with the development of a test plan that defines a series of tests that will be con-

ducted. Since testing takes place through the development of an object-oriented system, a

test plan should be developed at the very beginning of the SDLC and continuously updated

as the system evolves. The test plan should address all products that are created during the

development of the system. For example, tests should be created that can be used to test the

completeness of a CRC card. Figure 14-2 shows a typical unit test plan form for a class. For

example, Figure 14-3 shows a partial list of the invariant test specifications for a class. Each

individual test has a specific objective and describes a set of very specific test cases to exam-

ine. In the case of invariant-based tests, a description of the invariant, the original values of

the attribute, the event that will cause the attribute value to change, the actual results

observed, the expected results, and whether it passed or failed are shown. Test specifications

470 Chapter 14 Construction

Class Test Plan Page _____ of _____

Class Name: ______________________ Version Number: ______ CRC Card ID: __________

Tester: ___________________ Date Designed: ______ Date Conducted: ________

Class Objective:

Associated Contract IDs: __

Associated Use Case IDs: ___

Associated Superclass(es): ___

Testing Objectives:

Walkthrough Test Requirements:

Invariant-Based Test Requirements:

State-Based Test Requirements:

Contract-Based Test Requirements:

FIGURE 14-2

Class Test Plan

8 See Michael Fagan, “Design and Code Inspections to Reduce Errors in Program Development,” IBM Systems
Journal, 15, no. 3 (1976): 105–211.

TEMPLATE

can be found at
www.wiley.com
/college/dennis

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

are created for each type of constraint that must be met by the class. Also, similar types of

specifications are done for integration, system, and acceptance tests.

Not all classes are likely to be finished at the same time, so the programmer usually

writes stubs for the unfinished classes to enable the classes around them to be tested. A stub

is a placeholder for a class that usually displays a simple test message on the screen or

returns some hardcoded value9 when it is selected. For example, consider an application sys-

tem that provides the five standard processes discussed in Chapter 6 for some object such

as CDs, patients, or employees: creating, changing, deleting, finding, and printing (whether

on the screen or on a printer). Depending on the final design, these different processes

could end up in different objects on different layers. Therefore, to test the functionality

associated with the classes on the problem domain layer, a stub would be written for each

of the classes on the other layers that interact with the problem domain classes. These stubs

would contain the minimal interface necessary to be able to test the problem domain

classes. For example, they would have methods that could receive the messages being sent

by the problem domain layer objects and methods that could send messages to the prob-

lem domain layer objects. Typically, the methods would display a message on the screen

notifying the tester that the method had been successfully reached (e.g., “Delete item from

Designing Tests 471

9 The word “hardcoded” means written into the program. For example, suppose you were writing a unit to cal-
culate the net present value of a loan. The stub might be written so that it would always display (or return to the
calling module) a value of 100 regardless of the input values.

Class Invariant Test Specification

Page ____ of ____

Class Name: ______________________ Version Number: ______ CRC Card ID: __________

Tester: ___________________ Date Designed: ______ Date Conducted: ________

Testing Objectives:

Test Cases

Original New
Invariant Attribute Attribute Expected Result
Description Value Event Value Result P/F

Attribute Name:

1) ___________ ___________ ___________ ___________ ___________ ___________

2) ___________ ___________ ___________ ___________ ___________ ___________

3) ___________ ___________ ___________ ___________ ___________ ___________

Attribute Name:

1) ___________ ___________ ___________ ___________ ___________ ___________

2) ___________ ___________ ___________ ___________ ___________ ___________

3) ___________ ___________ ___________ ___________ ___________ ___________

Attribute Name:

1) ___________ ___________ ___________ ___________ ___________ ___________

2) ___________ ___________ ___________ ___________ ___________ ___________

3) ___________ ___________ ___________ ___________ ___________ ___________

FIGURE 14-3

Class Invariant Test

Specification

TEMPLATE

can be found at
www.wiley.com
/college/dennis

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Database method reached”). In this way, the problem domain classes could pass class test-

ing before the classes on the other layers were completed.

Unit Tests

Unit tests focus on a single unit—the class. There are two approaches to unit testing: black-

box and white-box (see Figure 14-4). Black-box testing is the most commonly used since

each class represents an encapsulated object. Black-box testing is driven by the CRC cards,

behavioral state machines, and contracts associated with a class, not by the programmers’

interpretation. In this case, the test plan is developed directly from the specification of the

class: each item in the specification becomes a test, and several test cases are developed for

it. White-box testing is based on the method specifications associated with each class. How-

ever, white-box testing has had limited impact in object-oriented development. This is due

to the rather small size of the individual methods in a class. As such, most approaches to

testing classes use black-box testing to assure their correctness.

Class tests should be based on the invariants on the CRC cards, the behavioral state

machines associated with each class, and the pre- and post-conditions contained on each

method’s contract. Assuming all of the constraints have been captured on the CRC cards and

contracts, individual test cases can be developed fairly easily. For example, suppose the CRC

card for an order class gave an invariant that the order quantity must be between 10 and 100

cases. The tester develops a series of test cases to ensure that the quantity is validated before the

system accepts it. It is impossible to test every possible combination of input and situation;

there are simply too many possible combinations. In this example, the test requires a mini-

mum of three test cases: one with a valid value (e.g., 15), one with an invalid value too low (e.g.,

7), and one with invalid value too high (e.g., 110). Most tests would also include a test case with

a nonnumeric value to ensure the data types were checked (e.g., ABCD). A really good test

would include a test case with nonsensical but potentially valid data (e.g., 21.4).

Using a behavioral state machine is a useful way to identify tests for a class. Any class that

has a behavioral state machine associated with it will have a potentially complex life cycle. As

such, it is possible to create a series of tests to guarantee that each state can be reached.

Tests also can be developed for each contract associated with the class. In the case of a

contract, a set of tests for each pre- and post-condition is required. Furthermore, if the class

is a subclass of another class, then all of the tests associated with the superclass must be exe-

cuted again. Also, the interactions among the constraints, invariants, and pre- and post-

conditions in the subclass and the superclass(es) must be addressed.

Finally, owing to good object-oriented design, in order to fully test a class, special test-

ing methods may have to be added to the class being tested. For example, how can invari-

ants be tested? The only way to really test them is through methods that are visible to the

outside of the class that can be used to manipulate the values of the class’s attributes. How-

ever, adding these types of methods to a class does two things. First, they add to the testing

requirements since they themselves will have to be tested. Second, if they are not removed

from the deployed version of the system, the system will be less efficient and the advantage

of information hiding effectively will be lost. As is readily apparent, testing classes is com-

plex. Therefore, great care must be taken when designing tests for classes.

Integration Tests

Integration tests assess whether a set of classes that must work together do so without error.

They ensure that the interfaces and linkages between different parts of the system work

properly. At this point, the classes have passed their individual unit tests, so the focus now

is on the flow of control among the classes and on the data exchanged among them. Inte-

gration testing follows the same general procedures as unit testing: the tester develops a

472 Chapter 14 Construction

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Designing Tests 473

Unit Testing Black-Box Testing CRC Cards For normal unit testing • Tester focuses on whether the class
Treats class as Class Diagrams meets the requirements stated in the

“black-box” Contracts specifications.
White-Box Testing Method Specifications When complexity is • By looking inside the class to review the

Looks inside the high code itself the tester may discover errors
class to test its or assumptions not immediately obvious
major elements to someone treating the class as a black

box.
Integration User Interface Testing Interface Design For normal integration • Testing is done by moving through each

Testing The tester tests each testing and every menu item in the interface
interface function either in a top-down or bottom-up manner.

Use-Case Testing Use Cases When the user • Testing is done by moving through each
The tester tests each interface is important use case to ensure they work correctly.

use case • Usually combined with user interface
testing because it does not test all
interfaces.

Interaction Testing Class Diagrams When the system • The entire system begins as a set of
Tests each process in Sequence Diagrams performs data stubs. Each class is added in turn and

a step-by-step Communication processing the results of the class compared to the
fashion Diagrams correct result from the test data; when a

class passes, the next class is added
and the test rerun. This is done for each
package. Once each package has passed
all tests, then the process repeats
integrating the packages.

System Interface Testing Use-Case Diagram When the system • Because data transfers between systems
Tests the exchange of exchanges data are often automated and not monitored

data with other directly by the users it is critical to
systems design tests to ensure they are being

done correctly.
System Requirements Testing System Design, Unit For normal system • Ensures that changes made as a result

Testing Tests to whether Tests, and Integration testing of integration testing did not create new
original business Tests errors.
requirements • Testers often pretend to be uninformed
are met users and perform improper actions to

ensure the system is immune to invalid
actions (e.g., adding blank records).

Usability Testing Interface Design and When user interface • Often done by analyst with experience
Tests how convenient Use Cases is important in how users think and in good interface

the system is to use design.
• Sometimes uses formal usability testing

procedures discussed in Chapter 12.
Security Testing Infrastructure Design When the system is • Security testing is a complex task, usually

Tests disaster recovery important done by an infrastructure analyst assigned
& unauthorized to the project.
access • In extreme cases, a professional firm

may be hired.
Performance Testing System Proposal When the system is • High volumes of transactions are

Examines the ability to important generated and given to the system.
perform under high Infrastructure Design • Often done by using special purpose
loads testing software.

Documentation Testing Help System, For normal system • Analysts spot check or check every item
Tests the accuracy of Procedures, Tutorials testing on every page in all documentation to

the documentation ensure the documentation items and
examples work properly.

Acceptance Alpha Testing System Tests For normal • Often repeats previous tests but are con-
Testing Conducted by users to acceptance testing ducted by users themselves to ensure

ensure they accept they accept the system.
the system

Beta Testing No plan When the system is • Users closely monitor system for errors or
Uses real data, not important useful improvements.

test data

Stage Types of Tests Test Plan Source When to Use Notes

FIGURE 14-4 Types of Tests

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

test plan that has a series of tests that in turn have tests. Integration testing is often done

by a set of programmers and/or systems analysts.

From an object-oriented systems perspective, integration testing can be difficult. A sin-

gle class can be in many different aggregations, because of the way in which objects can be

combined to form new objects, class libraries, frameworks, components, and packages.

Where is the best place to start the integration? Typically, the answer is to begin with the

set of classes, or collaboration, used to support the highest priority use case (see Chapter

6). Also, dynamic binding makes it crucial to design the integration tests carefully to ensure

that the combinations of methods are tested.

There are four approaches to integration testing: user interface testing, use-case test-

ing, interaction testing, and system interface testing (see Figure 14-4). Most projects use all

four approaches.

System Tests

System tests are usually conducted by the systems analysts to ensure that all classes work

together without error. System testing is similar to integration testing but is much broader

in scope. Whereas integration testing focuses on whether the classes work together with-

out error, system tests examine how well the system meets business requirements (require-

ments testing), how convenient the system is to use (usability testing), how secure the

system is (security testing), how well the system performs under a heavy load (performance

testing), and how accurate the documentation of the system is (documentation testing).

Figure 14-4 provides additional details on the different types of system tests.

474 Chapter 14 Construction

Pretend you are a project manager for a bank developing
software for ATMs. Develop a unit test plan for the user

interface component of the ATM.

14-1 Test Planning for an ATMYOUR

TURN

If you’ve seen the movie Sneakers, you know that there
are professional security firms that organizations can
hire to break in to their own networks to test security.
BABank (a pseudonym) was about to launch a new
online banking application, so it hired such a firm to test
its security before the launch. The bank’s system failed
the security test—badly.

The security team began by mapping the bank’s net-
work. It used network security analysis software and dial-
ing software to test for dial-in ports. The mapping process
found a bunch of accounts with default passwords (i.e.,
passwords set by the manufacturer that are supposed to
be changed when the systems are first set up). The team

then tricked several high-profile users into revealing their
passwords to gain access to several high-privilege
accounts. Once into these computers, the team used
password cracking software to find passwords on these
computers and ultimately gain the administrator pass-
words on several servers. At this point, the team trans-
ferred $1,000 into their test account. They could have
transferred more, but the security point was made.

Source: Network World, February 2, 1998.

Question

1. What was the value of the security tests in this case?

14-B Anatomy of a Friendly HackCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Acceptance Tests

Acceptance testing is done primarily by the users with support from the project team. The goal

is to confirm that the system is complete, meets the business needs that prompted the system

to be developed, and is acceptable to the users. Acceptance testing is done in two stages: alpha

testing, in which users test the system using made-up data, and beta testing, in which users

begin to use the system with real data but are carefully monitored for errors (see Figure 14-4).

DEVELOPING DOCUMENTATION

Like testing, developing documentation of the system must be done throughout the SDLC.

There are two fundamentally different types of documentation: system documentation and

user documentation. System documentation is intended to help programmers and systems

analysts understand the application software and enable them to build it or maintain it after

the system is installed. System documentation is largely a byproduct of the systems analysis

and design process and is created as the project unfolds. Each step and phase produces doc-

uments that are essential in understanding how the system is constructed or is to be built.

In many object-oriented development environments, it is possible to somewhat automate

the creation of detailed documentation for classes and methods. For example, in Java, if the

programmers use javadoc-style comments, it is possible to create HTML pages that docu-

ment a class and its methods automatically by using the javadoc utility.10 Since most pro-

grammers look on documentation with much distaste, anything that can make

documentation easier to create is useful.

User documentation (such as user’s manuals, training manuals, and online help sys-

tems) is designed to help the user operate the system. Although most project teams expect

users to have received training and to have read the user’s manuals before operating the

system, unfortunately this is not always the case. It is more common today—especially in

the case of commercial software packages for microcomputers—for users to begin using

the software without training or reading the user’s manuals. In this section, we focus on

user documentation.11

User documentation is often left until the end of the project, which is a dangerous strat-

egy. Developing good documentation takes longer than many people expect because it

requires much more than simply writing a few pages. Producing documentation requires

designing the documents (whether on paper or online), writing the text, editing them, and

testing them. For good-quality documentation, this process usually takes about three hours

per page (single-spaced) for paper-based documentation or two hours per screen for online

documentation. Thus, a “simple” set of documentation such as a ten-page user’s manual and

a set of twenty help screens takes seventy hours. Of course, lower quality documentation can

be produced faster.

The time required to develop and test user documentation should be built into the

project plan. Most organizations plan for documentation development to start once the

interface design and program specifications are complete. The initial draft of documenta-

tion is usually scheduled for completion immediately after the unit tests are complete. This

reduces the chance that the documentation will need to be changed due to software

changes (but doesn’t eliminate it) and still leaves enough time for the documentation to be

tested and revised before the acceptance tests are started.

Developing Documentation 475

10 For those who have used Java, javadoc is how the JDK documentation from Sun was created.
11 For more information on developing documentation, see Thomas T. Barker, Writing Software Documentation
(Boston, MA: Allyn and Bacon, 1998).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Although paper-based manuals are still important, online documentation is becoming

more important. Paper-based documentation is simpler to use because it is more familiar to

users, especially novices who have less computer experience; online documentation requires

the users to learn one more set of commands. Paper-based documentation is also easier to

flip through and gain a general understanding of its organization and topics and can be used

far away from the computer itself.

There are four key strengths of online documentation that all but guarantee it will be

the dominant form for the next century. First, searching for information is often simpler

(provided the help search index is well designed) because the user can type in a variety of

keywords to view information almost instantaneously rather than having to search through

the index or table of contents in a paper document. Second, the same information can be

presented several times in many different formats, so that the user can find and read the

information in the most informative way (such redundancy is possible in paper documen-

tation, but the cost and intimidating size of the resulting manual make it impractical).

Third, online documentation enables many new ways for the user to interact with the doc-

umentation that are not possible in static paper documentation. For example, it is possible

to use links or “tool tips” (i.e., pop-up text; see Chapter 12) to explain unfamiliar terms,

and one can write “show-me” routines that demonstrate on the screen exactly what buttons

to click and text to type. Finally, online documentation is significantly less expensive to dis-

tribute than paper documentation.

Types of Documentation

There are three fundamentally different types of user documentation: reference documents,

procedures manuals, and tutorials. Reference documents (also called the help system) are

designed to be used when the user needs to learn how to perform a specific function (e.g.,

updating a field, adding a new record). Often people read reference information when they

have tried and failed to perform the function; writing reference documents requires special

care because often the user is impatient or frustrated when he or she begins to read them.

Procedures manuals describe how to perform business tasks (e.g., printing a monthly

report, taking a customer order). Each item in the procedures manual typically guides the

user through a task that requires several functions or steps in the system. Therefore, each

entry is typically much longer than an entry in a reference document.

Tutorials—obviously—teach people how to use major components of the system (e.g.,

an introduction to the basic operations of the system). Each entry in the tutorial is typi-

cally longer still than the entries in procedures manuals and is usually designed to be read

in sequence (whereas entries in reference documents and procedures manuals are designed

to be read individually).

Regardless of the type of user documentation, the overall process for developing it is

similar to the process of developing interfaces (see Chapter 12). The developer first designs

the general structure for the documentation and then develops the individual components

within it.

Designing Documentation Structure

In this section, we focus on the development of online documentation because we believe
it will become the most common form of user documentation. The general structure used
in most online documentation, whether reference documents, procedures manuals, or
tutorials is to develop a set of documentation navigation controls that lead the user to docu-
mentation topics. The documentation topics are the material the user wants to read, while
the navigation controls are the way in which the user locates and accesses a specific topic.

476 Chapter 14 Construction

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Designing the structure of the documentation begins by identifying the different types
of topics and navigation controls that need to be included. Figure 14-5 shows a commonly
used structure for online reference documents (i.e., the help system). The documentation
topics generally come from three sources. The first and most obvious source of topics is the
set of commands and menus in the user interface. This set of topics is very useful if the user
wants to understand how a particular command or menu is used.

Developing Documentation 477

Topics

Tasks

Commands

Definitions

Links

Navigation Controls

Contents
Introduction
Basic Features
 Finding Albums

Index
Finding
 Finding Albums
 Finding Artists
 Finding Songs

Text Search
albums
announcements
articles
artists

Agent Search
Enter a question

Full
Search

Music
Category

Credit
Card

Move…

Copy…

Delete…

How to…

How to…

How to…

FIGURE 14-5
Organizing Online

Reference Documents

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

The users often don’t know what commands to look for or where they are in the
system’s menu structure. Instead, users have tasks they want to perform, and rather than
thinking in terms of commands, they think in terms of their business tasks. Therefore,
the second and often more useful set of topics focuses on how to perform certain
tasks—usually those in the use scenarios, window navigation diagram, and the real use
cases from the user interface design (see Chapter 12). These topics walk the user
through the set of steps (often involving several keystrokes or mouse clicks) needed to
perform some task.

The third set of topics is definitions of important terms. These terms are usually the use
cases and classes in the system, but sometimes they also include commands.

There are five general types of navigation controls for topics, but not all systems use all five
types (see Figure 14-5). The first is the table of contents that organizes the information in a log-
ical form, as though the users were to read the reference documentation from start to finish.

The index provides access to the topics based on important keywords, in the same way
that the index at the back of a book helps you find topics. Text search provides the ability
to search through the topics either for any text the user types or for words that match a
developer-specified set of words that is much larger than the words in the index. Unlike the
index, text search typically provides no organization to the words (other than alphabetical).
Some systems provide the ability to use an intelligent agent to help in the search (e.g., the
Microsoft Office Assistant—also known as the paper clip guy). The fifth and final naviga-
tion control to topics are the Web-like links between topics that enable the user to click and
move among topics.

Procedures manuals and tutorials are similar but often simpler in structure. Topics for
procedures manuals usually come from the use scenarios, window navigation diagram, and
the real use cases developed during interface design and from other basic tasks the users must
perform. Topics for tutorials are usually organized around major sections of the system and
the level of experience of the user. Most tutorials start with the basic, most commonly used
commands and then move into more complex and less frequently used commands.

Writing Documentation Topics

The general format for topics is fairly similar across application systems and operating sys-

tems (see Figure 14-6). Topics typically start with very clear titles, followed by some intro-

ductory text that defines the topic, and then provide detailed, step-by-step instructions on

how to perform what is being described (where appropriate). Many topics include screen

images to help the user find items on the screen; some also have “show-me” examples in

which the series of keystrokes and/or mouse movements and clicks needed to perform the

function are demonstrated to the user. Most also include navigation controls to enable

movement among topics, usually at the top of the window, plus links to other topics. Some

also include links to “related topics” that include options or other commands and tasks the

user may want to perform in concert with the topic being read.

Writing the topic content can be challenging. It requires a good understanding of the

user (or more accurately the range of users) and a knowledge of what skills the user(s) cur-

rently have and can be expected to import from other systems and tools they are using or

have used (including the system the new system is replacing). Topics should always be writ-

ten from the viewpoint of the user and describe what the user wants to accomplish, not

what the system can do. Figure 14-7 provides some general guidelines to improve the qual-

ity of documentation text.12

478 Chapter 14 Construction

12 One of the best books to explain the art of writing is William Strunk and E.B. White, Elements of Style, 4th ed.
(Boston: Allyn and Bacon, 2000).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Identifying Navigation Terms

As you write the documentation topics you also begin to identify the terms that will be used

to help users find topics. The table of contents is usually the most straightforward because

it is developed from the logical structure of the documentation topics, whether reference

topics, procedure topics, or tutorial topics. The items for the index and search engine

require more care because they are developed from the major parts of the system and the

users’ business functions. Every time you write a topic, you must also list the terms that will

be used to find the topic. Terms for the index and search engine can come from four dis-

tinct sources.

The first source is the set of the commands in the user interface, such as open file, mod-

ify customer, and print open orders. All commands contain two parts (action and object). It

is important to develop the index for both parts because users could search for information

using either part. A user looking for more information about saving files, for example, might

search by using the term “save” or the term “files.”

The second source is the set of major concepts in the system, which are often use cases

and classes. In the case of CD Selections, for example, this might include music category,

album, and shipping costs.

A third source is the set of business tasks the user performs, such as ordering replace-

ment unit or making an appointment. Often these will be contained in the command set,

but sometimes they require several commands and use terms that always appear in the sys-

tem. Good sources for these terms are the use scenarios and real use cases developed dur-

ing interface design (see Chapter 12).

Developing Documentation 479

Links to
other pages

Navigation
Buttons

Show me
button

Title

FIGURE 14-6

A Help Topic in

Microsoft Word

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

A fourth, often controversial, source is the set of synonyms for the three sets of items

above. Users sometimes don’t think in terms of the nicely defined terms used by the system.

They may try to find information on how to “stop” or “quit” rather than “exit,” or “erase”

rather than “delete.” Including synonyms in the index increases the complexity and size of

the documentation system but can greatly improve the usefulness of the system to the users.

480 Chapter 14 Construction

Guideline Before the Guideline After the Guideline

Use the active voice: The active voice cre-
ates more active and readable text by
putting the subject at the start of the sen-
tence, the verb in the middle, and the
object at the end.

Finding albums is done using the album
title, the artist’s name, or a song title.

You can find an album by using the album
title, the artist’s name, or a song title.

Use e-prime style: E-prime style creates
more active writing by omitting all forms
of the verb to be.

The text you want to copy must be
selected before you click on the copy
button.

Select the text you want to copy before
you click on the copy button.

Use consistent terms: Always use the same
term to refer to the same items, rather
than switching among synonyms (e.g.,
change, modify, update).

Select the text you want to copy. Pressing
the copy button will copy the marked
text to the new location.

Select the text you want to copy. Pressing
the copy button will copy the selected
text to the new location.

Use simple language: Always use the sim-
plest language possible to accurately
convey the meaning. This does not mean
you should “dumb down” the text but
that you should avoid artificially inflating
its complexity. Avoid separating subjects
and verbs and try to use the fewest words
possible. (When you encounter a com-
plex piece of text, try eliminating words;
you may be surprised at how few words
are really needed to convey meaning.)

The Georgia Statewide Academic and
Medical System (GSAMS) is a coopera-
tive and collaborative distance learning
network in the state of Georgia. The
organization in Atlanta that administers
and manages the technical and overall
operations of the currently more than
300 interactive audio and video telecon-
ferencing classrooms throughout Georgia
system is the Department of Administra-
tive Service (DOAS). (56 words)

The Department of Administrative Service
(DOAS) in Atlanta manages the Georgia
Statewide Academic and Medical System
(GSAMS), a distance learning network
with more than 300 teleconferencing
classrooms throughout Georgia. (29
words)

Use friendly language: Too often, docu-
mentation is cold and sterile because it
is written in a very formal manner.
Remember, you are writing for a person,
not a computer.

Blank disks have been provided to you by
Operations. It is suggested that you
ensure your data is not lost by making
backup copies of all essential data.

You should make a backup copy of all
data that is important to you. If you need
more diskettes, contact Operations.

Use parallel grammatical structures: Paral-
lel grammatical structures indicate the
similarity among items in list and help
the reader understand content.

Opening files
Saving a document
How to delete files

Opening a file
Saving a file
Deleting a file

Use steps correctly: Novices often inter-
sperse action and the results of action
when describing a step-by-step process.
Steps are always actions.

1. Press the customer button.
2. The customer dialogue box will appear.
3. Type the customer ID and press the

submit button and the customer record
will appear.

1. Press the customer button.
2. Type the customer ID in the customer

dialogue box when it appears.
3. Press the submit button to view the cus-

tomer record for this customer.

Use short paragraphs: Readers of docu-
mentation usually quickly scan text to
find the information they need, so the
text in the middle of long paragraphs is
often overlooked. Use separate para-
graphs to help readers find information
more quickly.

Source: Adapted from T. T. Barker, Writing Software Documentation (Boston: Allyn & Bacon, 1998).

FIGURE 14-7 Guidelines for Crafting Documentation Topics

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

APPLYING THE CONCEPTS AT CD SELECTIONS

Managing Programming

Three programmers were assigned by CD Selections to develop the three major parts of the

Internet sales system. The first was the Web interface, both the client side (browser) and the

server side. The second was the client–server-based management system (managing the CD

information and marketing materials databases). The third was the interfaces between the

Internet sales system and CD Selections’ existing distribution system and the credit card

center. Programming went smoothly and despite a few minor problems proceeded accord-

ing to plan.

Testing

While the programmers were working, Alec began developing the test plans and user docu-

mentation. The test plans for the three components were similar but slightly more intensive for

the Web interface component (see Figure 14-8). Unit testing would use black-box testing based

on the CRC cards, class diagrams, and contracts for all components. Figure 14-9 shows part of

the class-invariant test specification for the Order class in the Web interface component.

Integration testing for the Web interface and system management component would

be subjected to all user interface and use-case tests to ensure that the interface would work

properly. The system interface component would undergo system interface tests to ensure

that the system performed calculations properly and was capable of exchanging data with

the CD Selections’ other systems and the credit card center.
Systems tests are by definition tests of the entire system—all components together. How-

ever, not all parts of the system would receive the same level of testing. Requirements tests would
be conducted on all parts of the system to ensure that all requirements were met. Because secu-
rity was a critical issue, the security of all aspects of the system would be tested. Security tests
would be developed by CD Selections’ infrastructure team, and once the system passed those
tests, an external security consulting firm would be hired to attempt to break in to the system.

Performance was an important issue for the parts of the system used by the cus-
tomer (the Web interface and the system interfaces to the credit card and inventory sys-
tems) but not as important for the management component that would be used by staff,

Applying the Concepts at CD Selections 481

Pretend you are a project manager for a bank developing
software for ATMs. Develop the part of an online help sys-
tem that deals with withdrawing and depositing cash. Be

sure to include the different types of accounts, such as
checking and savings.

14-2 Documentation for an ATMYOUR

TURN

FIGURE 14-8

CD Selections’

Test Plan

Unit tests Black-box tests Black-box tests Black-box tests
Integration tests User interface tests; User interface tests; System interface tests

use-case tests use-case tests
System tests Requirements tests; Requirements tests; Requirements tests;

security tests; security tests security tests;
performance tests; performance tests
usability tests

Acceptance tests Alpha test; beta test Alpha test; beta test Alpha test; beta test

Test Stage Web Interface System Management System Interfaces

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

not customers. The customer-facing components would undergo rigorous performance
testing to see how many transactions (whether searching or purchasing) they could han-
dle before they were unable to provide a response time of two seconds or less. Alec also
developed an upgrade plan so that as demand on the system increased, there was a clear
plan for when and how to increase the processing capability of the system.

Finally, formal usability tests would be conducted on the Web interface portion of the
system with six potential users (both novice and expert Internet users).

Acceptance tests would be conducted in two stages, alpha and beta. Alpha tests would
be done during the training of CD Selections’ staff. The Internet Sales Group manager
would work together with Alec to develop a series of tests and training exercises to train the
Internet Sales Group staff in how to use the system. They would then load the real CD data
into the system and begin adding marketing materials. These same staff and other CD
Selections staff members would also pretend to be customers and test the Web interface.

Beta testing would be done by “going live” with the Web site but its existence would
only be announced to CD Selections’ employees. As an incentive to try the Web site (rather
than buying from the store in which they worked), employees would be offered triple their
normal employee discount for all products ordered from the Web site. The site would also
have a prominent button on every screen that would enable employees to e-mail comments
to the project team, and the announcement would encourage employees to report prob-
lems, suggestions, and compliments to the project team. After one month, assuming all
went well, the beta test would be completed, and the Internet sales site would be linked to
the main Web site and advertised to the general public.

482 Chapter 14 Construction

Class Invariant Test Specification

Page ____ of ____

Class Name: ___________________ Version Number: ______ CRC Card ID: __________

Tester: ___________________ Date Designed: ______ Date Conducted: ________

Testing Objectives:

Test Cases

Original New
Invariant Attribute Attribute Expected Result
Description Value Event Value Result P/F

Attribute Name: CD Number

1) _____________ ___________ ___________ ___________ ___________ _________

2) _____________ ___________ ___________ ___________ ___________ _________

3) _____________ ___________ ___________ ___________ ___________ _________

Attribute Name: CD Name

1) _____________ ___________ ___________ ___________ ___________ _________

2) _____________ ___________ ___________ ___________ ___________ _________

3) _____________ ___________ ___________ ___________ ___________ _________

Attribute Name: Artist Name

1) _____________ ___________ ___________ ___________ ___________ _________

2) _____________ ___________ ___________ ___________ ___________ _________

3) _____________ ___________ ___________ ___________ ___________ _________

FIGURE 14-9

Partial Class Invariant

Test Specification for

the Order Class

5 15

Order 3 15

Susan Doe 9/9

Ensure that the information entered by the customer on the place order form is valid.

(1..1) Null CreateOrder Null F

(unsigned long) Null CreateOrder ABC F

(unsigned long) Null CreateOrder 123 P

(1..1) Null CreateOrder Null F

(String) Null CreateOrder ABC P

(String) Null CreateOrder 123 P

(1..1) Null CreateOrder Null F

(String) Null CreateOrder ABC P

(String) Null CreateOrder 123 P

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Developing User Documentation

Three types of documentation (reference documents, procedures manuals, and tutori-
als) could be produced for the Web interface and the management component. Since
the number of CD Selections’ staff using the system management component would be
small, Alec decided to produce only the reference documentation (an online help sys-
tem). He felt that an intensive training program and a one-month beta test period
would be sufficient without tutorials and formal procedures manuals. Similarly, he felt
that the process of ordering CDs and the Web interface itself was simple enough to not
require a tutorial on the Web—a help system would be sufficient (and a procedures
manual didn’t make sense).

Alec decided that the reference documents for both the Web interface and system
management components would contain help topics for user tasks, commands, and defin-
itions. He also decided that the documentation component would contain four types of
navigation controls: a table of contents, an index, a find, and links to definitions. He did
not feel that the system was complex enough to benefit from a search agent.

After these decisions were made, Alec delegated the development of the reference doc-

uments to a technical writer assigned to the project team. Figure 14-10 shows examples of

a few of topics that the writer developed. The tasks and commands were taken directly from

the interface design. The list of definitions was developed once the tasks and commands

were developed based on the writer’s experience in understanding what terms might be

confusing to the user.

Once the topic list was developed, the technical writer then began writing the topics

themselves as well as the navigation controls to access. Figure 14-11 shows an example of

one topic taken from the task list: how to place an order. This topic presents a brief descrip-

tion of what it is and then leads the user through the step-by-step process needed to com-

plete the task. The topic also lists the navigation controls that will be used to find the topic

in terms of the table of contents entries, the index entries, and search entries. It also lists

what words in the topic itself will have links to other topics (e.g., shopping cart).

SUMMARY

Managing Programming

Programming is done by programmers, so systems analysts have few responsibilities dur-

ing this stage. The project manager, however, is usually very busy. The first task is to assign

the programmers, ideally the fewest possible to complete the project because coordination

problems increase as the size of the programming team increases. Coordination can be

improved by having regular meetings, ensuring that standards are followed, implementing

change control, and using CASE tools effectively. One of the key functions of the project

manager is to manage the schedule and adjust it for delays. Two common causes of delays

are scope creep and minor slippages that go unnoticed.

Summary 483

Find an album Find Album
Add an album to my shopping cart Browse Artist
Placing an order Quick search Music type
How to buy Full search Special deals
What’s in my shopping cart? Cart

Shopping cart

Tasks Commands Terms

FIGURE 14-10

Sample Help Topics for

CD Selections

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Test Planning

Tests must be carefully planned because the cost of fixing one major bug after the system is

installed can easily exceed the annual salary of a programmer. A test plan contains several

tests that examine different aspects of the system. A test, in turn, specifies several test cases

that will be examined by the testers. A unit test examines a class within the system; test cases

come from the class specifications or the class code itself. An integration test examines how

well several classes work together; test cases come from the interface design, use cases, the use

case diagram, sequence diagrams, and communication diagrams. A system test examines the

system as a whole and is broader than the unit and integration tests; test cases come from the

system design, the infrastructure design, and the unit and integration tests. Acceptance test-

ing is done by the users to determine whether the system is acceptable to them; it draws on

the system test plans (alpha testing) and on the real work the users perform (beta testing).

Documentation

Documentation, both user documentation and system documentation, is moving away

from paper-based documents to online documentation. There are three types of user doc-

umentation: reference documents are designed to be used when the user needs to learn

how to perform a specific function (e.g., an online help system), procedures manuals

describe how to perform business tasks, while tutorials teach people how to use the system.

Documentation navigation controls (e.g., a table of contents, index, find, intelligent agents,

or links between pages) enable users to find documentation topics (e.g., how to perform a

function, how to use an interface command, an explanation of a term).

484 Chapter 14 Construction

Help Topic Navigation Controls

How to Place an Order

When you are ready to pay for the merchandise you
have selected (the items in your shopping cart) you
can place your order. There are four steps.

1. Move to the Place order Page

Click on the button to move to the
place order page.

2. Make sure you are ordering what you want

The place order screen displays all the items in your
shopping cart. Read through the list to make sure
these are what you want because once you submit
your credit card information you cannot change the
order.

you can delete an item by

Table of Contents list:
 How to Place an Order

Index list:
 Credit Card
 Order
 Pay
 Place order

Search find by:
 Credit Card
 Delete Items
 Order
 Pay
 Place order
 Shopping Cart
 Verify Order

Links:
 Shopping Cart

Place order

FIGURE 14-11
Example Documenta-

tion Topic for CD

Selections

Acceptance test

Alpha test

Beta test

Black-box testing

Change control

Construction

Documentation navigation control

Documentation testing

Documentation topic

Hardcoded value

Integration test

Interaction testing

KEY TERMS

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Minicases 485

1. Pete is a project manager on a new systems develop-

ment project. This project is Pete’s first experience as

a project manager, and he has led his team successfully

to the programming phase of the project. The project

has not always gone smoothly, and Pete has made a

few mistakes, but he is generally pleased with the

progress of his team and the quality of the system

being developed. Now that programming has begun,

MINICASES

A. Create an invariant test specification for the class

you chose for the Health Club in Exercise A in

Chapter 10.

B. Create an invariant test specification for the class

you chose for the Picnics R Us in Exercise C in

Chapter 10.

C. Create an invariant test specification for the class you

chose for the Of-The-Month Club (OTMC) in Exer-

cise E in Chapter 10.

D. Create an invariant test specification for the class you

chose for the Library in Exercise G in Chapter 10.

E. If the registration system at your university does not

have a good online help system, develop an online

help system for one screen of the user interface.

F. Examine and prepare a report on the online help

system for the calculator program in Windows (or

a similar on the Mac or Unix). (You will likely be

surprised at the amount of help for such a simple

program.)

G. Compare and contrast the online help at two different

Web sites that enable you to perform some function

(e.g., make travel reservations, order books).

EXERCISES

Performance testing

Procedures manual

Program log

Reference document

Requirements testing

Risk assessment

Scope creep

Security testing

Slippage

Stub

System documentation

System interface testing

System test

Test

Test case

Test plan

Test specification

Tutorial

Unit test

Usability testing

Use-case testing

User documentation

User interface testing

White-box testing

1. Why is testing important?

2. What is the primary role of systems analysts during

the programming stage?

3. In The Mythical Man-Month, Frederick Brooks argues

that adding more programmers to a late project makes

it later. Why?

4. What is the purpose of testing?

5. Describe how object-orientation impacts testing.

6. Compare and contrast the terms test, test plan, and

test case.

7. What is a stub, and why is it used in testing?

8. What is the primary goal of unit testing?

9. Compare and contrast black-box testing and white-

box testing.

10. How are the test cases developed for unit tests?

11. What are the different types of unit tests?

12. What is the primary goal of integration testing?

13. How are the test cases developed for integration tests?

14. What is the primary goal of system testing?

15. How are the test cases developed for system tests?

16. What is the primary goal of acceptance testing?

17. How are the test cases developed for acceptance tests?

18. Compare and contrast alpha testing and beta testing.

19. Compare and contrast user documentation and sys-

tem documentation.

20. Why is online documentation becoming more

important?

21. What are the primary disadvantages of online docu-

mentation?

22. Compare and contrast reference documents, proce-

dures manuals, and tutorials.

23. What are five types of documentation navigation con-

trols?

24. What are the commonly used sources of documenta-

tion topics? Which is the most important? Why?

25. What are the commonly used sources of documenta-

tion navigation controls? Which is the most impor-

tant? Why?

QUESTIONS

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

486 Chapter 14 Construction

Pete has been hoping for a little break in the hectic

pace of his workday.

Prior to beginning programming, Pete recognized

that the time estimates made earlier in the project

were too optimistic. However, he was firmly commit-

ted to meeting the project deadline because of his

desire for his first project as project manager to be a

success. In anticipation of this time pressure prob-

lem, Pete arranged with the Human Resources

department to bring in two new college graduates

and two college interns to beef up the programming

staff. Pete would have liked to find some staff with

more experience, but the budget was too tight, and

he was committed to keeping the project budget

under control.

Pete made his programming assignments, and

work on the programs began about two weeks ago.

Now, Pete has started to hear some rumbles from

the programming team leaders that may signal

trouble. It seems that the programmers have

reported several instances where they wrote pro-

grams, only to be unable to find them when they

went to test them. Also, several programmers have

opened programs that they had written, only to

find that someone had changed portions of their

programs without their knowledge.

a. Is the programming phase of a project a time for

the project manager to relax? Why or why not?

b. What problems can you identify in this situation?

What advice do you have for the project manager?

How likely does it seem that Pete will achieve his

desired goals of being on time and within budget if

nothing is done?

2. The systems analysts are developing the test plan for

the user interface for the Holiday Travel Vehicles sys-

tem. As the salespeople are entering a sales invoice

into the system, they will be able to either enter an

option code into a text box, or select an option code

from a drop-down list. A combo box was used to

implement this, since it was felt that the salespeople

would quickly become familiar with the most com-

mon option codes and would prefer entering them

directly to speed up the entry process.

It is now time to develop the test for validating the

option code field during data entry. If the customer

did not request any dealer-installed options for the

vehicle, the salesperson should enter “none”; the field

should not be blank. The valid option codes are four-

character alphabetic codes and should be matched

against a list of valid codes.

Prepare a test plan for the test of the option code

field during data entry.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

This chapter examines the activities needed to install the information system and suc-

cessfully convert the organization to using it. It also discusses post-implementation activi-

ties, such as system support, system maintenance, and project assessment. Installing the

system and making it available for use from a technical perspective is relatively straightfor-

ward. However, the training and organizational issues surrounding the installation are

more complex and challenging because they focus on people, not computers.

OBJECTIVES

■ Be familiar with the system installation process.
■ Understand different types of conversion strategies and when to use them.
■ Understand several techniques for managing change.
■ Be familiar with post-installation processes.

CHAPTER OUTLINE

INTRODUCTION

It must be remembered that there is nothing more difficult to plan, more doubtful of success,

nor more dangerous to manage than the creation of a new system. For the initiator has the ani-

mosity of all who would profit by the preservation of the old institution and merely lukewarm

defenders in those who would gain by the new.

—Machiavelli, The Prince, 1513

Introduction

Conversion

Conversion Style

Conversion Location

Conversion Modules

Selecting the Appropriate Conversion

Strategy

Change Management

Understanding Resistance to Change

Revising Management Policies

Assessing Costs and Benefits

Motivating Adoption

Enabling Adoption: Training

Post-Implementation Activities

System Support

System Maintenance

Project Assessment

Applying the Concepts at CD Selections

Conversion

Change Management

Post-Implementation Activities

Summary

C H A P T E R 1 5

Installation and Operations

487

C
op

yr
ig

ht
ed

 M
at

er
ia

l

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Although written almost 500 years ago, Machiavelli’s comments are still true today. Man-

aging the change to a new system—whether it is computerized or not—is one of the most

difficult tasks in any organization. Because of the challenges involved, most organizations

begin developing their conversion and change management plans while the programmers are

still developing the software. Leaving conversion and change management planning to the

last minute is a recipe for failure.

In many ways, using a computer system or set of work processes is much like driving on

a dirt road. Over time with repeated use, the road begins to develop ruts in the most com-

monly used parts of the road. Although these ruts show where to drive, they make change

difficult. As people use a computer system or set of work processes, those systems/work

processes begin to become habits or norms; people learn them and become comfortable

with them. These systems or work processes then begin to limit people’s activities and make

it difficult for them to change because they begin to see their jobs in terms of these processes

rather than of the final business goal of serving customers.

One of the earliest models for managing organizational change was developed by Kurt

Lewin.1 Lewin argued that change is a three-step process: unfreeze, move, refreeze (Figure

15-1). First, the project team must unfreeze the existing habits and norms (the As-Is sys-

tem) so that change is possible. Most of the systems development life cycle (SDLC) to this

point has laid the groundwork for unfreezing. Users are aware of the new system being

developed, some have participated in an analysis of the current system (and so are aware of

its problems), and some have helped design the new system (and so have some sense of the

potential benefits of the new system). These activities have helped to unfreeze the current

habits and norms.

The second step is to help the organization move to the new system via a migration

plan. The migration plan has two major elements. One is technical, which includes how the

new system will be installed and how data in the As-Is system will be moved into the To-

Be system; this is discussed in the Conversion section of this chapter. The second compo-

nent is organizational, which includes helping users understand the change and motivating

them to adopt it; this is discussed in the Change Management section of this chapter.

The third step is to refreeze the new system as the habitual way of performing the work

processes—ensuring that the new system successfully becomes the standard way of per-

forming the business function it supports. This refreezing process is a key goal of the Post-

implementation Activities discussed in the final section of this chapter. By providing

488 Chapter 15 Installation and Operations

1 Kurt Lewin, “Frontiers in Group Dynamics,” Human Relations, 1, no. 5 (1947:5–41), and Kurt Lewin, “Group
Decision and Social Change” in E.E. Maccoby, T.M. Newcomb, and E.L. Hartley (eds.), Readings in Social Psy-
chology (New York: Holt, Rinehart & Winston, 1958), pp. 197–211.

As-is
system

To-Be
system

Unfreeze
Analysis and

design

Refreeze
Support and

maintenance

Transition

Move
Migration plan:
■ Technical conversion
■ Change managementFIGURE 15-1

Implementing Change

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

ongoing support for the new system and immediately beginning to identify improvements

for the next version of the system, the organization helps solidify the new system as the new

habitual way of doing business. Post-implementation activities include system support,

which means providing help desk and telephone support for users with problems; system

maintenance, which means fixing bugs and improving the system after it has been installed;

and project assessment, which means the process of evaluating the project to identify what

went well and what could be improved for the next system development project.

Change management is the most challenging of the three components because it

focuses on people, not technology, and because it is the one aspect of the project that is the

least controllable by the project team. Change management means winning the hearts and

minds of potential users and convincing them that the new system actually provides value.

Maintenance is the most costly aspect of the installation process, because the cost of

maintaining systems usually greatly exceeds the initial development costs. It is not unusual

for organizations to spend 60 to 80 percent of their total IS development budget on main-

tenance. Although this may sound surprising initially, think about the software you use.

How many software packages do you use that are the very first version? Most commercial

software packages become truly useful and enter widespread use only in their second or

third version. Maintenance and continual improvement of software is ongoing, whether it

is a commercially available package or software developed in-house. Would you buy soft-

ware if you knew that no new versions were going to be produced? Of course, commercial

software is somewhat different from custom in-house software used by only one company,

but the fundamental issues remain.

Project assessment is probably the least commonly performed part of the SDLC but

is perhaps the one that has the most long-term value to the IS department. Project assess-

ment enables project team members to step back and consider what they did right and

what they could have done better. It is an important component in the individual growth

and development of each member of the team, because it encourages team members to

learn from their successes and failures. It also enables new ideas or new approaches to sys-

tem development to be recognized, examined, and shared with other project teams to

improve their performance.

CONVERSION

Conversion is the technical process by which the new system replaces the old system. Users

are moved from using the As-Is business processes and computer programs to the To-Be

business processes and programs. The migration plan specifies what activities will be per-

formed when and by whom and includes both technical aspects (such as installing hard-

ware and software and converting data from the As-Is system to the To-Be system) and

organizational aspects (such as training and motivating the users to embrace the new sys-

tem). Conversion refers to the technical aspects of the migration plan.

There are three major steps to the conversion plan before commencement of operations:

install hardware, install software, and convert data (Figure 15-2). Although it may be possible to

do some of these steps in parallel, usually they must be done sequentially at any one location.

The first step in the conversion plan is to buy and install any needed hardware. In

many cases, no new hardware is needed, but sometimes the project requires such new hard-

ware as servers, client computers, printers, and networking equipment. It is critical to work

closely with vendors who are supplying needed hardware and software to ensure that the

deliveries are coordinated with the conversion schedule so that the equipment is available

when it is needed. Nothing can stop a conversion plan in its tracks as easily as the failure of

a vendor to deliver needed equipment.

Conversion 489

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Once the hardware is installed, tested, and certified as being operational, the second

step is to install the software. This includes the To-Be system under development, and

sometimes additional software that must be installed to make the system operational. For

example, the CD Selections Internet sales system needs Web server software. At this point,

the system is usually tested again to ensure that it operates as planned.

The third step is to convert the data from the As-Is system to the To-Be system. Data

conversion is usually the most technically complicated step in the migration plan. Often,

separate programs must be written to convert the data from the As-Is system to the new

formats required in the To-Be system and store it in the To-Be system files and databases.

This process is often complicated by the fact that the files and databases in the To-Be sys-

tem do not exactly match the files and databases in the As-Is system (e.g., the To-Be system

may use several tables in a database to store customer data that was contained in one file in

the As-Is system). Formal test plans are always required for data conversion efforts (see

Chapter 14).

Conversion can be thought of along three dimensions: the style by which the conver-

sion is done (conversion style), what location or work groups are converted at what time

(conversion location), and what modules of the system are converted at what time (conver-

sion modules). Figure 15-3 shows the potential relationships among these three dimensions.

490 Chapter 15 Installation and Operations

Commence

operations

Conversion Plan

(Technical Issues)

Install hardware

Install software

Convert data

Change Management Plan

(Organizational Issues)

Revise management policies

Conduct training

Assess costs and benefits

Motivate adoption

FIGURE 15-2
Elements of a

Migration Plan

PhasedPilot

Modular

Whole system

Direct

Parallel

Simultaneous

Location

Modules

Style

FIGURE 15-3
Conversion Strategies

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Conversion Style

The conversion style is the way in which users are switched between the old and new sys-

tems. There are two fundamentally different approaches to the style of conversion: direct

conversion and parallel conversion.

Direct Conversion With direct conversion (sometimes called cold turkey, big bang, or

abrupt cutover), the new system instantly replaces the old system. The new system is turned

on and the old system is immediately turned off. This is the approach that you probably

use when you upgrade commercial software (e.g., Microsoft Word) from one version to

another; you simply begin using the new version and stop using the old version.

Direct conversion is the simplest and most straightforward. However, it is the most

risky, because any problems with the new system that have escaped detection during test-

ing may seriously disrupt the organization.

Parallel Conversion With parallel conversion, the new system is operated side by side

with the old system; both systems are used simultaneously. For example, if a new account-

ing system is installed, the organization enters data into both the old system and the new

system and then carefully compares the output from both systems to ensure that the new

system is performing correctly. After some time period (often one to two months) of par-

allel operation and intense comparison between the two systems, the old system is turned

off and the organization continues using the new system.

This approach is more likely to catch any major bugs in the new system and prevent

the organization from suffering major problems. If problems are discovered in the new sys-

tem, the system is simply turned off and fixed and then the conversion process starts again.

The problem with this approach is the added expense of operating two systems that per-

form the same function.

Conversion Location

Conversion location refers to those parts of the organization that are converted at what

points in time. Often, parts of the organization are physically located in different offices

(e.g., Toronto, Atlanta, Los Angeles). In other cases, location refers to different organiza-

tional units located in different parts of the same office complex (e.g., order entry, ship-

ping, purchasing). There are at least three fundamentally different approaches to selecting

the way in which different organizational locations are converted: pilot conversion, phased

conversion, and simultaneous conversion.

Pilot Conversion With a pilot conversion, one or more locations or units/work groups

within a location are selected to be converted first as part of a pilot test. The locations par-

ticipating in the pilot test are converted (using either direct or parallel conversion). If the

system passes the pilot test, then the system is installed at the remaining locations (again

using either direct or parallel conversion).

Pilot conversion has the advantage of providing an additional level of testing before

the system is widely deployed throughout the organization, so that any problems with the

system affect only the pilot locations. However, this type of conversion obviously requires

more time before the system is installed at all organizational locations. Also, it means that

different organizational units are using different versions of the system and business

processes, which may make it difficult for them to exchange data.

Phased Conversion With phased conversion, the system is installed sequentially at dif-

ferent locations. A first set of locations are converted, then a second set, then a third set,

Conversion 491

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

and so on, until all locations are converted. Sometimes there is a deliberate delay between

the different sets (at least between the first and the second), so that any problems with the

system are detected before too much of the organization is affected. In other cases, the sets

are converted back-to-back so that as soon as those converting one location have finished,

the project team moves to the next and continues the conversion.

Phased conversion has the same advantages and disadvantages of pilot conversion. In

addition, it means that a smaller set of people are required to perform the actual conver-

sion (and any associated user training) than if all locations were converted at once.

Simultaneous Conversion Simultaneous conversion, as the name suggests, means that all

locations are converted at the same time. The new system is installed and made ready at all

locations, and at a preset time, all users begin using the new system. Simultaneous conver-

sion is often used with direct conversion, but it can also be used with parallel conversion.

Simultaneous conversion eliminates problems with having different organiza-

tional units using different systems and processes. However, it also means that the

organization must have sufficient staff to perform the conversion and train the users

at all locations simultaneously.

Conversion Modules

Although it is natural to assume that systems are usually installed in their entirety, this is

not always the case.

Whole System Conversion Whole-system conversions, in which the entire system is

installed at one time, is the most common. It is simple and the easiest to understand. How-

ever, if the system is large and/or extremely complex (e.g., an enterprise resource planning

system such as SAP or PeopleSoft), the whole system may prove too difficult for users to

learn in one conversion step.

Modular Conversion When the modules2 within a system are separate and distinct,

organizations sometimes choose to convert to the new system one module at a time—that

is, modular conversion. Modular conversion requires special care in developing the system

492 Chapter 15 Installation and Operations

When the European Union decided to introduce the
euro, the European Central Bank had to develop a new
computer system (called Target) to provide a currency set-
tlement system for use by investment banks and broker-
ages. Prior to the introduction of the euro, settlement was
performed between the central banks of the countries
involved. After the introduction, the Target system, which
consists of fifteen national banking systems, would settle
trades and perform currency conversions for cross-border
payments for stocks and bonds.

Source: Thomas Hoffman, “Debut of Euro Nearly Flawless,” Computer-

world, 33, no. 2 (January 11, 1999): 16.

Question:

1. Implementing Target was a major undertaking for a
number of reasons. If you were an analyst on the
project, what kinds of issues would you have to
address to make sure the conversion happened suc-
cessfully?

15-A Converting to the Euro (Part 1)CONCEPTS

IN ACTION

2 In this case, a module is typically a component or a package, that is, a set of collaborating classes.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

(and usually adds extra cost). Each module either must be written to work with both the

old and new systems or object wrappers (see Chapter 9) must be used to encapsulate the

old system from the new. When modules are tightly integrated, this is very challenging and

therefore seldom done. However, when there is only a loose association between modules,

this becomes easier. For example, consider a conversion from an old version of Microsoft

Office to a new version. It is relatively simple to convert from the old version of Word to

the new version without simultaneously having to change from the old to the new version

of Microsoft Excel.

Modular conversion reduces the amount of training required to begin using the new

system. Users need training in only the new module being implemented. However, modu-

lar conversion does take longer and has more steps than does the whole-system process.

Selecting the Appropriate Conversion Strategy

Each of the three dimensions in Figure 15-3 is independent, so that a conversion strategy

can be developed to fit in any one of the boxes in this figure. Different boxes can also be

mixed and matched into one conversion strategy. For example, one commonly used

approach is to begin with a pilot conversion of the whole system using parallel conversion

in a handful of test locations. Once the system has passed the pilot test at these locations,

it is then installed in the remaining locations using phased conversion with direct cutover.

There are three important factors to consider in selecting a conversion strategy: risk, cost,

and the time required (Figure 15-4).

Risk After the system has passed a rigorous battery of unit, system, integration, and

acceptance testing, it should be bug free … maybe. Because humans make mistakes, noth-

ing built by people is ever perfect. Even after all these tests, there may still be a few undis-

covered bugs. The conversion process provides one last step in which to catch these bugs

before the system goes live and the bugs have the chance to cause problems.

Parallel conversion is less risky than is direct conversion because it has a greater chance

of detecting bugs that have gone undiscovered in testing. Likewise, pilot conversion is less

risky than is phased conversion or simultaneous conversion because if bugs do occur, they

occur in pilot test locations whose staff are aware that they may encounter bugs. Since

potential bugs affect fewer users, there is less risk. Likewise, converting a few modules at a

time lowers the probability of a bug because there is more likely to be a bug in the whole

system than in any given module.

How important the risk is depends on the system being implemented—the combina-

tion of the probability that bugs remain undetected in the system and the potential cost of

those undetected bugs. If the system has indeed been subjected to extensive methodical

testing, including alpha and beta testing, then the probability of undetected bugs is lower

than if the testing was less rigorous. However, there still might have been mistakes made in

Conversion 493

Risk High Low Low Medium High High Medium
Cost Low High Medium Medium High Medium High
Time Short Long Medium Long Short Short Long

Conversion Style Conversion Location Conversion Modules

Direct Parallel Pilot Phased Simultaneous Whole-System Modular
Characteristic Conversion Conversion Conversion Conversion Conversion Conversion Conversion

FIGURE 15-4 Characteristics of Conversion Strategies

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

the analysis process, so that although there might be no software bugs, the software might

fail to properly address the business needs.

Assessing the cost of a bug is challenging, but most analysts and senior managers can

make a reasonable guess at the relative cost of a bug. For example, the cost of a bug in an

automated stock market trading program or a heart-lung machine keeping someone alive

is likely to be much greater than a bug in a computer game or word processing program.

Therefore, risk is likely to be a very important factor in the conversion process if the sys-

tem has not been as thoroughly tested as it might have been and/or if the cost of bugs is

high. If the system has been thoroughly tested and/or the cost of bugs is not that high, then

risk becomes less important to the conversion decision.

Cost As might be expected, different conversion strategies have different costs. These

costs can include things such as salaries for people who work with the system (e.g.,

users, trainers, system administrators, external consultants), travel expenses, operation

expenses, communication costs, and hardware leases. Parallel conversion is more

expensive than direct cutover because it requires that two systems (the old and the

new) be operated at the same time. Employees must now perform twice the usual work

because they have to enter the same data into both the old and the new systems. Par-

allel conversion also requires the results of the two systems to be completely cross-

checked to make sure there are no differences between the two, which entails

additional time and cost.

Pilot conversion and phased conversion have somewhat similar costs. Simultaneous

conversion has higher costs because more staff are required to support all the locations as

they simultaneously switch from the old to the new system. Modular conversion is more

expensive than whole system conversion because it requires more programming. The old

system must be updated to work with selected modules in the new system, and modules in

the new system must be programmed to work with selected modules in both the old and

new systems.

Time The final factor is the amount of time required to convert between the old and

the new system. Direct conversion is the fastest because it is immediate. Parallel con-

version takes longer because the full advantages of the new system do not become avail-

able until the old system is turned off. Simultaneous conversion is fastest because all

locations are converted at the same time. Phased conversion usually takes longer than

pilot conversion because usually (but not always) once the pilot test is complete all

remaining locations are simultaneously converted. Phased conversion proceeds in

waves, often requiring several months before all locations are converted. Likewise, mod-

ular conversion takes longer than whole system conversion because the models are

introduced one after another.

494 Chapter 15 Installation and Operations

Suppose you are leading the conversion from one
word processor to another at your university. Develop
a conversion plan (i.e., technical issues only). You
have also been asked to develop a conversion plan for

the university’s new Web-based course registration
system. How would the second conversion plan be
similar to and different from the one you developed for
the word processor?

15-1 Developing a Conversion PlanYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

CHANGE MANAGEMENT

In the context of a systems development project, change management is the process of help-

ing people to adopt and adapt to the To-Be system and its accompanying work processes

without undue stress.3 There are three key roles in any major organizational change. The

first is the sponsor of the change—the person who wants the change. This person is the

business sponsor who first initiated the request for the new system (see Chapter 3). Usu-

ally, the sponsor is a senior manager of the part of the organization that must adopt and

use the new system. It is critical that the sponsor be active in the change management

process because a change that is clearly being driven by the sponsor, not by the project team

or the IS organization, has greater legitimacy. The sponsor has direct management author-

ity over those who adopt the system.

The second role is that of the change agent—the person(s) leading the change effort.

The change agent, charged with actually planning and implementing the change, is usually

someone outside of the business unit adopting the system and therefore has no direct man-

agement authority over the potential adopters. Because the change agent is an outsider

from a different organizational culture, he or she has less credibility than do the sponsor

and other members of the business unit. After all, once the system has been installed, the

change agent usually leaves and thus has no ongoing impact.

The third role is that of potential adopter or target of the change—the people who

actually must change. These are the people for whom the new system is designed and who

will ultimately choose to use or not use the system.

Change Management 495

Throughout the 1960s, 1970s, and 1980s, the U.S. Army
automated its installations (army bases, in civilian terms).
Automation was usually a local effort at each of the more
than 100 bases. Although some bases had developed soft-
ware together (or borrowed software developed at other
bases), each base often had software that performed dif-
ferent functions or performed the same function in differ-
ent ways. In 1989, the army decided to standardize the
software so that the same software would be used every-
where. This would greatly reduce software maintenance
and also reduce training when soldiers were transferred
between bases.

The software took four years to develop. The system
was quite complex and the project manager was con-
cerned that there was a high risk that not all requirements
of all installations had been properly captured. Cost and
time were less important, since the project had already
run four years and cost $100 million.

Therefore, the project manager chose a modular pilot
conversion using parallel conversion. The manager
selected seven installations, each representing a different
type of army installation (e.g., training base, arsenal, depot)
and began the conversion. All went well, but several new
features were identified that had been overlooked during
the analysis, design, and construction. These were added
and the pilot testing resumed. Finally, the system was
installed in the rest of the army installations using a phased
direct conversion of the whole system.

—Alan Dennis

Question:

1. Do you think the conversion strategy was appropriate?

2. Regardless of whether you agree, what other con-
version strategy could have been used?

15-B U.S. Army Installation SupportCONCEPTS

IN ACTION

3 Many books have been written on change management. Some of our favorites are the following: Patrick Con-
nor and Linda Lake, Managing Organizational Change, 2nd ed. (Westport, CT: Praeger, 1994); Douglas Smith,
Taking Charge of Change (Reading, MA: Addison-Wesley, 1996); and Daryl Conner, Managing at the Speed of
Change (New York: Villard Books, 1992).

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

In the early days of computing, many project teams simply assumed that their job

ended when the old system was converted to the new system at a technical level. The phi-

losophy was “build it and they will come.” Unfortunately, that happens only in the movies.

Resistance to change is common in most organizations. Therefore, the change management

plan is an important part of the overall installation plan that glues together the key steps in

the change management process. Successful change requires that people want to adopt the

change and are able to adopt the change. The change management plan has four basic

steps: revising management policies, assessing the cost and benefit models of potential

adopters, motivating adoption, and enabling people to adopt through training (see Figure

15-2). However, before we can discuss the change management plan, we must first under-

stand why people resist change.

Understanding Resistance to Change4

People resist change—even change for the better—for very rational reasons. What is good

for the organization is not necessarily good for the people who work there. For example,

consider an order-processing clerk who used to receive orders to be shipped on paper ship-

ping documents but now uses a computer to receive the same information. Rather than

typing shipping labels with a typewriter, the clerk now clicks on the print button on the

computer and the label is produced automatically. The clerk can now ship many more

orders each day, which is a clear benefit to the organization. The clerk, however, probably

doesn’t really care how many packages are shipped. His or her pay doesn’t change; it’s just

a question of which the clerk prefers to use, a computer or typewriter. Learning to use the

new system and work processes—even if the change is minor—requires more effort than

continuing to use the existing well-understood, system and work processes.

So why do people accept change? Simply put, every change has a set of costs and ben-

efits associated with it. If the benefits of accepting the change outweigh the costs of the

change, then people change. And sometimes the benefit of change is avoidance of the pain

that you would experience if you did not adopt the change (e.g., if you don’t change, you

are fired, so one of the benefits of adopting the change is that you still have a job).

In general, when people are presented with an opportunity for change, they perform a

cost–benefit analysis (sometime consciously, sometimes subconsciously) and decide the

extent to which they will embrace and adopt the change. They identify the costs of and ben-

efits from the system and decide whether the change is worthwhile. However, it is not that

simple, because most costs and benefits are not certain. There is some uncertainty as to

whether a certain benefit or cost will actually occur; so both the costs of and benefits from

the new system will need to be weighted by the degree of certainty associated with them

(Figure 15-5). Unfortunately, most humans tend to overestimate the probability of costs

and underestimate the probability of benefits.

There are also costs and sometimes benefits associated with the actual transition

process itself. For example, suppose you found a nicer house or apartment than your cur-

rent one. Even if you liked it better, you might decide not to move simply because the cost

of moving outweighed the benefits from the new house or apartment itself. Likewise,

adopting a new computer system might require you to learn new skills, which could be seen

as a cost to some people, or as a benefit to others, if they perceived that those skills would

somehow provide other benefits beyond the use of the system itself. Once again, any costs

and benefits from the transition process must be weighted by the certainty with which they

will occur (see Figure 15-5).

496 Chapter 15 Installation and Operations

4 This section benefited from conversations with Dr. Robert Briggs, research scientist at the Center for the Man-
agement of Information at the University of Arizona.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Taken together, these two sets of costs and benefits (and their relative certainties) affect

the acceptance of change or resistance to change that project teams encounter when

installing new systems in organizations. The first step in change management is to under-

stand the factors that inhibit change—the factors that affect the perception of costs and

benefits and certainty that they will be generated by the new system. It is critical to under-

stand that the real costs and real benefits are far less important than the perceived costs and

perceived benefits. People act on what they believe to be true, not on what is true. Thus, any

understanding of how to motivate change must be developed from the viewpoint of the

people expected to change, not from the viewpoint of those leading the change.

Revising Management Policies

The first major step in the change management plan is to change the management policies

that were designed for the As-Is system to new management policies designed to support the

To-Be system. Management policies provide goals, define how work processes should be per-

formed, and determine how organizational members are rewarded. No computer system will

be successfully adopted unless management policies support its adoption. Many new com-

puter systems bring changes to business processes; they enable new ways of working. Unless

the policies that provide the rules and rewards for those processes are revised to reflect the

new opportunities that the system permits, potential adopters cannot easily use it.

Management has three basic tools for structuring work processes in organizations.5

The first are the standard operating procedures (SOPs) that become the habitual routines for

how work is performed. The SOPs are both formal and informal. Formal SOPs define

proper behavior. Informal SOPs are the norms that have developed over time for how

processes are actually performed. Management must ensure that the formal SOPs are

revised to match the To-Be system. The informal SOPs will then evolve to refine and fill in

details absent in the formal SOPs.

The second aspect of management policy is defining how people assign meaning to

events. What does it mean to “be successful” or “do good work”? Policies help people under-

stand meaning by defining measurements and rewards. Measurements explicitly define mean-

ing because they provide clear and concrete evidence about what is important to the

organization. Rewards reinforce measurements because “what gets measured gets done” (an

Change Management 497

As-Is
System

Restraining
Factors

Enabling
Factors

Costs of
Transition

X
Certainty of

Costs
Occurring

Benefits of
Transition

X
Certainty of

Benefits
Occurring

To-Be
System

Transition

Restraining
Factors

Enabling
Factors

Costs of
To-Be System

X
Certainty of

Costs
Occurring

Benefits of
To-Be System

X
Certainty of

Benefits
Occurring

FIGURE 15-5
The Costs and Benefits

of Change

5 This section builds on the work of Anthony Giddons, The Constitution of Society: Outline of the Theory of Structure
(Berkeley: University of California Press, 1984). A good summary of Giddons’s theory that has been revised and
adapted for use in understanding information systems is an article by Wanda Orlikowski and Dan Robey: “Infor-
mation Technology and the Structuring of Organizations,” Information Systems Research, 2, no. 2 (1991): 143–169.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

overused but accurate saying).Measurements must be carefully designed to motivate desired behav-

ior. The IBM credit example (Your Turn 5-2 in Chapter 5) illustrates the problem with flawed mea-

surements’ driving improper behavior (when the credit analysts became too busy to handle credit

requests, they would find nonexistent errors so they could return them unprocessed).

A third aspect of management policy is resource allocation. Managers can have clear

and immediate impacts on behavior by allocating resources. They can redirect funds and

staff from one project to another, create an infrastructure that supports the new system,

and invest in training programs. Each of these activities has both a direct and symbolic

effect. The direct effect comes from the actual reallocation of resources. The symbolic effect

shows that management is serious about its intentions. There is less uncertainty about

management’s long-term commitment to a new system when potential adopters see

resources being committed to support it.

Assessing Costs and Benefits

The next step in developing a change management plan is to develop two clear and concise

lists of costs and benefits provided by the new system (and the transition to it) compared

with the As-Is system. The first list is developed from the perspective of the organization,

which should flow easily from the business case developed during the feasibility study and

refined over the life of the project (see Chapter 3). This set of organizational costs and ben-

efits should be distributed widely so that everyone expected to adopt the new system

should clearly understand why the new system is valuable to the organization.

The second list of costs and benefits is developed from the viewpoints of the different

potential adopters expected to change, or stakeholders in the change. For example, one set

of potential adopters may be the frontline employees, another may be the first-line super-

visors, and yet another might be middle management. Each of these potential

adopters/stakeholders may have a different set of costs and benefits associated with the

change—costs and benefits that can differ widely from those of the organization. In some

situations, unions may be key stakeholders that can make or break successful change.

Many systems analysts naturally assume that frontline employees are the ones whose

set of costs and benefits are the most likely to diverge from those of the organization and

thus are the ones who most resist change. However, they usually bear the brunt of prob-

lems with the current system. When problems occur, they often experience them first-

hand. Middle managers and first-line supervisors are the most likely to have a divergent

set of costs and benefits and therefore resist change because new computer systems often

change how much power they have. For example, a new computer system may improve

the organization’s control over a work process (a benefit to the organization) but reduce

the decision-making power of middle management (a clear cost to middle managers).

An analysis of the costs and benefits for each set of potential adopters/stakeholders will

help pinpoint those who will likely support the change and those who may resist the change.

498 Chapter 15 Installation and Operations

Identify and explain three standard operating procedures
for the course in which you are using this book. Discuss

whether they are formal or informal.

15-2 Standard Operating ProceduresYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

The challenge at this point is to try to change the balance of the costs and benefits for those

expected to resist the change so that they support it (or at least do not actively resist it).

This analysis may uncover some serious problems that have the potential to block the

successful adoption of the system. It may be necessary to reexamine the management poli-

cies and make significant changes to ensure that the balance of costs and benefits is such

that important potential adopters are motivated to adopt the system.

Figure 15-6 summarizes some of the factors that are important to successful change.

The first and most important reason is a compelling personal reason to change. All change

is made by individuals, not organizations. If there are compelling reasons for the key

groups of individual stakeholders to want the change, then the change is more likely to be

successful. Factors such as increased salary, reduced unpleasantness, and—depending on

the individuals—opportunities for promotion and personal development can be impor-

tant motivators. However, if the change makes current skills less valuable, individuals may

resist the change because they have invested a lot of time and energy in acquiring those

skills and anything that diminishes those skills may be perceived as diminishing the indi-

vidual (because important skills bring respect and power).

There must also be a compelling reason for the organization to need the change; other-

wise, individuals become skeptical that the change is important and are less certain it will in

fact occur. Probably the hardest organization to change is an organization that has been suc-

cessful because individuals come to believe that what worked in the past will continue to work.

By contrast, in an organization that is on the brink of bankruptcy, it is easier to convince indi-

viduals that change is needed. Commitment and support from credible business sponsors and

top management are also important in increasing the certainty that the change will occur.

The likelihood of successful change is increased when the cost of the transition to indi-

viduals who must change is low. The need for significantly different new skills or disrup-

tions in operations and work habits may create resistance. A clear migration plan

developed by a credible change agent who has support from the business sponsor are

important factors in increasing the certainty about the costs of the transition process.

Change Management 499

One of the first commercial software packages I developed
was a decision support system to help schedule orders in a
paper mill (see Concepts in Action 5-B in Chapter 5). The
system was designed to help the person who scheduled
orders decide when to schedule particular orders to reduce
waste in the mill. This was a very challenging problem—so
challenging, in fact, that it usually took the scheduler a year
or two to really learn how to do the job well.

The software was tested by a variety of paper mills
over the years and always reduced the amount of waste,
usually by about 25 percent but sometimes by 75 percent
when a scheduler new to the job was doing the schedul-
ing. Although we ended up selling the package to most
paper mills that tested it, we usually encountered signifi-
cant resistance from the person doing the scheduling

(except when the scheduler was new to the job and the
package clearly saved a significant amount). At the time,
I assumed that the resistance to the system was related to
the amount of waste reduced: the less waste reduced, the
more resistance because the payback analysis showed it
took longer to pay for the software.

—Alan Dennis

Question:

1. What is another possible explanation for the different
levels of resistance encountered at different mills?

2. How might this be addressed?

15-C Understanding Resistance to a Decision Support SystemCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Motivating Adoption

The single most important factor in motivating a change is providing clear and con-

vincing evidence of the need for change. Simply put, everyone who is expected to adopt

the change must be convinced that the benefits from the To-Be system outweigh the

costs of changing.

500 Chapter 15 Installation and Operations

Factor Examples Effects Actions to Take

Benefits of To-Be
system

Compelling per-
sonal reason(s)
for change

Increased pay, fewer
unpleasant aspects,
opportunity for pro-
motion, most existing
skills remain valuable.

If the new system provides clear
personal benefits to those who
must adopt it, they are more
likely to embrace the change.

Perform a cost–benefit analy-
sis from the viewpoint of the
stakeholders, make changes
where needed, and actively
promote the benefits.

FIGURE 15-6 Major Factors in Successful Change

Certainty of
benefits

Compelling
organizational
reason(s) for
change

Risk of bankruptcy,
acquisition,
government
regulation.

If adopters do not understand
why the organization is
implementing the change,
they are less certain that the
change will occur.

Perform a cost–benefit analysis
from the viewpoint of the
organization and launch a
vigorous information
campaign to explain the
results to everyone.

Demonstrated top
management
support

Active involvement,
frequent mentions in
speeches.

If top management is not seen
to actively support the change,
there is less certainly that the
change will occur.

Encourage top management
to participate in the
information campaign.

Committed and
involved business
sponsor

Active involvement,
frequent visits to
users and project
team, championing.

If the business sponsor (the
functional manager who
initiated the project) is not
seen to actively support the
change, there is less certainty
that the change will occur.

Encourage the business
sponsor to participate in the
information campaign and
play an active role in the
change management plan.

Credible top
management and
business sponsor

Management and
sponsor who do what
they say instead of
being members of the
“management fad of
the month” club.

If the business sponsor and top
management have credibility
in the eyes of the adopters,
the certainty of the claimed
benefits is higher.

Ensure that the business
sponsor and/or top
management has credibility
so that such involvement
will help; if there is no
credibility involvement will
have little effect.

Costs of
transition

Low personal costs
of change

Few new skills needed. The cost of the change is not
borne equally by all
stakeholders; the costs are
likely to be higher for some.

Perform a cost–benefit analysis
from the viewpoint of the
stakeholders, make changes
where needed, and actively
promote the low costs.

Certainty of costs Clear plan for
change

Clear dates and
instructions for change,
clear expectations.

If there is a clear migration plan, it
will likely lower the perceived
costs of transition.

Publicize the migration plan.

Credible change
agent

Previous experience
with change, does
what he/she promises
to do.

If the change agent has
credibility in the eyes of the
adopters, the certainty of the
claimed costs is higher.

If the change agent is not
credible, then change will
be difficult.

Clear mandate for
change agent
from sponsor

Open support for
change agent when
disagreements occur.

If the change agent has a clear
mandate from the business
sponsor, the certainty of the
claimed costs is higher.

The business sponsor must
actively demonstrate
support for the change
agent.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

There are two basic strategies to motivating adoption: informational and political.

Both strategies are often used simultaneously. With an informational strategy, the goal is to

convince potential adopters that the change is for the better. This strategy works when the

cost–benefit set of the target adopters has more benefits than costs. In other words, there

really are clear reasons for the potential adopters to welcome the change.

Using this approach, the project team provides clear and convincing evidence of the

costs and benefits of moving to the To-Be system. The project team writes memos and devel-

ops presentations that outline the costs and benefits of adopting the system from the per-

spective of the organization and from the perspective of the target group of potential

adopters. This information is disseminated widely throughout the target group, much like

an advertising or public relations campaign. It must emphasize the benefits as well as

increase the certainty in the minds of potential adopters that these benefits will actually be

achieved. In our experience, it is always easier to sell painkillers than vitamins; that is, it is

easier to convince potential adopters that a new system will remove a major problem (or

other source of pain) than that it will provide new benefits (e.g., increase sales). Therefore,

informational campaigns are more likely to be successful if they stress the reduction or elim-

ination of problems, rather than focusing on the provision of new opportunities.

The other strategy to motivate change is a political strategy. With a political strategy,

organizational power, not information, is used to motivate change. This approach is often

used when the cost–benefit set of the target adopters has more costs than benefits. In other

words, although the change may benefit the organization, there are no reasons for the

potential adopters to welcome the change.

The political strategy is usually beyond the control of the project team. It requires

someone in the organization who holds legitimate power over the target group to influence

the group to adopt the change. This may be done in a coercive manner (e.g., “adopt the sys-

tem or you’re fired”) or in a negotiated manner, in which the target group gains benefits in

other ways that are linked to the adoption of the system (e.g., linking system adoption to

increased training opportunities). Management policies can play a key role in a political

strategy by linking salary to certain behaviors desired with the new system.

In general, for any change that has true organizational benefits, about 20 percent to 30

percent of potential adopters will be ready adopters. They recognize the benefits, quickly

adopt the system, and become proponents of the system. Another 20 percent to 30 percent

are resistant adopters. They simply refuse to accept the change and they fight against it, either

because the new system has more costs than benefits for them personally or because they

place such a high cost on the transition process itself that no amount of benefits from the

new system can outweigh the change costs. The remaining 40 percent to 60 percent are reluc-

tant adopters. They tend to be apathetic and will go with the flow to either support or resist

the system, depending on how the project evolves and how their coworkers react to the sys-

tem. Figure 15-7 illustrates the actors who are involved in the change management process.

The goal of change management is to actively support and encourage the ready

adopters and help them win over the reluctant adopters. There is usually little that can be

Change Management 501

How would you motivate adoption if you were the
developer of the decision support system described in

Concepts in Action 15-C earlier in this chapter?

15-D Overcoming Resistance to a Decision Support SystemCONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

done about the resistant adopters because their set of costs and benefits may be divergent

from those of the organization. Unless there are simple steps that can be taken to rebalance

their costs and benefits or the organization chooses to adopt a strongly political strategy, it

is often best to ignore this small minority of resistant adopters and focus on the larger

majority of ready and reluctant adopters.

Enabling Adoption: Training

Potential adopters may want to adopt the change, but unless they are capable of adopting

it, they won’t. Adoption is enabled by providing the skills needed to adopt the change

through careful training. Training is probably the most self-evident part of any change

management initiative. How can an organization expect its staff members to adopt a new

system if they are not trained? However, we have found that training is one of the most

commonly overlooked parts of the process. Many organizations and project managers sim-

ply expect potential adopters to find the system easy to learn. Since the system is presumed

to be so simple, it is taken for granted that potential adopters should be able to learn with

little effort. Unfortunately, this is usually an overly optimistic assumption.

Every new system requires new skills either because the basic work processes have

changed (sometimes radically in the case of business process reengineering [BPR]; see

Chapter 5) or because the computer system used to support the processes is different.

The more radical the changes to the business processes, the more important it is to

ensure the organization has the new skills required to operate the new business processes

and supporting information systems. In general, there are three ways to get these new

skills. One is to hire new employees who have the needed skills that the existing staff does

not. Another is to outsource the processes to an organization that has the skills that the

existing staff does not. Both of these approaches are controversial and are usually con-

sidered only in the case of BPR when the new skills needed are likely to be the most dif-

ferent from the set of skills of the current staff. In most cases, organizations choose the

third alternative: training existing staff in the new business processes and the To-Be sys-

tem. Every training plan must consider what to train and how to deliver the training.

What to Train What training should you provide to the system users? It’s obvious: how

to use the system. The training should cover all the capabilities of the new system so users

understand what each module does, right?

Wrong. Training for business systems should focus on helping the users to accom-

plish their jobs, not on how to use the system. The system is simply a means to an end, not

the end in itself. This focus on performing the job (i.e., the business processes), not using

the system, has two important implications. First, the training must focus on those activ-

ities around the system, as well as on the system itself. The training must help the users

understand how the computer fits into the bigger picture of their jobs. The use of the sys-

tem must be put in context of the manual business processes as well as of those that are

502 Chapter 15 Installation and Operations

The sponsor wants The change agent leads Potential adopters are the people
the change to occur. the change effort. who must change.

20–30 percent are ready adopters.

20–30 percent are resistant adopters.

40–60 percent are reluctant adopters.

FIGURE 15-7

Actors in the Change

Management Process

Sponsor Change Agent Potential Adopters

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

computerized, and it must also cover the new management policies that were imple-

mented along with the new computer system.

Second, the training should focus on what the user needs to do, not what the system can

do. This is a subtle—but very important—distinction. Most systems will provide far more

capabilities than the users will need to use (e.g., when was the last time you wrote a macro

in Microsoft Word?). Rather than attempting to teach the users all the features of the system,

training should instead focus on the much smaller set of activities that users perform on a

regular basis and ensure that users are truly expert in those. When the focus is on the 20 per-

cent of functions that the users will use 80 percent of the time (instead of attempting to

cover all functions), users become confident about their ability to use the system. Training

should mention the other little-used functions, but only so that users are aware of their exis-

tence and know how to learn about them when their use becomes necessary.

One source of guidance for designing training materials is the use cases. The use cases

outline the common activities that users perform and thus can be helpful in understanding

the business processes and system functions that are likely to be most important to the users.

How to Train There are many ways to deliver training. The most commonly used

approach is classroom training in which many users are trained at the same time by the

same instructor. This has the advantage of training many users at one time with only one

instructor and creates a shared experience among the users.

It is also possible to provide one-on-one training in which one trainer works closely

with one user at a time. This is obviously more expensive, but the trainer can design the

training program to meet the needs of individual users and can better ensure that the

users really do understand the material. This approach is typically used only when the

users are very important or when there are very few users.

Another approach that is becoming more common is to use some form of computer-

based training (CBT), in which the training program is delivered via computer, either on

CD or over the Web. CBT programs can include text slides, audio, and even video and

animation. CBT is typically more costly to develop but is cheaper to deliver because no

instructor is needed to actually provide the training.

Figure 15-8 summarizes four important factors to consider in selecting a training

method: cost to develop, cost to deliver, impact, and reach. CBT is typically more expensive

to develop than one-on-one or classroom training, but it is less expensive to deliver. One-

on-one training has the most impact on the user because it can be customized to the user’s

precise needs, knowledge, and abilities, whereas CBT has the least impact. However, CBT

has the greatest reach—the ability to train the most users over the widest distance in the

shortest time—because it is much simpler to distribute, than classroom and one-on-one

training, because no instructors are needed.

Figure 15-8 suggests a clear pattern for most organizations. If there are only a few users

to train, one-on-one training is the most effective. If there are many users to train, many

organizations turn to CBT. We believe that the use of CBT will increase in the future. Quite

Change Management 503

Suppose you are leading the conversion from one word
processor to another in your organization. Develop an

outline of topics that would be included in the training.
Develop a plan for training delivery.

15-3 Developing a Training PlanYOUR

TURN

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

often, large organizations use a combination of all three methods. Regardless of which

approach is used, it is important to leave the users with a set of easily accessible materials

that can be referred to long after the training has ended (usually a quick reference guide

and a set of manuals, whether on paper or in electronic form).

POST-IMPLEMENTATION ACTIVITIES

The goal of post-implementation activities is the institutionalization of the use of the new sys-

tem—that is to make it the normal, accepted, routine way of performing the business

processes. The post-implementation activities attempt to refreeze the organization after the

successful transition to the new system. Although the work of the project team naturally

winds down after implementation, the business sponsor and sometimes the project manager

are actively involved in refreezing. These two—and ideally many other stakeholders—actively

promote the new system and monitor its adoption and usage. They usually provide a steady

flow of information about the system and encourage users to contact them to discuss issues.

In this section, we examine three key post-implementation activities: system support

(providing assistance in the use of the system), system maintenance (continuing to refine

and improve the system), and project assessment (analyzing the project to understand what

activities were done well—and should be repeated—and what activities need improve-

ment in future projects).

System Support

Once the project team has installed the system and performed the change management activ-

ities, the system is officially turned over to the operations group. This group is responsible for

the operation of the system, whereas the project team was responsible for development of the

system. Members of the operations group usually are closely involved in the installation activ-

ities because they are the ones who must ensure that the system actually works. After the sys-

tem is installed, the project team leaves but the operations group remains.

Providing system support means helping the users to use the system. Usually, this

means providing answers to questions and helping users understand how to perform a

certain function; this type of support can be thought of as on-demand training.

Online support is the most common form of on-demand training. This includes the

documentation and help screens built into the system, as well as separate Web sites that

provide answers to frequently asked questions (FAQs) that enable users to find answers with-

out contacting a person. Obviously, the goal of most systems is to provide sufficiently good

online support so that the user doesn’t need to contact a person, because providing online

support is much less expensive than is providing a person to answer questions.

Most organizations provide a help desk that provides a place for a user to talk with a

person who can answer questions (usually over the phone, but sometimes in person). The

help desk supports all systems, not just one specific system, so it receives calls about a wide

variety of software and hardware. The help desk is operated by level 1 support staff who

504 Chapter 15 Installation and Operations

Cost to develop Low–Medium Medium High
Cost to deliver High Medium Low
Impact High Medium–High Low–Medium
Reach Low Medium High

One-on-One Classroom Computer-Based
Training Training Training

FIGURE 15-8

Selecting a Training

Method

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

have very broad computer skills and are able to respond to a wide range of requests, from

network problems and hardware problems to problems with commercial software and

problems with the business application software developed in-house.

The goal of most help desks is to have the level 1 support staff resolve 80 percent of the

help requests they receive on the first call. If the issue cannot be resolved by level 1 support

staff, a problem report (Figure 15-9) is completed (often using a special computer system

designed to track problem reports) and passed to a level 2 support staff member.

The level 2 support staff members are people who know the application system well

and can provide expert advice. For a new system, they are usually selected during the

implementation phase and become familiar with the system as it is being tested. Some-

times, the level 2 support staff members participate in training during the change manage-

ment process to become more knowledgeable with the system, the new business processes,

and the users themselves.

The level 2 support staff works with users to resolve problems. Most problems are

successfully resolved by the level 2 staff. However, sometimes, particularly in the first few

months after the system is installed, the problem turns out to be a bug in the software that

must be fixed. In this case, the problem report becomes a change request that is passed to

the system maintenance group (see the next section).

Post-Implementation Activities 505

• Time and date of the report
• Name, e-mail address, and telephone number of the

support person taking the report
• Name, e-mail address, and telephone number of the

person who reported the problem
• Software and/or hardware causing problem
• Location of the problem
• Description of the problem
• Action taken
• Disposition (problem fixed or forwarded to system

maintenance)

FIGURE 15-9

Elements of a

Problem Report

When the European Union decided to introduce the
euro, the European Central Bank had to develop a new
computer system (called Target) to provide a currency
settlement system for use by investment banks and
brokerages. The euro opened at an exchange rate of
U.S. $1.167. However, a rumor that the Target system
malfunctioned sent the value of the euro plunging two
days later.

That evening, it was determined that the malfunc-
tion was not due to system problems. Instead, operators
at some German banks had misunderstood how to use
the system and had entered incorrect data. Once the

problems were identified and the operators quickly
retrained, the Target system continued to operate and the
euro quickly regained its lost value.

Source: Thomas Hoffman, “Debut of euro nearly flawless,” Computer-

world, 33(2) (January 11, 1999), p. 16.

Question:

1. Target could be considered a high risk system
because of its effects on the European economy.
What kinds of system support activities could be
put in place to mitigate problems with Target?

15-E Converting to the Euro (Part 2)CONCEPTS

IN ACTION

TEMPLATE

can be found at
www.wiley.com
/college/dennis

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

System Maintenance

System maintenance is the process of refining the system to make sure it continues to meet

business needs. Substantially more money and effort is devoted to system maintenance

than to the initial development of the system, simply because a system continues to change

and evolve as it is used. Most beginning systems analysts and programmers work first on

maintenance projects; usually only after they have gained some experience are they

assigned to new development projects.

Every system is “owned” by a project manager in the IS group (Figure 15-10). This

individual is responsible for coordinating the systems maintenance effort for that system.

Whenever a potential change to the system is identified, a change request is prepared and

forwarded to the project manager. The change request is a “smaller” version of the system

request discussed in Chapters 1 and 3. It describes the change requested and explains why

the change is important.

506 Chapter 15 Installation and Operations

2. Change Request
with feasibility,
costs, and benefits

3. Priority

4. Change Request

5. Design

6. Changed
System

1. Potential
Change

Analyst

Users

Change Committee

Programmer

Project
Manager

Problem Reports

Results: Passed Open items:

Test ID: Requirement addressed:

Objective:

Test cases

Interface ID

Script

Expected results notes

Actual results notes

1.

2.

3.

4.

5.

6.

Data Field Value Entered

Problem Reports

ORD56-3.5 ZIP code/postal code blank

ORD56-3.5 ZIP code/postal code 9021

ORD56-3.5 ZIP code/postal code 90210

ORD56-3.5 ZIP code/postal code C1A58

ORD56-3.5 ZIP code/postal code CAA 2C6

ORD56-3.5

Test 3 and 6 are valid U.S. and Canadian codes that match tested city. All others should be rejected.

Test 3 and 6 accepted. Tests 1, 2, 4, and 5 were rejected with correct message.

ZIP code/postal code C1A 2C6

12 Verify ordering information

Ensure that the information entered by the customer on the place-order form is valid

Changes to Other Systems

Results: Passed Open items:

Test ID: Requirement addressed:

Objective:

Test cases

Interface ID

Script

Expected results notes

Actual results notes

1.

2.

3.

4.

5.

6.

Data Field Value Entered

Change Request

ORD56-3.5 ZIP code/postal code blank

ORD56-3.5 ZIP code/postal code 9021

ORD56-3.5 ZIP code/postal code 90210

ORD56-3.5 ZIP code/postal code C1A58

ORD56-3.5 ZIP code/postal code CAA 2C6

ORD56-3.5

Test 3 and 6 are valid U.S. and Canadian codes that match tested city. All others should be rejected.

Test 3 and 6 accepted. Tests 1, 2, 4, and 5 were rejected with z message.

ZIP code/postal code C1A 2C6

12 Verify ordering information

Ensure that the information entered by the customer on the place-order form is valid

Software or Network Changes

FIGURE 15-10 Processing a Change Request

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Changes can be small or large. Change requests that are likely to require a significant

effort are typically handled in the same manner as system requests: they follow the same

process as the project described in this book, starting with project initiation in Chapter 3 and

following through installation in this chapter. Minor changes typically follow a “smaller” ver-

sion of this same process. There is an initial assessment of feasibility and of costs and bene-

fits, and the change request is prioritized. Then a systems analyst (or a programmer/analyst)

performs the analysis, which may include interviewing users, and prepares an initial design

before programming begins. The new (or revised) program is then extensively tested before

the system is converted from the old system to the revised one.

Change requests typically come from five sources. The most common source is prob-

lem reports from the operations group that identify bugs in the system that must be fixed.

These are usually given immediate priority because a bug can cause significant problems.

Even a minor bug can cause major problems by upsetting users and reducing their accep-

tance of and confidence in the system.

The second most common source of change requests is enhancement to the system

from users. As users work with the system, they often identify minor changes in the design

that can make the system easier to use or identify additional functions that are needed.

Such enhancements are important in satisfying the users and are often key in ensuring that

the system changes as the business requirements change. Enhancements are often given

second priority after bug fixes.

Post-Implementation Activities 507

The awful truth is that every operating system and appli-
cation system is defective. System complexity, the com-
petitive pressure to hurry applications to market, and
simple incompetence contribute to the problem.

Will software ever be bug free? Not likely. Microsoft
Windows Group General Manager Chris Jones believes
that bigger programs breed more bugs. Each revision is
usually bigger and more complex than its predecessor,
which means new places for bugs to hide. Former
Microsoft product manager Richard Freedman agrees that
the potential for defects increases as software becomes
more complex, but he believes users ultimately win more
than they lose. “I’d say the features have gotten exponen-
tially better, and the product quality has degraded a frac-
tional amount.”

Still, the majority of users who responded to our sur-
vey said they’d buy a software program with fewer fea-
tures if it were bug free. This sentiment runs counter to
what most software developers believe. “People buy fea-
tures, plain and simple,” explains Freedman. “There have
been attempts to release stripped-down word processors
and spreadsheets, and they don’t sell.” Freedman says a
trend toward smaller, less-bug-prone software with fewer
features will “never happen.”

Eventually, the software ships and the bug reports
start rolling in. What happens next is what separates the
companies you want to patronize from the slackers.
While almost every vendor provides bug fixes eventu-
ally, some companies do a better job of it than others.
Some observers view Microsoft’s market dominance as
a roadblock to bug-free software. Todd Paglia, an attor-
ney with the Washington, D.C.–based Consumer Pro-
ject on Technology, says, “If actual competition for
operating systems existed and we had greater competi-
tion for some of the software that runs on the Microsoft
operating system, we would have higher quality than
we have now.”

Source: “Software Bugs Run Rampant,” PC World 17, no. 1(January

1999): 46.

Question:

1. If commercial systems contain the amount of
bugs that the above article suggests, what are the
implications for systems developed in-house?
Would in-house systems be more likely to have a
lower or higher quality than commercial sys-
tems? Explain.

15-F Software Bugs CONCEPTS

IN ACTION

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

A third source of change requests is other system development projects. For example,

as part of CD Selections’ Internet sales system project, CD Selections likely had to make

some minor changes to the distribution system to ensure that the two systems would work

together. These changes required by the need to integrate two systems are generally rare but

are becoming more common as system integration efforts become more common.

A fourth source of change requests are those that occur when underlying software or

networks change. For example, new versions of Windows often require an application to

change the way it interacts with Windows, or enables application systems to take advantage

of new features that improve efficiency. While users may never see these changes (because

most changes are inside the system and do not affect its user interface or functionality), these

changes can be among the most challenging to implement because analysts and program-

mers must learn about the new system characteristics, understand how application systems

use (or can use) those characteristics, and then make the needed programming changes.

The fifth source of change requests is senior management. These change requests are

often driven by major changes in the organization’s strategy (e.g., the CD Selections Inter-

net Sales project) or operations. These significant change requests are typically treated as

separate projects, but the project manager responsible for the initial system is often placed

in charge of the new project.

Project Assessment

The goal of project assessment is to understand what was successful about the system and the

project activities (and therefore should be continued in the next system or project) and what

needs to be improved. Project assessment is not routine in most organizations, except for

military organizations, which are accustomed to preparing after-action reports. Nonethe-

less, assessment can be an important component in organizational learning because it helps

organizations and people understand how to improve their work. It is particularly impor-

tant for junior staff members because it helps promote faster learning. There are two pri-

mary parts to project assessment—project team review and system review.

Project Team Review A project team review focuses on the way in which the project

team carried out its activities. Each project member prepares a short two- to three-

page document that reports and analyzes his or her performance. The focus is on per-

formance improvement, not penalties for mistakes made. By explicitly identifying

mistakes and understanding their causes, project team members will, it is hoped, be

better prepared for the next time they encounter a similar situation—and less likely to

repeat the same mistakes. Likewise, by identifying excellent performance, team mem-

bers will be able to understand why their actions worked well and how to repeat them

in future projects.

The documents prepared by each team member are assessed by the project manager,

who meets with the team members to help them understand how to improve their per-

formance. The project manager then prepares a summary document that outlines the key

learnings from the project. This summary identifies what actions should be taken in

future projects to improve performance but is careful not to identify team members who

made mistakes. The summary is widely circulated among all project managers to help

them understand how to manage their projects better. Often, it is also circulated among

regular staff members who did not work on the project so that they, too, can learn from

other projects.

System Review The focus of the system review is to understand the extent to which

the proposed costs and benefits from the new system that were identified during

508 Chapter 15 Installation and Operations

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

project initiation were actually recognized from the implemented system. Project team

review is usually conducted immediately after the system is installed, while key events

are still fresh in team members’ minds, but system review is often undertaken several

months after the system is installed because it often takes a while before the system can

be properly assessed.

System review starts with the system request and feasibility analysis prepared at the

start of the project. The detailed analyses prepared for the expected business value (both

tangible and intangible) as well as the economic feasibility analysis are reexamined and a

new analysis is prepared after the system has been installed. The objective is to compare the

anticipated business value against the actual realized business value from the system. This

helps the organization assess whether the system actually provided the value it was planned

to provide. Whether or not the system provides the expected value, future projects can ben-

efit from an improved understanding of the true costs and benefits.

A formal system review also has important behavior implications for project initia-

tion. Since everyone involved with the project knows that all statements about business

value and the financial estimates prepared during project initiation will be evaluated at

the end of the project, they have an incentive to be conservative in their assessments. No

one wants to be the project sponsor or project manager for a project that goes radically

over budget or fails to deliver promised benefits.

APPLYING THE CONCEPTS AT CD SELECTIONS

Installation of the Internet Sales System at CD Selections was somewhat simpler than the

installation of most systems because the system was entirely new; there was no As-Is sys-

tem for the new system to replace. Also there was not a large number of staff members who

needed to be trained on the operation of the new system.

Applying the Concepts at CD Selections 509

How do you avoid bugs in the commercial software you
buy? Here are six tips:

1. Know your software: Find out if the few programs you
use day in and day out have known bugs and patches,
and track the Web sites that offer the latest information
on them.

2. Back up your data: This dictum should be tattooed on
every monitor. Stop reading right now and copy the
data you can’t afford to lose onto a floppy disk, second
hard disk, or Web server. We’ll wait.

3. Don’t upgrade—yet: It’s tempting to upgrade to the
latest and greatest version of your favorite software,
but why chance it? Wait a few months, check out
other users’ experiences with the upgrade on Usenet

newsgroups or the vendor’s own discussion forum,
and then go for it. But only if you must.

4. Upgrade slowly: If you decide to upgrade, allow your-
self at least a month to test the upgrade on a separate
system before you install it on all the computers in
your home or office.

5. Forget the betas: Installing beta software on your primary
computer is a game of Russian roulette. If you really have
to play with beta software, get a second computer.

6. Complain: The more you complain about bugs and
demand remedies, the more costly it is for vendors to
ship buggy products. It’s like voting—the more people
participate, the better the results.

Source: “Software Bugs Run Rampant,” PC World 17, no. 1 (January

1999): 46.

15-1 Beating Buggy SoftwarePRACTICAL

TIP

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Conversion

Conversion went smoothly. First, the new hardware was purchased and installed. Then the

software was installed on the Web server and on the client computers to be used by the staff

of the Internet sales group. There was no data conversion per se, although the system

started receiving data downloaded from the distribution system every day as it would dur-

ing normal operations.

Alec Adams, senior systems analyst and project manager for CD Selections’ Internet sales

system, decided on a direct conversion (because there was no As-Is system) in the one location

(because there was only one location) of all system modules. The conversion, if you could call

it that, went smoothly through the alpha and beta tests described in Chapter 14, and the sys-

tem was declared technically ready for operation.

Change Management

There were few change management issues because there were no existing staff members

who had to change. All new staff were hired, most by internal transfer from other groups

within CD Selections. The most likely stakeholders to be concerned by the change would

be managers and employees in the traditional retail stores who might see the Internet sales

system as a threat to their stores. Alec therefore developed an information campaign (dis-

tributed through the employee newsletter and internal Web site) that discussed the reasons

for the change and explained that the Internet sales system was seen as a complement to

the existing stores, not as a competitor. The system was instead targeted at Web-based com-

petitors, such as Amazon.com and CDnow.

The new management policies were developed, along with a training plan that encom-

passed both the manual work procedures and computerized procedures. Alec decided to

use classroom training for the Internet sales system personnel because there was a small

number of them and it was simpler and more cost effective to train them all together in one

classroom session.

Post-Implementation Activities

Support of the system was turned over to the CD Selections operations group, who had

hired four additional support staff members with expertise in networking and Web-

based systems. System maintenance began almost immediately, with Alec designated as

the project manager responsible for maintenance of this version of the system plus the

development of the next version. Alec began the planning to develop the next version of

the system.

Project team review uncovered several key learnings, mostly involving Web-based pro-

gramming and the difficulties in linking to existing Structured Query Language (SQL) data-

bases. The project was delivered on budget (see Figure 3-13 in Chapter 3), with the exception

that more was spent on programming than was anticipated.

A preliminary system review was conducted after two months of operations. Sales

were $40,000 for the first month and $60,000 for the second, showing a gradual increase

(remember that the goal for the first year of operations was $1,000,000). Operating

expenses averaged $60,000 per month, a bit higher than the projected average, owing to

startup costs and the initial marketing campaign. Nonetheless, Margaret Mooney, vice

president of marketing and the project sponsor, was quite pleased. She approved the feasi-

bility study for the follow-on project to develop the second version of the Internet sales sys-

tem, and Alec began the SDLC all over again.

510 Chapter 15 Installation and Operations

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

SUMMARY

Conversion

Conversion, the technical process by which the new system replaces the old system, has

three major steps: install hardware, install software, and convert data. Conversion style, the

way in which users are switched between the old and new systems, can be via either direct

conversion (in which users stop using the old system and immediately begin using the new

system) or parallel conversion (in which both systems are operated simultaneously to

ensure the new system is operating correctly). Conversion location, what parts of the orga-

nization are converted when, can be via a pilot conversion in one location; via a phased

conversion, in which locations are converted in stages over time; or via simultaneous con-

version, in which all locations are converted at the same time. The system can be converted

module by module or as a whole at one time. Parallel and pilot conversion are less risky

because they have a greater chance of detecting bugs before the bugs have widespread

effect, but parallel conversion can be expensive.

Change Management

Change management is the process of helping people to adopt and adapt to the To-Be sys-

tem and its accompanying work processes. People resist change for very rational reasons,

usually because they perceive the costs to themselves of the new system (and the transition

to it) to outweigh the benefits. The first step in the change management plan is to change

the management policies (such as standard operating procedures), devise measurements

and rewards that support the new system, and allocate resources to support it. The second

step is to develop a concise list of costs and benefits to the organization and all relevant

stakeholders in the change, which will point out who is likely to support and who is likely

to resist the change. The third step is to motivate adoption both by providing information

and by using political strategies—using power to induce potential adopters to adopt the

new system. Finally, training, whether classroom, one-on-one, or computer based, is essen-

tial to enable successful adoption. Training should focus on the primary functions the users

will perform and look beyond the system itself to help users integrate the system into their

routine work processes.

Post-Implementation Activities

System support is performed by the operations group, which provides on-line and help

desk support to the users. System support has both a level 1 support staff, which

answers the phone and handles most of the questions, and level 2 support staff, which

follows up on challenging problems and sometimes generates change requests for bug

fixes. System maintenance responds to change requests (from the system support staff,

users, other development project teams, and senior management) to fix bugs and

improve the business value of the system. The goal of project assessment is to under-

stand what was successful about the system and the project activities (and therefore

should be continued in the next system or project) and what needs to be improved. Pro-

ject team review focuses on the way in which the project team carried out its activities

and usually results in documentation of key lessons learned. System review focuses on

understanding the extent to which the proposed costs and benefits from the new system

that were identified during project initiation were actually recognized from the imple-

mented system.

Summary 511

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

512 Chapter 15 Installation and Operations

KEY TERMS

QUESTIONS

Change agent

Change management

Change request

Classroom training

Computer-based training (CBT)

Conversion

Conversion location

Conversion modules

Conversion strategy

Conversion style

Cost

Direct conversion

Frequently asked question (FAQ)

Help desk

Informational strategy

Institutionalization

Level 1 support

Level 2 support

Management policies

Measurements

Migration plan

Modular conversion

Modules

On-demand training

One-on-one training

Online support

Operations group

Parallel conversion

Perceived benefits

Perceived costs

Phased conversion

Pilot conversion

Political strategy

Post-implementation

Potential adopter

Problem report

Project assessment

Project team review

Ready adopters

Real benefits

Real costs

Refreeze

Reluctant adopters

Resistant adopters

Resource allocation

Rewards

Risk

Simultaneous conversion

Sponsor

Standard operating procedure (SOP)

System maintenance

System request

System review

System support

Time

Training

Transition process

Unfreeze

Whole-system conversion

1. What are the three basic steps in managing organiza-

tional change?

2. What are the major components of a migration plan?

3. Compare and contrast direct conversion and parallel

conversion.

4. Compare and contrast pilot conversion, phased con-

version, and simultaneous conversion.

5. Compare and contrast modular conversion and

whole-system conversion.

6. Explain the tradeoffs among selecting between the

types of conversion in questions 3, 4, and 5.

7. What are the three key roles in any change manage-

ment initiative?

8. Why do people resist change? Explain the basic model

for understanding why people accept or resist change.

9. What are the three major elements of management

policies that must be considered when implementing a

new system?

10. Compare and contrast an information change man-

agement strategy with a political change management

strategy. Is one better than the other?

11. Explain the three categories of adopters you are likely

to encounter in any change management initiative.

12. How should you decide what items to include in your

training plan?

13. Compare and contrast three basic approaches to train-

ing.

14. What is the role of the operations group in the systems

development life cycle (SDLC)?

15. Compare and contrast two major ways of providing

system support.

16. How is a problem report different from a change

request?

17. What are the major sources of change requests?

18. Why is project assessment important?

19. How is project team review different from system

review?

20. What do you think are three common mistakes that

novice analysts make in migrating from the As-Is to

the To-Be system?

21. Some experts argue that change management is more

important than any other part of the SDLC. Do you

agree or not? Explain.

22. In our experience, change management planning often

receives less attention than conversion planning. Why

do you think this happens?

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

Minicases 513

EXERCISES

A. Suppose you are installing a new accounting package

in your small business. What conversion strategy

would you use? Develop a conversion plan (i.e., tech-

nical aspects only).

B. Suppose you are installing a new room reservation sys-

tem for your university that tracks which courses are

assigned to which rooms. Assume that all the rooms in

each building are “owned” by one college or depart-

ment and only one person in that college or depart-

ment has permission to assign them. What conversion

strategy would you use? Develop a conversion plan

(i.e., technical aspects only).

C. Suppose you are installing a new payroll system in a

very large multinational corporation. What conver-

sion strategy would you use? Develop a conversion

plan (i.e., technical aspects only).

D. Consider a major change you have experienced in

your life (e.g., taking a new job, starting a new

school). Prepare a cost–benefit analysis of the change

in terms of both the change and the transition to the

change.

E. Suppose you are the project manager for a new library

system for your university. The system will improve

the way in which students, faculty, and staff can search

for books by enabling them to search over the Web,

rather than using only the current text-based system

available on the computer terminals in the library. Pre-

pare a cost–benefit analysis of the change in terms of

both the change and the transition to the change for

the major stakeholders.

F. Prepare a plan to motivate the adoption of the system

in Exercise E.

G. Prepare a training plan that includes both what you

would train and how the training would be delivered

for the system in Exercise E.

H. Suppose you are leading the installation of a new deci-

sion support system to help admissions officers man-

age the admissions process at your university. Develop

a change management plan (i.e., organizational

aspects only).

I. Suppose you are the project leader for the develop-

ment of a new Web-based course registration system

for your university that replaces an old system in

which students had to go to the coliseum at certain

times and stand in line to get permission slips for each

course they wanted to take. Develop a migration plan

(including both technical conversion and change

management).

J. Suppose you are the project leader for the development

of a new airline reservation system that will be used by

the airline’s in-house reservation agents. The system

will replace the current command-driven system

designed in the 1970s that uses terminals. The new sys-

tem uses PCs with a Web-based interface. Develop a

migration plan (including both conversion and

change management) for your telephone operators.

K. Develop a migration plan (including both conversion

and change management) for the independent travel

agencies who use the airline reservation system

described in Exercise J.

MINICASES

1. Nancy is the IS department head at MOTO Inc., a

human resources management firm. The IS staff at

MOTO Inc. completed work on a new client manage-

ment software system about a month ago. Nancy was

impressed with the performance of her staff on this

project because the firm had not previously under-

taken a project of this scale in-house. One of Nancy’s

weekly tasks is to evaluate and prioritize the change

requests that have come in for the various applications

used by the firm.

Right now, Nancy has five change requests for the

client system on her desk. One request is from a system

user who would like some formatting changes made to

a daily report produced by the system. Another request

is from a user who would like the sequence of menu

options changed on one of the system menus to more

closely reflect the frequency of use for those options. A

third request came in from the Billing Department.

This department performs billing through the use of a

billing software package. A major upgrade of this soft-

ware is being planned, and the interface between the

client system and the bill system will need to be

changed to accommodate the new software’s data

structures. The fourth request seems to be a system

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

514 Chapter 15 Installation and Operations

bug that occurs whenever a client cancels a contract (a

rare occurrence, fortunately). The last request came

from Susan, the company president. This request con-

firms the rumor that MOTO Inc. is about to acquire

another new business. The new business specializes in

the temporary placement of skilled professional and

scientific employees, and represents a new business

area for MOTO Inc. The client management software

system will need to be modified to incorporate the

special client arrangements that are associated with

the acquired firm.

How do you recommend that Nancy prioritize these

change requests for the client/management system?

2. Sky View Aerial Photography offers a wide range of

aerial photographic, video, and infrared imaging ser-

vices. The company has grown from its early days of

snapping pictures of client houses to its current status

as a full-service aerial image specialist. Sky View now

maintains numerous contracts with various govern-

mental agencies for aerial mapping and surveying

work. Sky View has its offices at the airport where its

fleet of specially-equipped aircraft are hangared. Sky

View contracts with several free-lance pilots and pho-

tographers for some of its aerial work and also

employs several full-time pilots and photographers.

The owners of Sky View Aerial Photography

recently contracted with a systems development con-

sulting firm to develop a new information system for

the business. As the number of contracts, aircraft,

flights, pilots, and photographers increased, the com-

pany experienced difficulty keeping accurate records

of its business activity and the utilization of its fleet of

aircraft. The new system will require all pilots and

photographers to swipe an ID badge through a reader

at the beginning and conclusion of each photo flight,

along with recording information about the aircraft

used and the client served on that flight. These

records would be reconciled against the actual aircraft

utilization logs maintained and recorded by the

hangar personnel.

The office staff was eagerly awaiting the installation

of the new system. Their general attitude was that the

system would reduce the number of problems and

errors that they encountered and would make their

work easier. The pilots, photographers, and hangar

staff were less enthusiastic, being unaccustomed to

having their activities monitored in this way.

a. Discuss the factors that may inhibit the acceptance

of this new system by the pilots, photographers,

and hangar staff.

b. Discuss how an informational strategy could be

used to motivate adoption of the new system at Sky

View Aerial Photography.

c. Discuss how a political strategy could be used to

motivate adoption of the new system at Sky View

Aerial Photography.

Copyright © 2005 John Wiley & Sons Retrieved from: www.knovel.com

	1_noPW
	Front Matter
	Preface
	Table of Contents
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	2_noPW
	Front Matter
	Preface
	Table of Contents
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	3_noPW
	4_noPW
	Front Matter
	Table of Contents
	1. Introduction to Systems Analysis and Design
	1.1 Introduction
	1.2 The Systems Development Life Cycle
	1.2.1 Planning
	1.2.2 Analysis
	1.2.3 Design
	1.2.4 Implementation

	1.3 Systems Development Methodologies
	1.3.1 Structured Design
	1.3.2 Rapid Application Development (RAD)
	1.3.3 Agile Development
	1.3.4 Selecting the Appropriate Development Methodology

	1.4 Project Team Roles and Skills
	1.4.1 Business Analyst
	1.4.2 Systems Analyst
	1.4.3 Infrastructure Analyst
	1.4.4 Change Management Analyst
	1.4.5 Project Manager

	1.5 Summary
	1.6 Key Terms
	1.7 Questions
	1.8 Exercises
	1.9 Minicases

	Part I. Planning Phase
	Part II. Analysis Phase
	Part III. Design Phase
	Part IV. Implementation Phase
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	5_noPW
	Front Matter
	Table of Contents
	2. Introduction to Object-Oriented Systems Analysis and Design with the Unified Modeling Language, Version 2.0
	2.1 Introduction
	2.2 Basic Characteristics of Object-Oriented Systems
	2.2.1 Classes and Objects
	2.2.2 Methods and Messages
	2.2.3 Encapsulation and Information Hiding
	2.2.4 Inheritance
	2.2.5 Polymorphism and Dynamic Binding

	2.3 The Unified Modeling Language,Version 2.0
	2.3.1 Structure Diagrams
	2.3.2 Behavior Diagrams
	2.3.3 Extension Mechanisms

	2.4 Object-Oriented Systems Analysis and Design
	2.4.1 Use-Case Driven
	2.4.2 Architecture Centric
	2.4.3 Iterative and Incremental
	2.4.4 The Unified Process

	2.5 A Minimalist Approach to Object-Oriented Systems Analysis and Design with UML 2.0
	2.5.1 Benefits of Object-Oriented Systems Analysis and Design
	2.5.2 Extensions to the Unified Process
	2.5.3 The Minimalist Object-Oriented Systems Analysis and Design Approach

	2.6 Summary
	2.7 Key Terms
	2.8 Questions
	2.9 Exercises
	2.10 Minicases

	Part I. Planning Phase
	Part II. Analysis Phase
	Part III. Design Phase
	Part IV. Implementation Phase
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	6_noPW
	Front Matter
	Table of Contents
	Part I. Planning Phase
	3. Project Initiation
	3.1 Introduction
	3.2 Project Identification
	3.2.1 System Request
	3.2.2 Applying the Concepts at CD Selections

	3.3 Feasibility Analysis
	3.3.1 Technical Feasibility
	3.3.2 Economic Feasibility
	3.3.3 Organizational Feasibility
	3.3.4 Applying the Concepts at CD Selections

	3.4 Project Selection
	3.4.1 Applying the Concepts at CD Selections

	3.5 Summary
	3.6 Key Terms
	3.7 Questions
	3.8 Exercises
	3.9 Minicases

	4. Project Management
	Part II. Analysis Phase
	Part III. Design Phase
	Part IV. Implementation Phase
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	7_noPW
	Front Matter
	Table of Contents
	Part I. Planning Phase
	3. Project Initiation
	3.1 Introduction
	3.2 Project Identification
	3.2.1 System Request
	3.2.2 Applying the Concepts at CD Selections

	3.3 Feasibility Analysis
	3.3.1 Technical Feasibility
	3.3.2 Economic Feasibility
	3.3.3 Organizational Feasibility
	3.3.4 Applying the Concepts at CD Selections

	3.4 Project Selection
	3.4.1 Applying the Concepts at CD Selections

	3.5 Summary
	3.6 Key Terms
	3.7 Questions
	3.8 Exercises
	3.9 Minicases

	4. Project Management
	Part II. Analysis Phase
	Part III. Design Phase
	Part IV. Implementation Phase
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	8_noPW
	Front Matter
	Table of Contents
	Part I. Planning Phase
	3. Project Initiation
	4. Project Management
	4.1 Introduction
	4.2 Identifying Project Size
	4.2.1 Function Point Approach

	4.3 Creating and Managing the Workplan
	4.3.1 Identify Tasks
	4.3.2 The Project Workplan
	4.3.3 Gantt Chart
	4.3.4 PERT Chart
	4.3.5 Refining Estimates
	4.3.6 Scope Management
	4.3.7 Timeboxing
	4.3.8 Evolutionary Work Breakdown Structures and Iterative Workplans

	4.4 Staffing the Project
	4.4.1 Staffing Plan
	4.4.2 Motivation
	4.4.3 Handling Conflict

	4.5 Coordinating Project Activities
	4.5.1 CASE Tools
	4.5.2 Standards
	4.5.3 Documentation
	4.5.4 Managing Risk

	4.6 Applying the Concepts at CD Selections
	4.6.1 Staffing the Project
	4.6.2 Coordinating Project Activities

	4.7 Summary
	4.8 Key Terms
	4.9 Questions
	4.10 Exercises
	4.11 Minicases

	Part II. Analysis Phase
	Part III. Design Phase
	Part IV. Implementation Phase
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	9_noPW
	Front Matter
	Table of Contents
	Part I. Planning Phase
	Part II. Analysis Phase
	5. Requirements Determination
	5.1 Introduction
	5.2 Requirements Determination
	5.2.1 What is a Requirement?
	5.2.2 Requirements Definition
	5.2.3 Determining Requirements
	5.2.4 Creating the Requirements Definition

	5.3 Requirements Analysis Techniques
	5.3.1 Business Process Automation
	5.3.2 Business Process Improvement
	5.3.3 Business Process Reengineering
	5.3.4 Selecting the Appropriate Technique

	5.4 Requirements-Gathering Techniques
	5.4.1 Interviews
	5.4.2 Joint Application Development(JAD)
	5.4.3 Questionnaires
	5.4.4 Document Analysis
	5.4.5 Observation
	5.4.6 Selecting the Appropriate Techniques

	5.5 Applying the Concepts at CD Selections
	5.5.1 Requirements Analysis Techniques
	5.5.2 Requirements-Gathering Techniques
	5.5.3 Requirements Definition
	5.5.4 System Proposal

	5.6 Summary
	5.7 Key Terms
	5.8 Questions
	5.9 Exercises
	5.10 Minicases

	6. Functional Modeling
	7. Structural Modeling
	8. Behavioral Modeling
	Part III. Design Phase
	Part IV. Implementation Phase
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	10_noPW
	Front Matter
	Table of Contents
	Part I. Planning Phase
	Part II. Analysis Phase
	5. Requirements Determination
	5.1 Introduction
	5.2 Requirements Determination
	5.2.1 What is a Requirement?
	5.2.2 Requirements Definition
	5.2.3 Determining Requirements
	5.2.4 Creating the Requirements Definition

	5.3 Requirements Analysis Techniques
	5.3.1 Business Process Automation
	5.3.2 Business Process Improvement
	5.3.3 Business Process Reengineering
	5.3.4 Selecting the Appropriate Technique

	5.4 Requirements-Gathering Techniques
	5.4.1 Interviews
	5.4.2 Joint Application Development(JAD)
	5.4.3 Questionnaires
	5.4.4 Document Analysis
	5.4.5 Observation
	5.4.6 Selecting the Appropriate Techniques

	5.5 Applying the Concepts at CD Selections
	5.5.1 Requirements Analysis Techniques
	5.5.2 Requirements-Gathering Techniques
	5.5.3 Requirements Definition
	5.5.4 System Proposal

	5.6 Summary
	5.7 Key Terms
	5.8 Questions
	5.9 Exercises
	5.10 Minicases

	6. Functional Modeling
	7. Structural Modeling
	8. Behavioral Modeling
	Part III. Design Phase
	Part IV. Implementation Phase
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	11_noPW
	Front Matter
	Table of Contents
	Part I. Planning Phase
	Part II. Analysis Phase
	5. Requirements Determination
	6. Functional Modeling
	6.1 Introduction
	6.2 Business Process Modeling with Activity Diagrams
	6.2.1 Elements of an Activity Diagram
	6.2.2 Guidelines for Creating Activity Diagrams

	6.3 Use Case Descriptions
	6.3.1 Types of Use Case
	6.3.2 Elements of a Use Case Description
	6.3.3 Guidelines for Creating Use Case Descriptions

	6.4 Use Case Diagrams
	6.4.1 Actor
	6.4.2 Association
	6.4.3 Use Case
	6.4.4 Subject Boundary

	6.5 Creating Use Case Descriptions and Use Case Diagrams
	6.5.1 Identify the Major Use Cases
	6.5.2 Expand the Major Use Cases
	6.5.3 Confirm the Major Use Cases
	6.5.4 Create the Use Case Diagram

	6.6 Refining Project Size and Effort Estimation Using Use Case Points
	6.7 Applying the Concepts at CD Selections
	6.7.1 Business Process Modeling with Activity Diagrams
	6.7.2 Identify the Major Use Cases
	6.7.3 Expanding the Major Use Cases
	6.7.4 Confirming the Major Use Cases
	6.7.5 Creating the Use Case Diagram
	6.7.6 Refine Project Size and Effort Estimation Using Use Case Points

	6.8 Summary
	6.9 Key Terms
	6.10 Questions
	6.11 Exercises
	6.12 Minicases

	7. Structural Modeling
	8. Behavioral Modeling
	Part III. Design Phase
	Part IV. Implementation Phase
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	12_noPW
	Front Matter
	Table of Contents
	Part I. Planning Phase
	Part II. Analysis Phase
	5. Requirements Determination
	6. Functional Modeling
	7. Structural Modeling
	7.1 Introduction
	7.2 Structural Models
	7.2.1 Classes, Attributes, and Operations
	7.2.2 Relationships

	7.3 Class-Responsibility-Collaboration Cards
	7.3.1 Responsibilities and Collaborations
	7.3.2 Elements of a CRC Card

	7.4 Class Diagrams
	7.4.1 Elements of a Class Diagram
	7.4.2 Simplifying Class Diagrams
	7.4.3 Object Diagrams

	7.5 Creating CRC Cards and Class Diagrams
	7.5.1 Object Identification
	7.5.2 Building CRC Cards and Class Diagrams
	7.5.3 Applying the Concepts at CD Selections

	7.6 Summary
	7.7 Key Terms
	7.8 Questions
	7.9 Exercises
	7.10 Minicases

	8. Behavioral Modeling
	Part III. Design Phase
	Part IV. Implementation Phase
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	13_noPW
	Front Matter
	Table of Contents
	Part I. Planning Phase
	Part II. Analysis Phase
	5. Requirements Determination
	6. Functional Modeling
	7. Structural Modeling
	8. Behavioral Modeling
	8.1 Introduction
	8.2 Behavioral Models
	8.3 Interaction Diagrams
	8.3.1 Objects, Operations, and Messages
	8.3.2 Sequence Diagrams
	8.3.3 Communication Diagrams

	8.4 Behavioral State Machines
	8.4.1 States, Events, Transitions, Actions and Activities
	8.4.2 Elements of a Behavioral State Machine
	8.4.3 Building a Behavioral State Machine
	8.4.4 Applying the Concepts at CD Selections

	8.5 Summary
	8.6 Key Terms
	8.7 Questions
	8.8 Exercises
	8.9 Minicases

	Part III. Design Phase
	Part IV. Implementation Phase
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	14_noPW
	Front Matter
	Table of Contents
	Part I. Planning Phase
	Part II. Analysis Phase
	Part III. Design Phase
	9. Moving on to Design
	9.1 Introduction
	9.2 Evolving the Analysis Models into Design Models
	9.2.1 Factoring
	9.2.2 Partitions and Collaborations
	9.2.3 Layers

	9.3 Packages and Package Diagrams
	9.3.1 Identifying Packages and Creating Package Diagrams
	9.3.2 Applying Concepts at CD Selections

	9.4 Design Strategies
	9.4.1 Custom Development
	9.4.2 Packaged Software
	9.4.3 Outsourcing
	9.4.4 Selecting a Design Strategy

	9.5 Developing the Actual Design
	9.5.1 Alternative Matrix
	9.5.2 Applying the Concepts at CD Selections

	9.6 Summary
	9.7 Key Terms
	9.8 Questions
	9.9 Exercises
	9.10 Minicases

	10. Class and Method Design
	11. Data Management Layer Design
	12. Human Computer Interaction Layer Design
	13. Physical Architecture Layer Design
	Part IV. Implementation Phase
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	15_noPW
	Front Matter
	Table of Contents
	Part I. Planning Phase
	Part II. Analysis Phase
	Part III. Design Phase
	9. Moving on to Design
	9.1 Introduction
	9.2 Evolving the Analysis Models into Design Models
	9.2.1 Factoring
	9.2.2 Partitions and Collaborations
	9.2.3 Layers

	9.3 Packages and Package Diagrams
	9.3.1 Identifying Packages and Creating Package Diagrams
	9.3.2 Applying Concepts at CD Selections

	9.4 Design Strategies
	9.4.1 Custom Development
	9.4.2 Packaged Software
	9.4.3 Outsourcing
	9.4.4 Selecting a Design Strategy

	9.5 Developing the Actual Design
	9.5.1 Alternative Matrix
	9.5.2 Applying the Concepts at CD Selections

	9.6 Summary
	9.7 Key Terms
	9.8 Questions
	9.9 Exercises
	9.10 Minicases

	10. Class and Method Design
	11. Data Management Layer Design
	12. Human Computer Interaction Layer Design
	13. Physical Architecture Layer Design
	Part IV. Implementation Phase
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	16_noPW
	Front Matter
	Table of Contents
	Part I. Planning Phase
	Part II. Analysis Phase
	Part III. Design Phase
	9. Moving on to Design
	10. Class and Method Design
	10.1 Introduction
	10.2 Revisiting the Basic Characteristics of Object-Orientation
	10.2.1 Classes, Objects, Methods and Messages
	10.2.2 Encapsulation and Information Hiding
	10.2.3 Polymorphism and Dynamic Binding
	10.2.4 Inheritance

	10.3 Design Criteria
	10.3.1 Coupling
	10.3.2 Cohesion
	10.3.3 Connascence

	10.4 Object Design Activities
	10.4.1 Additional Specification
	10.4.2 Identifying Opportunities for Reuse
	10.4.3 Restructuring the Design
	10.4.4 Optimizing the Design
	10.4.5 Mapping Problem Domain Classes to Implementation Languages

	10.5 Constraints and Contracts
	10.5.1 Types of Constraints
	10.5.2 Elements of a Contract

	10.6 Method Specification
	10.6.1 General Information
	10.6.2 Events
	10.6.3 Message Passing
	10.6.4 Algorithm Specification

	10.7 Applying the Concepts at CD Selections
	10.8 Summary
	10.9 Key Terms
	10.10 Questions
	10.11 Exercises
	10.12 Minicases

	11. Data Management Layer Design
	12. Human Computer Interaction Layer Design
	13. Physical Architecture Layer Design
	Part IV. Implementation Phase
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	17_noPW
	Front Matter
	Table of Contents
	Part I. Planning Phase
	Part II. Analysis Phase
	Part III. Design Phase
	9. Moving on to Design
	10. Class and Method Design
	11. Data Management Layer Design
	11.1 Introduction
	11.2 Object-Persistence Formats
	11.2.1 Sequential and Random Access Files
	11.2.2 Relational Databases
	11.2.3 Object-Relational Databases
	11.2.4 Object-Oriented Databases
	11.2.5 Selecting an Object-Persistence Format

	11.3 Mapping Problem Domain Objects to Object-Persistence Formats
	11.3.1 Mapping Problem Domain Objects to an OODBMS Format
	11.3.2 Mapping Problem Domain Objects to anORDBMS Format
	11.3.3 Mapping Problem Domain Objects to an RDBMS Format

	11.4 Optimizing RDBMS-Based Object Storage
	11.4.1 Optimizing Storage Efficiency
	11.4.2 Optimizing Data Access Speed
	11.4.3 Estimating Data Storage Size

	11.5 Designing Data Access and Manipulation Classes
	11.6 Applying the Concepts at CD Selections
	11.6.1 Select Object-Persistence Format
	11.6.2 Map Problem Domain Objects to Object-Persistence Format
	11.6.3 Optimize Object Persistence and Estimateits Size
	11.6.4 Data Access and Manipulation Class Design

	11.7 Summary
	11.8 Key Terms
	11.9 Questions
	11.10 Exercises
	11.11 Minicases

	12. Human Computer Interaction Layer Design
	13. Physical Architecture Layer Design
	Part IV. Implementation Phase
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	18_noPW
	Front Matter
	Table of Contents
	Part I. Planning Phase
	Part II. Analysis Phase
	Part III. Design Phase
	9. Moving on to Design
	10. Class and Method Design
	11. Data Management Layer Design
	12. Human Computer Interaction Layer Design
	12.1 Introduction
	12.2 Principles for User Interface Design
	12.2.1 Layout
	12.2.2 Content Awareness
	12.2.3 Aesthetics
	12.2.4 User Experience
	12.2.5 Consistency
	12.2.6 Minimize User Effort

	12.3 User Interface Design Process
	12.3.1 Use Scenario Development
	12.3.2 Interface Structure Design
	12.3.3 Interface Standards Design
	12.3.4 Interface Design Prototyping
	12.3.5 Interface Evaluation

	12.4 Navigation Design
	12.4.1 Basic Principles
	12.4.2 Types of Navigation Controls
	12.4.3 Messages
	12.4.4 Navigation Design Documentation

	12.5 Input Design
	12.5.1 Basic Principles
	12.5.2 Types of Inputs
	12.5.3 Input Validation

	12.6 Output Design
	12.6.1 Basic Principles
	12.6.2 Types of Outputs
	12.6.3 Media

	12.7 Applying the Concepts at CD Selections
	12.7.1 Use Scenario Development
	12.7.2 Interface Structure Design
	12.7.3 Interface Standards Design
	12.7.4 Interface Template Design
	12.7.5 Design Prototyping
	12.7.6 Interface Evaluation
	12.7.7 Navigation Design Documentation

	12.8 Summary
	12.9 Key Terms
	12.10 Questions
	12.11 Exercises
	12.12 Minicases

	13. Physical Architecture Layer Design
	Part IV. Implementation Phase
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	19_noPW
	Front Matter
	Table of Contents
	Part I. Planning Phase
	Part II. Analysis Phase
	Part III. Design Phase
	9. Moving on to Design
	10. Class and Method Design
	11. Data Management Layer Design
	12. Human Computer Interaction Layer Design
	13. Physical Architecture Layer Design
	13.1 Introduction
	13.2 Elements of the Physical Architecture Layer
	13.2.1 Architectural Components
	13.2.2 Server-Based Architectures
	13.2.3 Client-Based Architectures
	13.2.4 Client…Server Architectures
	13.2.5 Client…Server Tiers
	13.2.6 Distributed Objects Computing
	13.2.7 Selecting a Physical Architecture

	13.3 Infrastructure Design
	13.3.1 Deployment Diagram
	13.3.2 The Network Model

	13.4 Nonfunctional Requirements and Physical Architecture Layer Design
	13.4.1 Operational Requirements
	13.4.2 Performance Requirements
	13.4.3 Security Requirements
	13.4.4 Cultural and Political Requirements
	13.4.5 Synopsis

	13.5 Hardware and Software Specification
	13.6 Applying the Concepts at CD Selections
	13.7 Summary
	13.8 Key Terms
	13.9 Questions
	13.10 Exercises
	13.11 Minicases

	Part IV. Implementation Phase
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	20_noPW
	Front Matter
	Table of Contents
	Part I. Planning Phase
	Part II. Analysis Phase
	Part III. Design Phase
	Part IV. Implementation Phase
	14. Construction
	14.1 Introduction
	14.2 Managing Programming
	14.2.1 Assigning Programmers
	14.2.2 Coordinating Activities
	14.2.3 Managing the Schedule

	14.3 Designing Tests
	14.3.1 Testing and Object-Orientation
	14.3.2 Test Planning
	14.3.3 Unit Tests
	14.3.4 Integration Tests
	14.3.5 System Tests
	14.3.6 Acceptance Tests

	14.4 Developing Documentation
	14.4.1 Types of Documentation
	14.4.2 Designing Documentation Structure
	14.4.3 Writing Documentation Topics
	14.4.4 Identifying Navigation Terms

	14.5 Applying the Concepts at CD Selections
	14.5.1 Managing Programming
	14.5.2 Testing
	14.5.3 Developing User Documentation

	14.6 Summary
	14.7 Key Terms
	14.8 Questions
	14.9 Exercises
	14.10 Minicases

	15. Installation and Operations
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	21_noPW
	Front Matter
	Table of Contents
	Part I. Planning Phase
	Part II. Analysis Phase
	Part III. Design Phase
	Part IV. Implementation Phase
	14. Construction
	14.1 Introduction
	14.2 Managing Programming
	14.2.1 Assigning Programmers
	14.2.2 Coordinating Activities
	14.2.3 Managing the Schedule

	14.3 Designing Tests
	14.3.1 Testing and Object-Orientation
	14.3.2 Test Planning
	14.3.3 Unit Tests
	14.3.4 Integration Tests
	14.3.5 System Tests
	14.3.6 Acceptance Tests

	14.4 Developing Documentation
	14.4.1 Types of Documentation
	14.4.2 Designing Documentation Structure
	14.4.3 Writing Documentation Topics
	14.4.4 Identifying Navigation Terms

	14.5 Applying the Concepts at CD Selections
	14.5.1 Managing Programming
	14.5.2 Testing
	14.5.3 Developing User Documentation

	14.6 Summary
	14.7 Key Terms
	14.8 Questions
	14.9 Exercises
	14.10 Minicases

	15. Installation and Operations
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	22_noPW
	Front Matter
	Table of Contents
	Part I. Planning Phase
	Part II. Analysis Phase
	Part III. Design Phase
	Part IV. Implementation Phase
	14. Construction
	15. Installation and Operations
	15.1 Introduction
	15.2 Conversion
	15.2.1 Conversion Style
	15.2.2 Conversion Location
	15.2.3 Conversion Modules
	15.2.4 Selecting the Appropriate Conversion Strategy

	15.3 Change Management
	15.3.1 Understanding Resistance to Change
	15.3.2 Revising Management Policies
	15.3.3 Assessing Costs and Benefits
	15.3.4 Motivating Adoption
	15.3.5 Enabling Adoption: Training

	15.4 Post-Implementation Activities
	15.4.1 System Support
	15.4.2 System Maintenance
	15.4.3 Project Assessment

	15.5 Applying the Concepts at CD Selections
	15.5.1 Conversion
	15.5.2 Change Management
	15.5.3 Post-Implementation Activities

	15.6 Summary
	15.7 Key Terms
	15.8 Questions
	15.9 Exercises
	15.10 Minicases

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	23_noPW

